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Abstract

Background Mobile radio tracking is an important tool in fisheries research and management. Yet, the accuracy of
location estimates can be highly variable across studies and within a given dataset. While some methods are available
to deal with error, they generally assume a static value for error across all detections. We provide a novel method for
making detection-specific error estimates using detections of recovered transmitters (i.e., mortalities or tag expulsion).
These data are used to establish the relationship between received signal strength (RSS) and positional error, which
can then be used to predict positional error of detections for fish at large. We then show how detection-specific esti-
mates can be integrated into a Monte Carlo framework to analyze movement in ways robust to spatial uncertainty.

Results In a telemetry study in a large river (~90 m), we recovered 22 transmitters to estimate and model positional
error. Error averaged 94 m (range =1-727 m) for transmitters tracked by researchers on foot using a Yagi antenna, and
200 m (range=1-1141 m) for transmitters tracked from vehicles using an omnidirectional whip antenna. Transmitters
located near roads were tracked more accurately with both methods. Received signal strength was a strong predictor
of positional error (*=0.86, ground tracking; 0.65, tracking from truck) and was thus used to make detection-specific
estimates of error for detections of fish at large. Monte Carlo analysis for a binary movement classification revealed
that only 18% of location estimates could be confidently assigned to movement (p < 0.05); the remainder were associ-
ated with stasis or movement that was within the range of positional error. Ignoring positional error led to positive
bias of up to 1300% in individual movement estimates and varied seasonally—it was highest when fish were inactive
and lowest when fish were most active.

Conclusion Using recovered transmitters and RSS models to estimate telemetry error is a viable alternative to staged
‘dummy transmitter'trials and assuming error is a constant. Our proposed approaches to incorporate detection-
specific error estimates into analysis are broadly applicable and can‘make the most’ out of highly accurate detections
while also cautiously extracting spatial information from less-accurate detections.
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Background

Estimating telemetry error in mobile radio telemetry
studies

Mobile radio tracking is an important tool in fisheries
research that allows researchers to achieve high spatial
resolution of animal locations [1, 2]. Unlike fixed receiver
stations, which provide continuous temporal coverage at
a single location, mobile tracking can be used to follow
animals anywhere. Mobile tracking is useful to identify
breeding sites, study habitat use, and identify the date or
location of animal mortalities, among many other uses
[3-5]. In any of these applications, however, it is neces-
sary to consider the potential influence of positional
accuracy on the research questions. For example, if loca-
tion accuracy is only 100 m, then the data are not suitable
to study microhabitat use. At a minimum, researchers
using telemetry should characterize positional error and
ask how this relates to the spatial scale of their questions.
This is particularly important because there is a great
deal of variation in positional error reported across many
studies.

Positional error can range from meters to kilometers
depending on variety of factors such as methods used
(e.g., tracking platform, antenna models, receiver type),
characteristics of the waterbody, or species being tracked
[1, 6-8]. For example, using a directional Yagi antenna
and foot-based tracking in small shallow streams, detec-
tions can be made with sub-meter accuracy [1]. How-
ever, foot-based tracking in a large river system with
deep-inaccessible areas can yield higher error in posi-
tional estimates (e.g., 24 m in a~40 m wide river [9]). In
some cases, aircraft are required to cover remote areas
and tracking results in much larger error ranges (e.g.,
200-500 m [8, 9]). Additionally, waterbody characteris-
tics like water temperature and conductivity, presence of
aquatic vegetation, and depth impact radio signal attenu-
ation and positional error [7, 8]. Indeed, positional error
will vary across different studies using different methods;
however, positional error also varies substantially within
studies.

Even when using consistent methods in the same
waterbody, positional error can be highly variable across
detections within a dataset. Examples from air-based
tracking suggest high ranges in error (e.g., mean error of
177 m (range: 1-842 m) [10], and mean error of 178 m
(range: 22—426 m) [8]) which is expected given the speed
and altitude typical of aircraft. Examples using ground-
based methods generally report lower, put potentially still
important, variation in error. Tracking in a small stream
using an ‘extended reach technique’ (i.e., a loop antenna
on an extendable pole) yielded an average error of 1 m,
but still the range of error in this study was 0.22-4.28 m
[11]. Tracking fish in larger streams results in larger
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ranges around the mean (e.g., 1-131 m [9], and 4-49 m
[12]). Moreover, these estimates are from studies specifi-
cally focusing on error estimation using controlled trials
(e.g., dummy transmitter trials). In real fieldwork scenar-
ios, variables like access, weather and conditions, varia-
tion in personnel skill, or time availability could lead to
additional variation in positional error for detections of
fish at large [9]. In this case representing positional error
as a constant for all detections could be a consequential
and unnecessary oversimplification.

An alternative to assuming error is constant is to use
received signal strength (RSS) to estimate error uniquely
for every detection [9]. Modern telemetry equipment
provides either a reading of decibels (-dB) or a unit-
less measure of RSS that provides valuable information
[13-15]. In controlled trials, RSS explained 98-99% of
variation in distance to transmitter, suggesting it could be
used to estimate positional error of transmitters detected
at large [9, 12]. This method is applicable when ‘hom-
ing’ or the ‘gain reduction method’ is used, where the
transmitter is approached by the researcher and location
where RSS peaks is recorded as the animal location [1].
Thus, high RSS means the transmitter is close and low
RSS means it is far away—and a fitted RSS model can
be used to convert RSS to a distance estimate. Although
controlled trials can be used to develop the RSS model [9,
12] another option is to use detections made of recovered
transmitters.

