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Abstract 

Background Fish geolocation methods are most effective when they are customized to account for species behavior 
and study area characteristics. Here, we provide an example of customizing a hidden Markov model (HMM) for recon-
structing movement pathways of a high-latitude demersal fish species in a remote island chain using Pop-up Satel-
lite Archival Tag (PSAT) data. Adult Pacific cod were tagged with PSATs while occupying winter spawning grounds 
in the Aleutian Islands in February 2019. We adapted a demersal fish application of the HMM to (1) add light-based 
longitude to the data likelihood model, (2) account for possible off-bottom behavior of demersal fishes in the maxi-
mum daily depth likelihood, and (3) modify the model framework to accommodate convoluted island topography 
in the study area. A simulation study was conducted to explore the two primary modifications to the model frame-
work, reflecting boundary for the movement kernel and the Viterbi method of pathway reconstruction, under known 
conditions.

Results Geolocation was performed on satellite-transmitted and detailed archival data sets from 6 adult Pacific 
cod at liberty for 21–277 days. Migration from winter spawning to summer foraging areas (range 60–395 km) 
was detected for the 4 tagged fish that were at liberty for more than 90 days. Light-based longitude was the primary 
geolocation variable for detecting migrations with precision (root mean square error) estimates of 0.56 degrees dur-
ing winter and 1.3 degrees during the summer. Simulation studies confirmed the effectiveness of model framework 
modifications and generated guidelines for use in specific applications.

Conclusions This study demonstrates that post-spawning migrations of Pacific cod in the Aleutian Islands can be 
detected and characterized using PSAT data. Initial insights into migrations, summer foraging areas, and associated 
development of appropriate analysis tools will support future Pacific cod movement studies in the Aleutian Islands 
as well as other regions of Alaska. The adaptations to the HMM presented here will benefit current and future research 
on demersal fish in other regions as well as fish species that occupy areas with convoluted shorelines or island chain 
topography.

Keywords Geolocation, Hidden Markov model, Fish migration, Satellite tags, Pop-up Satellite Archival Tags, Viterbi 
algorithm, Reflecting boundary

*Correspondence:
Julie K. Nielsen
Julie.nielsen@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40317-023-00340-3&domain=pdf


Page 2 of 22Nielsen et al. Animal Biotelemetry           (2023) 11:29 

Background
Pacific cod (Gadus macrocephalus) is a demersal fish 
species of great economic and ecological importance in 
Alaska, where it is managed in three separate manage-
ment regions: the Gulf of Alaska, the Bering Sea, and the 
Aleutian Islands. Pacific cod populations have recently 
experienced declines in abundance in the Gulf of Alaska 
[1] and northward shifts in distribution in the Bering Sea 
[2] in conjunction with warming ocean waters. These 
recent phenomena have highlighted the management 
need to understand Pacific cod movement patterns and 
the mechanisms, such as response to varying ocean tem-
peratures, that underlie them [1].

Pacific cod have been observed to conduct large-scale 
seasonal migrations between winter spawning and sum-
mer foraging areas in Alaska based on recovery locations 
from several conventional and archival tagging studies 
[3–5]. However, more detailed information on migration 
timing, extent, pathways, and the proportion of fish that 
participate in seasonal migrations is needed to under-
stand seasonal movement between management regions 
and predict changes in migration patterns that could 
occur in response to different temperature regimes [1]. In 
response to these information needs, we initiated a satel-
lite tagging program for Pacific cod in 2019 with a pilot 
study [6] to determine whether satellite tags could pro-
vide more detailed information on seasonal movement 
patterns.

Pop-up Satellite Archival Tags (PSATs) are a type of 
archival tag that can provide a wealth of detailed infor-
mation about movement and behavior of migratory fish 
species without the need to recapture tagged fish [7–9]. 
PSATs can record depth, temperature, light, acceleration 
data, or other types of data depending on tag type and 
manufacturer. They are programmed to release from the 
fish on a specified date and transmit archived data to the 
Argos satellite network, which provides information on 
the location of the tagged fish on the pop-up date (sub-
sequently referred to as the “end location”). Therefore, 
data can be obtained without recapturing the tagged fish. 
Transmitted data, together with release and end loca-
tions, can then be used to reconstruct movement path-
ways of tagged fish using geolocation models that link 
tag data to likely locations within the study area. Recon-
structed movement paths consist of estimated locations 
(usually with associated uncertainty) at regular points 
in time (e.g., daily) between release and pop-up dates. 
By reconstructing movement paths, PSATs can provide 
details on important aspects of fish spatial dynamics, 
such as migration timing and locations and identification 
of summer foraging and winter spawning locations [10].