If a telemetered fish dies during a research study or a
transmitter is ejected, it is likely that it will be tracked on
multiple occasions in a final resting place before recovery
(Fig. 1). In this sense, recovered transmitters are akin to
planting dummy transmitters for positional error testing
[1, 2], but with a potential advantage. Field staff conduct-
ing telemetry are naive of the status of the transmit-
ter until the time it is recovered and thus detections are
likely more representative than a staff knowingly partici-
pating in an accuracy trial. Variation in positioning error
from detections made of these transmitters will reflect
the skill, conditions, equipment, and effort used in the
study. In the first part of our paper, we provide an exam-
ple of using recovered transmitters for characterizing
positional error, exploring bias, and then using these data
to build RSS models.

Incorporating positional error into analysis of telemetry
data

Even if good estimates for positional error are available,
an important next step in the analysis of telemetry data
is to determine how to incorporate this uncertainty into
analysis of animal movement data. Options for incorpo-
rating uncertainty include (1) censoring detections with
low accuracy; (2) drawing a polygon for each animal
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Fig. 1 Example of a detection record (i.e, each dot is an estimated
animal location) for a transmitter that is eventually recovered (red
dot) where; a detections of the transmitter in the final resting place
are identified (i.e, after point 3) and these are queried to estimate
positional error (b). This method assumes that after point 3, the
transmitter did not move until it was recovered. Thus, we have (1) a
‘true location'and (2) many location estimates (made during regular
field-tracking prior to transmitter recovery) to measure positional
accuracy

position [1, 16, 17]; (3) modeling error as part of obser-
vation error in a state-space framework [18]; (4) or using
re-sampling methods to draw points from within an error
ellipse and Monte Carlo (MC) simulation to produce
analyses incorporating telemetry error [19, 20]. Although
each method above has utility, one of the most general
is resampling from within telemetry error distributions
with MC techniques.

The general MC approach is relatively simple and can
be applied to nearly any statistical model [21]. The idea is
to simulate many possible versions of a telemetry dataset
using recorded locations and estimates of spatial error;
each iteration produces a dataset representing where
the animals could have been. Analysis is then performed
on each of these datasets to produce a distribution of
feasible results. If conclusions (i.e., movement, habitat
preference, etc.) are consistent across the simulated data-
sets, then those conclusions are robust to uncertainty
attributable to telemetry error. While these methods
have been used to some extent in the analysis of telem-
etry data, we are unaware of any studies that incorporate

Page 3 of 13

detection-specific estimates of error into a resampling
approach. In prior examples, possible ‘true’ locations
are estimated using a static value for positional error
[21]; however, this approach fails to fully extract impor-
tant spatial information from highly accurate detections.
Likewise, some detections will be attributed with an
unrealistic degree of accuracy.

Here, we provide a simple example of an RSS model
integrated with resampling methods to estimate and
account for variable positional error in movement anal-
ysis. We based the spatial resampling method on the
algorithm presented in Openshaw [21]. Although this
is a general approach that can be applied to a variety of
analyses, we use the question “did the fish move between
subsequent detections?” and “how far did it move?” as a
demonstration of its utility. We present these methods
with a focus on estimating positions using mobile radio
tracking but note that the MC method is applicable to
any telemetry dataset containing positional error.

Methods

Dataset

We used a mobile tracking dataset from adult landlocked
Atlantic salmon (Salmo salar) in the Winooski River, Ver-
mont, United States of America (U.S.A.). In this system,
a mechanical fish lift is used to capture adult fish at a
dam at river kilometer (rKM) 16, and then they are trans-
ported 17 rKMs upstream past two additional dams and
released into spawning habitat [22]. The upstream extent
of habitat access is at KM 67 where a hydroelectric facil-
ity without a passage structure blocks access. Annual
mean flow in the Winooski River is 67 m>/s, it’s average
bankfull width below rKM 67 (where fish were released
and tracked) is about 90 m (range =40-140 m). Depths
are variable across the length of the river ranging from
some very shallow riffle sections in braided areas to deep
holes in the lower river roughly 10 m deep. A study was
initiated in 2018 to assess the behavior of these salmon
with a particular focus on fallbacks, which is when fish
transported upstream past dams ‘fall back’ downstream
over the dam shortly thereafter [23].

Salmon were captured at the fish lift during the Fall
trapping periods (Sept 15 — November 15) from 2018 to
2020 and surgically implanted with radio transmitters. A
total of 114 fish were tagged and transported upstream
(2018, n=21; 2019, n=55, 2020, n =38) with a mean total
length of 771 mm (4 50.12, range =455-722) and a mean
weight of 2.02 kg (+0.55, 0.74 — 4.28). Fish were anes-
thetized using electronarcosis and a transmitter (Sigma
Eight, TX-PSC-1-450, 46 mm x 12 mmX12 mm, 8.5 g)
was inserted through a small (15 mm) incision which was
closed with absorbable sutures. Ping rate of the trans-
mitters was set to 5 s and transmitters frequencies used
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during the study included 164.290, 164.310, 164.380,
164.480. Fish were transported to sites 20 river km
upstream (in 2018) and 33 km upstream (2019, 2020) and
released.