State-space models are a powerful method for recon-
structing movement pathways. They generally consist 

of two coupled sub-models: (1) a movement model that 
predicts the rate and type of movement of the tagged fish 
within the study area, and (2) a data likelihood model that 
identifies locations within the study area that best match 
the data (e.g., light, depth, or temperature) recorded by 
the tag at each time step [11–14]. State-space models 
are ideal for geolocation, because they can accommo-
date complex or incomplete data sets, allow for differ-
ent behavioral states, such as foraging or migrating, and 
provide estimates of error associated with reconstructed 
movement paths [15]. State-space geolocation models 
range from Gaussian and continuous (e.g., a Kalman fil-
ter [12]) to nonparametric and discrete (e.g., a hidden 
Markov model, HMM [14]). HMMs have become a pop-
ular approach for geolocation of a wide range of fish spe-
cies [16] due to their flexibility, as they can incorporate 
multiple types of non-linear data and do not place prob-
ability on land.

The HMM framework, originally developed for geolo-
cation of Atlantic cod, Gadus morhua, in the North Sea 
[17, 18], is similar among studies. Researchers can choose 
whether to treat time as discrete [17] or continuous [14]. 
However, the data likelihood model that specifies how 
the data from the satellite tag are matched to maps of the 
study area must be adapted to accommodate different tag 
types, species, or study areas [19]. Therefore, pilot studies 
to collect preliminary PSAT data and develop data like-
lihood models can be beneficial for ensuring that PSATs 
can answer specific movement questions prior to initiat-
ing large-scale movement studies.

The satellite tag pilot study for Pacific cod was con-
ducted in the Aleutian Island management area. The 
Aleutian Islands is a remote, volcanic island chain that 
stretches west from Alaska toward Russia for more than 
one thousand miles. It serves as the boundary between 
the Bering Sea to the north and the Gulf of Alaska to the 
south and east. Little is known about the movement of 
Pacific cod in this region. Conventional and archival tags 
released in this region require tag recaptures by either a 
commercial fishery or a research platform (e.g., NOAA 
bottom trawl or longline assessment surveys). Therefore, 
limited information on seasonal movement has been 
obtained in this remote region, because the overall com-
mercial catch is low and the majority of fishing occurs 
during the winter when Pacific cod are aggregated for 
spawning [20]. To date, only two tagging studies have 
occurred there: a conventional tag study [3] and an archi-
val tag study [5]. Sample sizes for both studies were small 
in the Aleutian Islands, as the primary release locations 
were in the Bering Sea or the Gulf of Alaska. In light of 
the limited movement data provided by tags that require 
recapture in the region, alternative methods for assess-
ing movement of Pacific cod are needed to understand 
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seasonal migration patterns and inform management in 
the Aleutian Islands.

Here, we describe the methods used to reconstruct 
movement pathways of Pacific cod in the Aleutian 
Islands from PSAT data, while details on capture meth-
ods, tag attachment methods, and preliminary insights 
into Pacific cod seasonal migrations produced by this 
pilot study are reported by Bryan et al. [6]. We adapted 
a discrete time HMM for geolocation of demersal fish 
[17, 19] to include: (1) adding light-based longitude to the 
maximum daily depth data likelihood model, (2) modify-
ing the maximum daily depth likelihood for fish that are 
demersal but may not contact the sea floor each day, and 
(3) refinements to the model framework to accommo-
date convoluted shorelines or island chain topography. 
We demonstrate the effectiveness of modifications for 
convoluted shorelines using simulated movement paths. 
This work provides an example of adapting a HMM for 
a specific application and introduces additional tools for 
reconstruction of movement paths in nearshore areas 
with complex topography.

Methods
PSAT programming and deployment
Fish tags
In February 2019, MiniPAT satellite tags manufac-
tured by Wildlife Computers, Inc. (Redmond, WA) were 

deployed on mature Pacific cod at three locations in 
the Aleutian Islands (Fig. 1) as part of a larger study on 
seasonal migration that deployed three types of satellite 
tags [6]. Fish were captured using a combination of pots 
and trawls at depths ranging from 88 to 118 m. Only fish 
that showed no signs of injury were selected for tagging. 
MiniPATs were attached to fish with a “backpack” con-
figuration originally developed for salmonid species [21] 
that consisted of (1) a padded harness secured to the fish 
with wires through the dorsal musculature at two loca-
tions, and (2) a 150-lb test monofilament tether that con-
nected the tag to the harness. After tagging, fish were 
carefully lowered to a depth of 50 m with a SeaQualizer™ 
descender device to facilitate recompression [22].

The tags were programmed to detach from the fish on 
a given date, after which the tags "popped up" to the sea 
surface and transmitted their data to the Argos satellite 
system. The tags provided two types of location data: 
(1) known locations (to within 250–1500  m) at the end 
of the deployment from Argos positioning of transmit-
ting tags, and (2) reconstruction of fish movement paths 
throughout the deployment period using the archived 
data (see “geolocation” section below). Pop-up dates for 
the tags were staggered throughout the year to provide 
known locations during different seasons. Tags were pro-
grammed to pop up after 90 days (n = 3), 180 days (n = 8), 
270 days (n = 2) and 360 days (n = 8).

Fig. 1 Study area in the Aleutian Islands. Tagged Pacific cod (hollow squares) were released in Sitkin Sound, Kagalaska Strait, and Nazan Bay. 
Stationary tags (stars) were deployed in Sitkin Sound, Adak Strait, and Nazan Bay. Fish recovery locations (filled circles) are color-coded by fate: alive 
until the scheduled pop-up date (red), recaptured in commercial fisheries (orange), marine mammal predation (purple), tagging mortality (gray), 
and unknown early release (white)
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The MiniPAT satellite tags were 124 mm long, 38 mm 
wide, and weighed 60  g in air. They recorded informa-
tion on depth (0–1700 m, resolution 0.5 m), temperature 
(− 40 °C–60 °C, resolution 0.05 °C), tri-axial acceleration 
(− 2–2 g, resolution 0.05 g), and light levels (5 ×  10−12W.
cm−2–5 ×  10−2W.cm−2) at intervals ranging from 1 to 5 s 
depending on programmed deployment duration. If a tag 
was physically recovered, the entire high-resolution data 
set was available for analysis. Archived data were summa-
rized for transmission to Argos satellites according to the 
length of programmed deployment. Summarized data for 
all tags included: (1) light levels during dawn and dusk, 
from which latitude and longitude were estimated using 
GPE2 software from Wildlife Computers, (2) daily mini-
mum and maximum temperature and depth, and (3) tem-
perature–depth profiles in 12-h time bins. Time-series 
depth and temperature were generated at 150-s inter-
vals for 90-day tags, 450-s intervals for 180-day tags, and 
600-s intervals for 270-day and 360-day tags. For 360-day 
tags, depth and temperature time series were generated 
on alternate days. MiniPATs deployed for 90 days or less 
also provided accelerometer-derived activity metrics 
“knockdown” and "% time tilted" [23]. Briefly, these accel-
erometer activity metrics are derived from changes in the 
vertical orientation of the tethered tag, where a buoyant 
PSAT on a fish that is not swimming is vertical, while a 
PSAT on a swimming fish approaches a horizontal orien-
tation due to the effect of drag as the tag is towed behind 
the swimming fish. A “knockdown” is recorded when the 
change in vertical orientation of the tag exceeds a thresh-
old range of movement during a 10-s interval and knock-
downs are summed within the summary period (e.g., 
1- or 2-h time bins), whereas the “% time tilted” refers 
the percentage of time that the tag was tilted beyond a 
threshold value of tilt during the summary period.

Stationary tags
Three additional MiniPATs were deployed as stationary 
reference tags in areas, where tagged fish were released 
(Fig. 1) to assist the process of geolocation (see below). 
Tags were moored 2  m above the sea floor at a depth 
of approximately 100  m and programmed to pop-up 
after 360 days. The stationary tag provided light levels 
at dawn and dusk as well as time series depth and tem-
perature collected at 600-s intervals. Temperature time 
series were recorded daily, and depth time series every 
other day.

Analyses
All analyses were conducted using the R statistical envi-
ronment, version 4.1.3 [24].