Fish were tracked between one to three times a week,
including during the winter, using mobile tracking
methods. On each tracking event, we drove a pre-deter-
mined route along the river in a truck while scanning
for fish with a mobile telemetry receiver (Lotek SRX800)
attached to a roof-mounted omnidirectional whip
antenna. We used one of two methods to record fish
locations, (1) we stayed in the truck and marked the loca-
tion where RSS peaked as the fish location or (2) we got
out of the truck and used a directional 3-element Yagi
antenna to approach and locate the RSS peak. The first
method was used when exiting the truck was not feasi-
ble (e.g., private land/no river access, limited time avail-
ability of staff, foul weather). When truck tracking, we
generally began detecting a transmitter at a weak RSS
(which is displayed on the receiver screen and is also
indicated by ‘chirp’ volume from the receiver’s speaker),
followed by an increase in RSS to a peak before it began
decreasing again. We stopped the truck at the location
where the RSS peaked, and the RSS and the coordinates
(of the truck, as measured using a global positioning
system (GPS)) were recorded. When we used the sec-
ond method, we most often were not wearing waders so
were restricted to homing in on the highest RSS signal
that could be achieved from the bank. This GPS location,
where RSS was highest, was recorded as the fish location.

The GPS coordinates were collected by either handheld
units (Garmin Rhino) or the internal GPS on the radio
receiver, both of which were enabled with Wide Area
Augmentation System (WAAS) and had<5 m accuracy.
This component of positional accuracy is called map-
ping error [24] and is generally small relative to animal
location error in telemetry studies [8], especially those in
larger rivers or ones done from aircraft. Given the rela-
tively coarse accuracy of our methods (rarely <50 m, See
Additional File 1: Figure S2) we consider mapping error
to be negligible relative to animal location error and do
not explicitly account for it.

Positioning error estimation using recovered transmitters

We first used the recovered transmitters to estimate posi-
tional error and explore bias. Because (1) we physically
recovered 22 transmitters (due to mortalities or tag loss)
and collected GPS coordinates of each one (i.e., knew
where they were); and (2) we had tracked these trans-
mitters many times to estimate their position during our
ongoing study, we unintentionally produced a dataset
suitable for estimating positional error. In fact, we pro-
duced a ‘dummy transmitter’ dataset, which refers to a
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scenario where a transmitter is placed in a known loca-
tion, then tracked to estimate its position. Detections
of these recovered transmitters occurred on 107 unique
dates by 10 different field crew so should be reflective of
the variation in positional error embedded within our
dataset.

We first queried these data to reflect only positional
estimates of the transmitters after they had come to a
final resting place (i.e., the recovery location, Fig. 1a).
When estimating positional error, we wanted to only
be using detections recorded of that transmitter in the
known location (i.e., the recovery location) and not
detections from the fish as it was still alive and moving
around. Thus we assume that for all recovered transmit-
ters (1) there was a date the transmitter came to a final
resting place, (2) we correctly identified this date, and
(3) the transmitter did not move after this date. This
method was generally straightforward for most recovered
transmitters (e.g., Fig. 1a) but in several cases required
a few iterations to determine the appropriate date cut-
off. Because the RSS ~ Distance relationship is so strong
(r*>0.95, p<0.05) [9], if the date cutoff was wrong, clear
outliers appeared when reviewing this relationship.

This method resulted in a dataset of 538 estimates of
fish locations (432 whip, 104 Yagi) that were each paired
with a ‘true’ location (i.e., the recovery location). We
measured the distance from the estimated location to
the true location, and considered this a good estimate
of positional error. We summarized these data to gener-
ate mean estimates of positional error and used ANOVA
and Tukey’s HSD to determine if positional error varied
among transmitters (Table 1). To assess method-specific
overall mean error, we fit a linear mixed effects model
with the response as distance, antenna type (a two level
factor) as a fixed effect, and transmitter ID as a random
effect (using the Ime4 package in R) [25, 26]. Transmit-
ter ID was used as a random effect because the datasets
included many observations made of the same transmit-
ter, which are expected to be correlated. Marginal means
and 95% confidence intervals were extracted from the
fitted model (using the emmeans package in R) [27]. We
also compared the mean positional error of each trans-
mitter to the distance to the nearest road to test the
hypothesis that road-proximity was positively correlated
to positional error.

Building an RSS model

We then followed the procedures described in [9] and
modeled the relationship between distance-to-trans-
mitter (i.e., positional error estimates made from recov-
ered transmitters, described above) and RSS for Yagi
and whip antennas (separate models, n Yagi=104, n
whip=432). We tested five basic models to predict
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Table 1 Information on recovered transmitters, including detection equipment and remote positioning data

TagID Release Recovered Last move At Large (days) Road dist. (m) n Yagi Error yagi n Whip Error whip
1 10/19/2020 6/7/2021 11/3/2020 231 16 2 46 (6) 59 26 (8)

2 10/7/2020 6/7/2021 10/27/2020 243 16 2 16 (7) 61 30(16)

3 11/4/2020 12/16/2020 11/17/2020 42 36 2 5(0) 8 34(12)

4 10/22/2019 8/7/2020 12/17/2019 290 63 0 - 21 98 (35)