Accuracy of longitude and latitude estimates
Data from stationary tags were analyzed to determine 
the accuracy and bias of light-based longitude and lati-
tude estimates. Accuracy was calculated as the root mean 
square error between estimated and known values [16]. 
Bias was assessed by performing a one-sample Welch’s t 
test on the difference between estimated and known val-
ues under the hypothesis that the mean difference was 
equal to zero.

Geolocation
We adapted a discrete time HMM [17, 25] to recon-
struct movement pathways of Pacific cod in the Aleutian 
Islands. The model framework and process model have 
been thoroughly described in other manuscripts [17, 
19, 25, 26], so it is only briefly outlined here. The model 
features a study area that is divided into grid cells and 
ultimately provides the probability that the tagged fish 
occupied each grid cell on each day of deployment. The 
model consists of a forward filter followed by backward 
smoothing. The forward filter begins with a probability 
of 1 in the grid cell, where the tagged fish were released 
and a probability of zero in all other grid cells. The prob-
ability in each grid cell is then iteratively updated by the 
movement model (convolution with an isotropic diffu-
sion kernel) followed by cellwise multiplication with the 
data likelihood model (see below) at each time step. Once 
the forward filter is completed, backward smoothing is 
conducted to update all probabilities with the knowledge 
of the end location. The primary model output consists 
of a three-dimensional array (latitude, longitude, time) 
of posterior probability estimates (i.e., for each time step, 
a matrix of study area grid cells contains the probability 
that each grid cell was occupied by the tagged fish at that 
time step). The array can then be summed for specific 
periods (e.g., the whole trajectory or different seasons) 
to describe the overall location probability in the study 
area during that period. Behavioral states can be incorpo-
rated by allowing for different diffusion rates for different 
behaviors (e.g., migrating versus foraging).

Data likelihood models describe the likelihood of the 
measured variable occurring in a particular model grid 
cell based on maps of geolocation variables within the 
study area. They vary based on fish behavior (e.g., demer-
sal or pelagic), tag type (e.g., available sensors and data 
formats), study area characteristics (e.g., orientation and 
strength of geolocation gradients), and quality/availabil-
ity of geolocation variable maps in the region. Developing 
a data likelihood model is a key step in customizing the 
HMM for specific applications.

In 2019, we developed a data likelihood model for 
demersal fish in the North Pacific Ocean [19] based on 
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maximum daily depth. The maximum daily depth likeli-
hood for demersal fishes is modeled on Pacific halibut 
and assumes that the tagged fish contacts the seafloor 
at least once during each time step. Thus, the maximum 
depth of the tagged fish is assumed to be the depth of the 
seafloor and can then be linked to bathymetric maps of 
the study area during the geolocation process. The like-
lihood value in each grid cell is determined by integrat-
ing the distribution of depth values in that cell between 
the limits of the tag maximum depth plus and minus the 
tag measurement uncertainty accompanying each depth 
observation [27]. Note that given two grid cells with 
the same mean but different depth standard deviations 
within the cell, this method of calculating likelihoods will 
produce higher likelihood values for grid cells with a nar-
row range of potential depth values (e.g., low-gradient 
areas) compared to high-gradient areas (see caveats in 
discussion).

Some evidence suggests that Pacific cod may exhibit 
some degree of off-bottom behavior, so the assumption 
of contact with the seafloor every day may not always 
be warranted. Off-bottom behavior may occur during 
recovery from tagging [28] and also has been observed 
for Atlantic cod during migration [29] and during sum-
mer foraging in areas adjacent to steep drop-offs [30]. 
Therefore, we modified the maximum depth likelihood 
to allow the maximum daily depth to be some distance 
above the seafloor using a split-normal distribution for 
depth in each grid cell. A split normal distribution allows 
the specification of separate standard deviations for each 
half of the probability density function (PDF):

where A = (
√
2π(σ1 + σ2)/2)

−1 , μ is the bathymetry cell 
mean, σ1 is the standard deviation for the left (shallow) 
side of the bathymetry PDF, and σ2 is the standard devia-
tion for the right (deeper) side of the bathymetry PDF 
[31]. Therefore, the probability distribution accounts for 
bathymetric uncertainty on the deeper portion of the 
grid cell mean and both bathymetric uncertainty and 
the probability that the fish could be slightly above the 
seafloor on the shallower portion [32]. A constant value 
for depth standard deviation was selected to denote off-
bottom uncertainty (referred to subsequently as the "off-
bottom constant") as part of the model fitting process. 
Then, for each grid cell, σ1 (the shallower portion) was 
calculated as the root sum square of the off-bottom con-
stant and the standard deviation of depth associated with 
bathymetric uncertainty (i.e., the range of possible depth 
values likely to be present within the grid cell), while σ2 
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(the deeper portion) consisted of only the bathymetric 
uncertainty.