5 10/22/2019 7/10/2020 1/7/2020 262 53 1 0 20 101 (106)
6 10/15/2019 8/7/2020 12/11/2019 297 65 7 146 (21) 116 (59)
7 10/25/2019 8/7/2020 6/24/2020 287 75 1 12 126 (26)
8 10/14/2020 4/7/2021 3/22/2021 175 21 1 3 142 (118)
9 10/7/2019 8/3/2020 1/7/2020 301 50 8 221 (10) 160 (107)
10 10/21/2020 12/16/2020 11/10/2020 56 74 1 3 1 161 (125)
1 11/6/2020 12/28/2020 12/11/2020 52 114 2 73(78) 3 169 (64)
12 10/22/2019 8/7/2020 11/15/2019 290 134 0 - 37 171 (62)
13 10/23/2019 7/6/2020 6/4/2020 257 89 1 0 8 173 (50)
14 10/26/2020 6/7/2021 2/10/2021 224 148 3 72 (29) 23 183 (59)
15 11/2/2020 6/7/2021 11/10/2020 217 96 8 136 (70) 49 206 (57)
16 10/10/2019 7/10/2020 11/18/2019 274 327 1 0 43 303 (88)
17 10/28/2019 7/29/2020 11/13/2019 275 286 4 265 (176) 24 370 (52)
18 10/25/2019 8/7/2020 11/6/2019 287 333 20 288 (144) 22 377 (90)
19 10/17/2019 8/7/2020 11/18/2019 295 306 1 196 (168) 22 393 (97)
20 10/4/2019 7/6/2020 10/16/2019 276 284 15 202 (299) 7 525(217)
21 10/10/2019 8/7/2020 3/3/2020 302 388 8 243 (95) 0 -

22 10/2/2020 1/5/2021 12/17/2020 95 35 6 28 (19) 0 -

The Road Dist. (m) column is the distance, in meters, of the recovery location to the nearest road. Columns n Yagi and n whip are the number of unique positional
estimates made for the recovered transmitter (before it was recovered). Error Yagi and Error whip are means (followed by standard deviation) of positional error
estimates for each transmitter, made with Yagi and whip antennas. Absence of data is indicated by a dash (-) and data are sorted according to the error whip column.

Dashed horizontal lines in each panel represent overall means for that antenna type

Distance to transmitter (D) that included (1) D ~RSS, (2)
In(D) ~RSS, (3) D~RSS+RSS? (4) In(D)~RSS+RSS?,
(5) In(D) ~RSS+RSS? and selected the best using Akai-
ke’s Information Criterion (AIC). Polynomial models
were orthogonal and fit with the poly() term in in the Im()
function (in base R) [25]. We also examined histograms
of residuals to examine potential patterns and assess the
assumption of homogeneity.

Incorporating telemetry error into analysis: Confidence
polygons

In the following two sections we consider a simple analy-
sis of movement using our salmon dataset (detections of
fish at large) and use two ways to incorporate estimates
of positional error into inferences (polygon approach,
and MC approach). Our example research questions are:
did the fish move between subsequent detections, and if
so, how far? The first approach (confidence polygons) is a
two-dimensional analysis and analyzes the location esti-
mates, whereas the second method is one dimensional
and assumes that the fish are in the river somewhere near
where the location estimates are.

First, we represent each detection as a polygon guided
by the positional estimate (i.e., a GPS location) and
a buffer with radius r (Fig. 2). The radius r is estimated
uniquely for each detection using the fitted RSS model,
the observed RSS value for the detection, and the cor-
responding model prediction for D. We also estimated
the upper 80% prediction interval using predict(model,
interval =“prediction’;, level=0.80) as a more conserva-
tive (i.e., big) estimate for r This roughly translates to
being 80% confident that the fish was within r meters of
estimated location (Fig. 2). Using these different sized
confidence polygons, we then assessed movement (Yes/
No, based on overlap of polygons) for every subsequent
detection in each fishes’ movement history and refer to
these metrics as moveSimp (using model prediction for
r), and moveSimp_80 (using the upper 80% prediction
interval for r).

Incorporating telemetry error into analysis: Monte Carlo
simulation

We also developed a MC simulation-based approach to
express confidence in movement direction (Up/Down)
and movement distance (estimate and variance) along a
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River

@ Position estimate

Confidence polygon (RSS model estimate for
radius)

Confidence polygon (RSS model upper
prediction interval for radius)

Fig. 2 Example of representing two telemetry detections (1, 2) as
polygons with different choices for how to calculate r (radius of
buffer) from a received signal strength (RSS) model

stream network. We implement the general algorithm
presented in [21] which composes of several steps and is
generally applicable to a variety of spatial analyses. The
steps are:

1) Determine what error is characteristic of a spatial
data input (in our example, positional error for fish
location estimates)

2) Replace observed spatial data with ‘possible’ values
given the appropriate probability distributions for
positional error

3) Perform a sequence of spatial operations or analysis
on the data (movement, distance moved, etc.) and
save the results

4) Repeat steps 2 to 3 n sim times

5) Compute summary statistics or compute MC signifi-
cance test.

To implement this approach, we developed a user
defined function (in R) that produces a possible loca-
tion using three inputs (1) a positional coordinate (2) an
RSS value, and (3) an RSS model that predicts distance
to transmitter (i.e., Fig. 2). For this analysis, we converted
positional coordinates to Universal Transverse Mercator
format (UTM) so units along the X and Y coordinates are
measured in units of meters. Now, if point P=(X, Y) is a
telemetry detection that is an estimate of a true animal
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location (Q) with r representing the distance between P
and Q, then we can acquire a possible value of Q with
these steps.

1. Sample a ‘possible’ distance to transmitter (r;) using
RSS and the fitted model

2. Sample an angle (8,) from ~ Uniform(0, 2*m)

3. Calculate Q; (a possible fish location at X; and Y,) as
X;=X+r7,*cos(©,) and Y;=Y +7r,* sin(6,)

We next consider a pair of points A and B, which rep-
resent two detections in a detection history for a fish.
We simulated possible locations for A and B to produce
Q, and Q. We then used a linear referencing proce-
dure (in the RiverDist R package) [25] to place the Q,
and Qy on the nearest location within the river (using a
river network shapefile) and assigned each a river kilo-
meter value. Importantly, this assumes the fish is in the
river and is now a one-dimensional analysis where loca-
tion can be referenced along the river with a single value.
We then repeated this procedure n-sim times and report
a p-value test result for upstream movement (US_p) and
downstream movement (DS_p). These are the propor-
tion of times (out of all simulations) a given movement
did not occur; for example, if in 1000/1000 simulations a
fish moved upstream, the UP_p-value would be 0.00. So,
a low p-value for UP_p is provides strong evidence for
upstream movement and a low value for DS_p provides
strong evidence for downstream movement. Note that
DS_p is simplyl—US_p (i.e., are perfectly correlated) but
for demonstration purposes both are presented. We also
calculate the distance moved at each iteration and report
the mean and sd calculated across all simulations for a
given pair of points.

Results

Telemetry error estimated from recovered transmitters

On average positional error was 200 m (lower 95% con-
fidence interval [CI] from mixed model=148, upper
CI253, min=1 m, max="726) with the whip antenna and
94 m (lower CI39, upper CI148, min=1 m, max=1141)
using the Yagi antenna (Fig. 3; Table 1). The preced-
ing estimates are marginal means from the mixed effect
model inclusive of transmitter ID as a random effect.
Inclusion of transmitter ID was supported by a compari-
son to a linear model without transmitter ID (x2 =440.93,
p<0.001). Intraclass correlation of the random effect was
0.59 (random intercept variance=13009, residual vari-
ance =8928). Furthermore, when using simple ANOVA,
positional error differed significantly among recovered
transmitters (ANOVA, F=33.5, p<0.001) and in total,
28% of pairwise comparisons among transmitters were
significant. This means that some transmitters were
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recovered transmitter (x axis labels correspond to Table 1) that was tracked during regular surveys looking for live fish. Transmitters IDs are organized

with respect to average error recorded via the whip antenna

consistently tracked more accurately than others, which
make sense given that some transmitters were resting in
easily accessed areas while others were not.

Indeed, further inquiry revealed that transmitters
resting in the water near a road had consistently lower
positional error relative to those resting far from a road
(Fig. 4). Distance to road explained 82% of variation in
mean positional error when using the whip antenna
(*=0.82, intercept=>51.98, slope=1.01, p<0.001). The
slope suggests that for every increase in 1 m from a road,
telemetry error will increase by 1.01 m, which is sensi-
ble because all whip antenna tracking was done from a
truck. Distance to nearest road was a weaker, but still
significant, predictor of positional error of detections
made with the Yagi antenna (*=0.61, intercept=47.30,
slope=0.59, p<0.001). Convenience of access was thus a
strong predictor for telemetry error using both methods.

Received signal strength model development

Second order polynomial models, with a log transformed
response variable, fit both the Yagi and whip antenna
sets best (Fig. 5). In the Yagi model, RSS explained 86%

of variation in distance to transmitter, whereas RSS
explained 65% of variation in the whip model. The fit-
ted regression lines and the 85% prediction intervals
in Fig. 5 can be viewed as a guide for interpretation of
positional error at given levels of RSS. At an RSS of 100
with a Yagi antenna, the transmitter is most likely 99.5 m
away (model prediction), and there is an 85% chance it is
between 47.4 and 209.2 m (upper and lower prediction
intervals). With an RSS of 100 collected with the whip
antenna, the transmitter is probably 51.3 m away and
there is an 85% chance it is between 13.9 and 189.1 m.

Application of RSS model to detections of fish at large

Our three-year mobile tracking dataset included 87
unique fish detected an average of 31+18 times each
(min=1, max=67) for a total data set with 2709 unique
estimates of a fish location. Application of the RSS model
to detections of fish at large indicated a mean error of
149493 m for Yagi detections and 171+96 for whip
detections; however, values ranged widely (See Addi-
tional File 1: Figure S2).



Heim et al. Animal Biotelemetry (2023) 11:26

(A) Yagi antenna

300
250 .
200 ® .

150 .

100+

501"

0 . T T !

(B) Whip antenna

300 L

250

Mean positional error (m)

200 .
150 o
100 LX)

50—

0 T T T 1

0 100 200 300 400
Distance of transmitter to nearest road (M)

Fig. 4 Linear regression comparing mean positional error for a given

transmitter, to the distance that transmitter was from the nearest road

using Yagi antennas (A) and whip antennas (B)

(A) Yagi antenna

600

(B) Whip antenna

Positional error (m)

I
150 200
Recieved signal strength

Fig. 5 Received signal strength model results to predict positional
error for a Yagi antenna (A) and whip antenna (B). The solid line
shows model estimates, and the dashed lines are the 85% upper and
lower prediction intervals. Three points with high error are omitted in
panel A

Page 8 of 13

Incorporating error into movement analysis: Confidence
polygons and MCMC tests for directional movement

For each sequential pair of detections for each fish, we
calculated moveSimp, moveSimp_80, US_p, and DS_p,
and movement distance (with SD) with an example for
one fish shown in Table 2. This fish was detected on
11/13 and was at large for 7 days relative to its previous
detection (11/6) and was estimated to move upstream
2.89 km+222. Movement metrics suggest strong evi-
dence for an actual upstream movement (msimp =TRUE,
msimp_80=TRUE and US_p=0.00) rather than a poten-
tial consequence of positional error. These metrics mean
that the polygons representing these detections did not
overlap using either the model estimate for » (msimp)
or the more conservative upper 80% prediction interval
(msimp_80). And, in every iteration in the MC proce-
dure, the fish moved upstream (US_p=0). These are not
at all surprising, however, since this movement distance
is quite large relative to our mean positional error.