The likelihood value for depth for each grid cell is thus 
calculated as

where z is maximum depth measured by the fish during 
the time interval,  z1 and  z2 are the lower and upper limits 
of uncertainty in tag measurement, SN denotes a split-
normal distribution, μz is the mean of the bathymetry 
grid cell, σ1 is the standard deviation used for the shallow 
portion of the distribution, and σ2 is the standard devia-
tion for the deep portion of the distribution.

We used a 100-m resolution bathymetry grid of the 
Aleutian Islands [33] to provide bathymetry information 
for the study area. Depth data were aggregated into 2-km 
model grid cells. The resulting mean and standard devia-
tion of depths within each model grid cell were used to 
calculate the likelihood.

The second modification to the data likelihood model 
consisted of adding light-based longitude. Though the 
archived data provide estimates of both latitude and 
longitude, only longitude is used in the model, because 
longitude values are more robust than latitude in most 
light-based geolocation applications [34, 35] and par-
ticularly for demersal fish [36]. Furthermore, strong 
north–south depth gradients provide more precise infor-
mation about latitude in our study area (a maximum 
north–south error of approximately 50  km is present 
using depth data, which accounts for possible occupation 
of a specific depth contour on the north or south side 
of the island chain, compared to the RMSE for latitude 
provided in the results section). Longitude values were 
filtered manually to remove estimates with a change of 
more than 2 degrees per day [37].

The likelihood for light-based longitude consists of a 
normal probability density:

where the likelihood value in each grid cell is the prob-
ability of the longitude estimated by the PSAT (x), given 
the longitude of the grid cell (μ) and the expected error in 
longitude estimates (σ). We chose a value of 1.5 degrees 
for the expected error, as this value was slightly higher 
than the root mean square error obtained from station-
ary tag data. The slightly larger variance was chosen to 
account for slight changes in depth by fish that are not 
present in stationary tag data.

Likelihoods are processed separately before they are 
combined. If PSAT data are unavailable on a given day, all 
cells for that likelihood receive a value of one for that day. 

(2)LDepth =
z2
∫
z1

SN (z;µz , σ1, σ2)dz

(3)LLongitude = N(x; µ, σ),
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Each likelihood is standardized relative to the maximum 
value observed. Depth and light-based longitude likeli-
hoods are combined by cellwise multiplication to gener-
ate the total likelihood in each grid cell for each day:

Additional likelihoods can be easily incorporated by 
cellwise multiplication in this manner. For example, we 
explored, but ultimately decided against, adding a tem-
perature–depth profile likelihood to the data likelihood 
model due to map accuracy issues in the study area 
(Additional file 1).

Likelihood values for the final day of the trajectory con-
sisted of a value of 1 in the grid cell with the end loca-
tion and values of 0 in all other study area grid cells. For 
tags that likely drifted in currents before Argos locations 
could be determined or for tagged fish that were predated 
upon, likelihood surfaces for the last day of the trajectory 
were obtained by creating an additional likelihood sur-
face, where a 30 km buffer was placed around the Argos 
end location and a value of 1 was assigned to all grid cells 
within the radius and a value of 0 to all grid cells outside 
the radius. Then, this “known location” likelihood was 
combined with the maximum depth likelihood, as shown 
in Eq. 4. [38].

The model incorporated two behavioral states through 
the use of different diffusion coefficients applied at each 
time step to reflect periods of differential movement. 
These behavioral states corresponded to (1) the recovery/
spawning period immediately following tagging, when 
tagged cod were likely to have lower rates of movement 
due to occupation of spawning grounds and recovery 
from capture and tagging, and (2) the migration/forag-
ing movement state that assumed a larger rate of move-
ment once fish leave their winter spawning areas. This 
recovery/spawning movement state was assigned to 
all days of the data set for fish with pop-up locations in 
the study area during March. For fish at liberty beyond 
March, the recovery/spawning state was assigned to each 
day that patterns in depth typical of barotrauma recov-
ery were evident [28] and temperature–depth profiles of 
tagged fish matched profiles of stationary tags and tags 
from fish with tagging mortality in the release locations. 
It is important to note that the recovery/spawning state 
defined here does not reflect any specific knowledge of 
spawning behavior but simply reflects likely occupation 
of the area, where they were captured and released dur-
ing the spawning season. For migratory fish, the migra-
tion/foraging state was then assigned to all remaining 
days in the data set after the recovery/spawning period 
dates were assigned.