A more subtle movement is seen on 11/21. The dis-
tance moved along the river is 63+11 m yet the move-
ment metrics msimp, msimp_80, and UP_p still provide
strong support for an actual movement. Confidence
in movement is high—despite such a short distance
moved—because the underlying detection data have
low positional error. The two detections were made with
a Yagi antenna with RSS of 175 (predicted positional
error =9.3 m, see Fig. 5) and 206 (error =2.7 m).

Alternatively, some long-distance movements still
provide insufficient evidence to distinguish movement
from positional error. For example, though the move-
ment detected from 12/12 to 12/16 was downstream
1.01 km + 859, there is insufficient evidence to conclude
movement occurred in either direction at the a=0.05
level (Up_p and Down_P> 0.05). Here DS_p is 0.12 which
means 88% of simulations suggested a downstream move-
ment, though 12% of simulations suggested upstream
movement. The polygon-based approach also suggests
insufficient evidence is available to conclude movement
in two-dimensional space using MoveSimp_80, though
the version using the model fit (moveSimp) does suggest
movement. Here, a Yagi antenna detection with RSS of 57
(error ~153) and a whip antenna detection with RSS of 30
(error ~ 378 m) are the underlying reason for inconclusive
movement results.

Taken collectively (84 unique fish and 2599 pairs
of detections), the MC test for directional movement
along the river suggested 472 movements (out of 2599,
18%) could be distinguished from positional error at the
a=0.05. The metrics moveSimp suggested 614 move-
ments were TRUE (24%), and moveSimp_80 was the
most conservative estimate with 343 movements classi-
fied as TRUE (12%).
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Table 2 Movement information based on sequential pairs of detections for a fish at large

Date Days BTW Det1 Det2 Distance Distance SD US_p DS_p MoveSimp MoveSimp_0.8
11/6 2 Whip-117 Yagi-137 -75 36 0.994 0.006 True True

11/13 7 Yagi-137 Yagi-78 2893 222 <0.001 1.00 True True

11/14 1 Yagi-78 Yagi-73 254 309 0.162 0.838 False False

11/15 1 Yagi-73 Yagi-120 — 285 186 0.950 0.050 True False

11/18 3 Yagi-120 Yagi-75 245 172 0.064 0.936 True False

11/20 2 Yagi-75 Yagi-175 157 251 0.164 0.836 True False

11/21 1 Yagi-175 Yagi-206 - 63 1 1.00 <0.001 True True

11/27 6 Yagi-206 Yagi-111 -112 107 0.932 0.068 True False

12/3 6 Yagi-111 Yagi-54 195 241 0.216 0.784 False False

12/5 2 Yagi-54 Yagi-100 — 586 249 0.992 0.008 True False

12/9 4 Yagi-100 Whip-59 171 254 0.228 0.772 False False

12/10 1 Whip-59 Yagi-125 - 117 223 0.726 0.274 False False

12/11 1 Yagi-125 Yagi-104 82 104 0.208 0.792 False False

12/12 1 Yagi-104 Yagi-57 322 263 0.108 0.892 False False

12/16 4 Yagi-57 Whip-30 —1013 859 0.880 0.120 True False

Each row shows a comparison of the prior detection in the time series to the detection on the date shown. Days BTW = days between the two sequential detections;
Det1=type of antenna used in the first detection and received signal strength of detection; Det2 =type of antenna used in the second detection and received

signal strength; Distance = estimated distance traveled along the river (downstream is negative) based on Monte Carlo (MC) simulation; SD=MC-based standard
deviation for distance moved; US_p =MC-based p-value for upstream movement; DS_p = MC-based p-value for downstream movement; MoveSimp = polygon-based
assessment of movement; MoveSimp_0.8 = polygon-based assessment of movement using upper 80% prediction interval

The relationship between distance moved along the
river and the MC p-value for directional movement
reveals several important points (Fig. 6A). First, move-
ments longer than 1.1 km are all considered significant
(i.e., true movement) based on US_p or DS_p (a¢=0.05).
This implies that if a ‘distance cutoff’ were to be used
ensure 95% probability that movements were classified
correctly as distinguishable from error, it would need to
be quite large. However, such a cutoff would fail to ade-
quately classify a large number of movements estimated
with more accurate positions. Indeed, there are many
movements under 1.1 km that can reliably be distin-
guished from positional error (Fig. 6B). Out of 472 sig-
nificant directional movements (a=0.05) 203 were under
1 km, 90 were under 500 m, 18 were under 200 m, and 6
were under 100 m.

By examining monthly movements ignoring error, and
then using only movements classified with our MC test,
we found that bias associated with ignoring error was
substantial and varied seasonally (Table 3). This table
shows movement calculated disregarding error (i.e., all
location estimates are exact) and compares it to move-
ments calculated only using movements that are distin-
guishable from positional error with the MC test. These
movement sums ignoring error overestimate actual
movement by as much as 1388%. For example, in April
we documented 81 ‘presumed upstream movements’
(e.g., any sequential pair of detections, for a fish) but
only 1/81 (1%) of these was confirmed by the MC test for

directional movement. Thus, we only have confidence
in movement of 501 m during April (rounded to 1 km
in Table 3), but the summation of all movements ignor-
ing positional error is 7 km (e.g., 1388% of confirmed
movements). Trends present in Table 3 suggest (1) actual
movement was more common in Fall months when
salmon were migrating, and (2) bias created by ignoring
error was highest when overall rates of movement were
low. These results are intuitive because long movements
are also more likely to be ‘real’ (Fig. 6) and thus during
periods of high animal activity, relative bias created by
positional error is diminished. In contrast, when actual
movement rates are low then then positional error accu-
mulates and creates an illusion of apparent movement.

Discussion

Using a novel method that uses recovered transmitters,
we found positional error in a mobile tracking dataset
was large, highly variable, correlated with method used
(ground-based Yagi or truck-based tracking), and asso-
ciated with road proximity. We then demonstrated two
methods to incorporate detection-specific estimates of
positional error into analysis and interpretation of telem-
etry data. The polygon-based approach and MC-based
test both provide a means to distinguish movement from
‘apparent’ movement propagated by positional error.
While we demonstrated a simple binomial test for move-
ment, these approaches are flexible and could be applied
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to a variety of other analyses conducted with telemetry
datasets in aquatic and terrestrial systems.

Positional error estimates using recovered transmitters
There are several benefits to estimating error from detec-
tions of recovered transmitters. First, in the absence of
a single-blind hidden transmitter trial (i.e., staff tracking
transmitters do not know they are tracking planted trans-
mitters), these data may be generated un-intentionally
and require little effort. We spent time recovering trans-
mitters to confirm mortalities and get expensive trans-
mitters back and had not initially considered making
estimates of positional accuracy using them. However, we
later realized the need to characterize our error, and that
we had collected excellent data to make error estimates.
Thus, the technique described here might be useful as an
opportunistic means to assess and model error if trans-
mitters are recovered during a study.

Additionally, a benefit of this method is that the esti-
mated detection accuracy should reflect realistic varia-
tion in conditions (e.g., season, water chemistry), staff
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participation, and effort to locate transmitters. Indeed,
we used 22 recovered transmitters with known locations
that were tracked 538 times, on 107 unique dates, by
ten different staff members to estimate positional error.
In contrast, typical ‘hidden transmitter’ studies gener-
ally use far fewer transmitters deployed in a narrower
window of conditions than this study. For example [9]
used 4 transmitters, [2] used 10, and [10] used 5. Using
our approach, the estimates of positional error are truly
reflective of the typical ‘efforts’ made by field personnel
to locate transmitters under real-world fieldwork condi-
tions. To make highly accurate detentions of fish using
homing or the gain-reduction-method takes quite a bit of
time, and we strongly expect there to be a strong relation
between ‘time spent looking’ and positional accuracy.
For example, working in a river ~50 m wide and tracking
from a boat, Koehn et al. [2] report 0.19 (+0.13) meter
accuracy and note that transmitter location estimates
took an average of 26 min (per transmitter). Working in
an 8 m wide stream, Sullivan et al. [1] report 0.91 (+1.4)
meters and an average time to track a transmitter of
21 min. These studies show that achieving very low error
is possible, but it takes time. In real fieldwork scenarios,
this time commitment might not be maintained in which
case error estimates from a staged trial could be biased
low. In our study over several years, we had many crew
members, working year-round, and there was undoubt-
edly wide variation in effort made across detections.
This variability underscores the utility of using RSS as an
indicator of positional error, since it will provide similar
information on proximity to transmitter regardless of
effort or personnel skill.

Our estimates of mean positional error using the Yagi
antenna (94 m) and the ‘gain reduction method’ [5] are
quite high relative to other published studies. As men-
tioned, some studies report sub-meter accuracy while
others report accuracy up to about 50 m using simi-
lar foot-based methods [16, 29]. The fact that we were
restricted to the bank on most tracking events, and we
were tracking a large river (~90 m wide) are the best
explanations for this large degree of error. Moreover, as
we had many transmitters to track on a weekly basis, we
did not commit a large amount of time to tracking each
individual transmitter. The important conclusion is that
the estimates of positional error should be made spe-
cifically for a given study, not inferred based on previous
studies using different methods in a different environ-
ment, with different people.

If a specific ‘target’ level of accuracy is required by a
study, we strongly recommend that an RSS target be
developed and conveyed to field crews prior to field data
collection. For example, if we knew our research ques-
tions required 30 m accuracy, we could use an RSS model
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Table 3 Monthly movement estimates of Atlantic salmon (Salmo salar) tracked with mobile methods

Direction Month n movements (actual: Actual movement (km) Total movement (km) Bias (%)
total)

Upstream January 23:212(0.11) 19 40 209
February 20:168 (0.12) 29 44 151
March 10:136 (0.07) 53 66 125
April 1:81(0.01) 1 7 1388
May 2:68(0.03) 3 8 265
June 5:140 (0.04) 9 19 204
July 2:8(0.25) 99 100 101
October 19:31(0.61) 72 76 106
November 69: 200 (0.35) 241 260 108
December 46:233(0.2) 110 133 120

Downstream January 42:242 (0.17) 234 255 109
February 13:138(0.09) 131 144 109
March 27:145(0.19) 129 142 110
April 10:81(0.12) 133 139 104
May 5:74(0.07) 65 69 107
June 12:139(0.09) 147 158 107
July 0:5(0) 0 1 NA
October 15:26 (0.58) 1 113 102
November 82:212(0.39) 269 287 107
December 72:260 (0.28) 440 459 104

“Actual’movements are determined by the Monte Carlo method (MC), whereas any pair of detections not in the same location are considered in the ‘total’ column.
Actual movement (km) is the sum of monthly movement distances that pass the MC test (upstream or downstream at a=0.05), whereas total movement is the sum of

all potential movements. Bias is the ratio total movements to actual movements

to determine a target RSS value of 140 (Fig. 5). Based
on our model, an RSS of 140 means you are probably
30 m away from the transmitter. In a fieldwork setting,
this ‘cutoff’ could be quite useful to provide consistency
in accuracy but also save time; once a detection with a
target RSS was achieved, the field staff could proceed to
tracking the next transmitter.