Procedures for determining parameter values for dif-
fusion and the off-bottom constant varied by movement 

(4)LTotal = LDepth ∗ LLongitude

state. Parameter values for the recovery/spawning state 
were determined based on data from tagged fish known 
to be in the vicinity of the release location in March. 
Average parameter values from fish known to be in the 
release location in March were then applied to migra-
tory fish during days assigned to the recovery/spawning 
period. Parameter values for the migration/foraging state 
were then determined for each migratory fish individu-
ally. The assumption of similar parameter values for all 
fish during the recovery/spawning state simplified the 
estimation process for migratory fish, because param-
eters were only estimated for one movement state. Dif-
fusion values were estimated using maximum likelihood 
[19] for a range of off-bottom constants (0–250 m in 50 m 
increments). Off-bottom constants (and their associated 
maximum likelihood diffusion values) were then chosen 
based on examination of step-length histograms from 
daily location estimates and comparison of observed 
PSAT data to extracted values from geolocation maps at 
model-estimated locations to assess goodness of fit [39].

We made two modifications to the model framework 
to accommodate the topography of our study area, which 
consisted of a narrow island chain with potential path-
ways on both the north and south sides of the chain. The 
first modification involved changes to the movement 
model update. With a single movement model update per 
time step, where the movement kernel is convolved with 
the prior, large diffusion kernels can cross over narrow 
land masses resulting in movement probability on both 
sides of the island chain that does not correspond to the 
actual distance that the tagged animal could have trave-
led. To minimize this potential artifact, we updated the 
prior probability with the movement model in a series of 
n smaller updates before the data likelihood update was 
performed (Uffe Thygesen, Technical University of Den-
mark, pers. comm.). Each smaller update used 1/n of the 
nominal value of diffusion assigned to the movement 
state for that day, and probability on land was removed 
after each smaller update. Additional file 2 contains addi-
tional information about this method, which we refer to 
as the “expanding kernel movement model”, including 
advice on selecting the appropriate number of smaller 
updates for specific studies.

The second modification involved the way the most 
probable track is calculated. After the posterior prob-
ability surfaces have been obtained from the forward 
filter and backward smoothing, they can be used to 
estimate a point location for the tagged fish at each 
time step. The weighted mean of the posterior prob-
ability surface is a common local decoding method 
for estimating a point location based on the poste-
rior probability surface. The weighted mean method 
works well in open ocean study areas, where posterior 
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probability surfaces are not multi-modal, but it tends 
to place locations on land in areas with convoluted 
coastlines or island topography (e.g., when probability 
is present on both sides of an island chain). The Viterbi 
algorithm [40], a global decoding method, provides an 
alternative to the weighted mean method that will not 
place estimated locations on land. The algorithm finds 
the sequence of grid cells that maximizes the product of 
transition probability multiplied by likelihood at each 
time step. This method for obtaining the most probable 
track for fish geolocation was introduced by Pedersen 
et al. [17] using the data likelihood model as the likeli-
hood in the algorithm. Using the data likelihood model 
in the algorithm produced a most probable track that 
was not necessarily related to the posterior probabil-
ity provided by the forward filter/backward smoothing 
[14] and could be prohibitively time-consuming. We 
modified this method using the posterior probability 
generated by the forward filter/backward smoothing as 
the likelihood in the Viterbi algorithm [41] instead of 
the data likelihood model. This constrained the algo-
rithm to find a path through the posterior probability 
surfaces. The algorithm was further modified by trun-
cating the posterior probability to 95% of the maximum 
posterior probability observed in the study area each 
day to reduce processing time (see Additional file 3 for 
processing time comparisons).

To visualize and interpret model results, we gener-
ated gridded probability surfaces, polygons, and point 
estimates. The residence distribution is a grid surface 
that depicts which study area grid cells were most likely 
to have been occupied by the tagged fish during a given 
period. It is produced by summing the posterior prob-
ability in each grid cell over a given time (e.g., a month, 
season, or the entire trajectory), normalizing by the 
sum of the total probability for all grid cells, and con-
verting to a cumulative distribution function [14, 26]. 
We generated residence distributions for the entire tra-
jectory. We visualized daily location estimates by creat-
ing polygons that encompassed the grid cells with the 
highest 50% and 99% of the posterior probability each 
day. Daily point estimates (most probable track) were 
generated using both the weighted mean and Viterbi 
approaches.