As suggested in [9] we modeled the relationship
between RSS and distance to transmitter and found
strong relationships (r*=0.86, 0.65) that were useful to
extrapolate to RSS values of detections made of fish at
large. Whereas [9] used a controlled trial occurring on a
single day, using two transmitters, to establish the rela-
tionship between RSS and distance (*=0.98), here we
used data collected on many unique days and 22 trans-
mitters at large in a river. That our models’ explanatory
power is lower is not surprising given the underlying
variability of our data. We consider a RSS model built
on this variable data to be more useful, since model pre-
dictions (and underlying prediction error surrounding
the predictions) applied to animals at large will be more
realistic. For example, the model distance ~ RSS is useful,
but clearly too simple as things like depth, water chemis-
try, or other factors influence signal attenuation in water
[6, 7]. A ‘field-based’ RSS model—collecting data over a

broad range of conditions—will incorporate this inherent
variation into the model and thus the extrapolations also
made from the model. Thus, prediction intervals extrapo-
lated to animals at large will be larger but a better repre-
sentation of underlying uncertainty.

We found that distance to the nearest road was strongly
correlated with positional error estimates, which is an
important factor to consider when interpreting and ana-
lyzing telemetry datasets. The potential consequences of
this on positional inference will depend on the research
question being addressed; for example, in a habitat use
study one might have increased confidence near roads to
assign locations to habitat types. Habitat features colin-
ear with road proximity (e.g., culverts, stream crossings,
or canyons with adjacent roads) might appear to be used
more frequently than other habitats where detections
were not made (because they were too far from a road)
or detection accuracy is limited, preventing assignment
to that habitat type. This topic is commonly consid-
ered in GPS - collar telemetry, where GPS fix rate can
be biased by habitat features (e.g., canopy, topography)
[19]. For example, acquiring GPS fixes of large mammals
was strongly influenced by topography in [26] and these
researchers suggest correction measures are important
to reduce bias in habitat selection analysis when fix-rate
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is non-random. Further research is warranted in aquatic
telemetry studies to assess how detection probability or
accuracy is related to habitat features and how to account
for this in analysis.

Incorporating positional error into analysis

The benefits of incorporating error via a polygon-based
approach or MC simulation are described in more detail
elsewhere; however, an important advancement of this
paper is the combination of these methods with detec-
tion-specific estimates for error. Rather than drawing
from a single ‘characteristic’ positional error distribution
for all detections, the use of RSS and a fitted RSS model
allows for a unique error distribution to be used for each
detection. Although this methodology adds a level of
complexity to analysis, it provides a more nuanced and
realistic approach to capturing uncertainty. However, our
method does involve making some choices with regards
to what radius to use (e.g., in moveSimp) or what p-value
to use in the MC tests, that will depend on the research
question being asked.

Increasingly large polygons (as determined by upper
prediction intervals at different levels of a) will be
increasingly conservative against detecting movement
when using moveSimp. For example, using an upper
95% prediction interval will give large polygons indicat-
ing ‘95% confidence the true locations are within these
two polygons” and thus be conservative against con-
firming movement via non-overlapping areas. Higher
a is associated with more stringent measures required
by the analyst to confirm movement. Similarly, with the
MC test for directional movement, the simulation-based
p-value establishes a threshold for establishing move-
ment. A lower a is associated with a test more conserva-
tive against movement than one with a higher a. Which
test and at what significance level should be guided by
carefully considering the research questions being asked.
Finally, it is important to recognize that these meth-
ods provide a way to establish a level of confidence that
movement has occurred but cannot ever confirm that
movement has not occurred.

The polygon-based approach and MC routine have
potential applications for a wide variety of analyses. For
example, determining mortality status or date of death
could be assessed in a quantitative manner based on
the cessation of movement [27, 28]. Although cessa-
tion of movement does not necessarily imply death, or
movement always indicate the animal is still alive [29],
the p-value-based test for directional movement will
provide a level of confidence in the determination of
movement. Other applications of the MC test include
habitat selection models, which could be run on a high
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number of simulated datasets, and variation in selected
top models and coefficient values could be assessed.
Also, comparisons of movement rates among seasons,
study groups, or animals with different traits could
all be done in a way that incorporates error using the
methods presented here.

Conclusion

In mobile telemetry studies, some detections are more
accurate than others. This is inevitable when conduct-
ing fieldwork and should not be ignored. Thus, if detec-
tion-specific estimates of positional error are available
(e.g., via a RSS model) then they can be highly useful.
Accurate detections can be used to answer some ques-
tions (e.g., did this fish move upstream at least 10 m)
that inaccurate ones cannot, yet, inaccurate detections
still provide useful data. The polygon and MC-based
methods for incorporating error ‘make the most’ out
the inherent information of the data and can provide
conclusions robust to the influence of telemetry error.
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