Although foraging and migration were combined 
in one movement state for the HMM, we were able to 
define migration and foraging periods in the recon-
structed pathways using horizontal displacement from 
the release location over time. Horizontal displace-
ment was calculated using Viterbi daily point estimates. 
Migration end dates were defined as the date when 
horizontal displacement from the release locations no 
longer increased.

Simulation study to assess model adjustments for island 
topography
To explore the effects of the modifications to the HMM 
for island topography, the expanding kernel movement 
model and the Viterbi method of calculating the most 
probable path, we simulated 100 random walk paths in 
a subset of the study area and reconstructed movement 
paths based on the simulated data. Simulated paths were 
designed to have a diffusion value of D = 50  km2/step (i.e., 
day), similar to the observed movement speeds of tagged 
cod in this study. To avoid simulated locations cross-
ing over land masses, simulated paths were generated at 
smaller time scales and then thinned to obtain the final 
simulated path. Paths with 10,000 steps were generated 
using a value of D = 1  km2/step. At each time step, a can-
didate future location was selected by choosing random 
step lengths in both the X and Y directions obtained from 
a normal distribution with a mean of 0 and a variance of 
sigma (sqrt(D*2)). If the candidate location had a depth 
between 0 and 2000 m, it was accepted as the location of 
the next time step; based on depth records from archi-
val tags, cod in this study were not observed to occupy 
depths deeper than 600  m, so 2000  m was chosen as a 
conservative threshold to represent locations that cod 
would not likely occupy. After all steps were simulated, 
the path was thinned to every  50th location, resulting 
in a simulated path with 200 steps. Simulated data sets 
derived from simulated pathways were designed to be 
similar to observed tag data sets. The maximum depth 
within each 50-step interval from the un-thinned path 
was assigned to each time step from the thinned path as 
the depth inputs for the geolocation model. Longitudes 
from 30% of the 200 steps were randomly chosen to pro-
vide longitude values for the model, and random error 
with a value of 1.5 degrees was added to each selected 
longitude.

To assess performance of the expanding kernel 
method, the simulated data were run in the HMM using 
the standard method (no “mini expansions”) and the 
expanding kernel method with 25 “mini expansions”. 
For each treatment, the most probable path was deter-
mined using (1) the weighted mean and (2) the Viterbi 
pathway (most probable sequence of grid cells occupied) 
through the posterior probability surface. Performance 
was assessed using two metrics: (1) the distance mean 
absolute error (MAE), which summarizes the distance 
between the known (simulated) and estimated location 
on each day, and (2) the depth root mean square error 
(RMSE) between depth at known (simulated) and model-
estimated locations. Distance MAE reflects the accuracy 
of the position estimate, while the depth RMSE reflects 
the degree to which the estimated location is realistic 
based on comparison to model inputs. Distance MAE 
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and depth RMSE for standard versus expanding kernel 
methods were compared with a paired t test across all 
100 simulated pathways for both the weighted mean and 
Viterbi pathway methods.

Results
Fish tags
Although 21 miniPATs were deployed in the pilot study, 
only 6 data sets provided enough data to conduct geolo-
cation (Fig.  1, Table  1). Eleven tagged fish experienced 
tagging mortality in release areas, likely due to baro-
trauma from capture at depths > 100 m, and 4 tagged fish 
survived but did not transmit enough data to reconstruct 
movement paths [6]. Geolocated fish were at liberty for 
21–277  days. Total lengths for geolocated fish ranged 
from 70 to 88  cm. Two tags were physically recovered 
in the commercial fishery, and thus provided complete, 
detailed data sets. The 11 post-release mortalities, along 
with stationary tag data, were used to define temperature 
depth profiles in release areas.

Stationary tags
Stationary tags were deployed at depths of 117 m (Adak 
Strait), 105 m (Sitkin Sound), and 110 m (Nazan Bay). All 
three stationary tags released from their moorings early 
(possibly due to attachment failure) and transmitted data. 
One of these tags (Sitkin Sound) had a battery malfunc-
tion and transmitted very few records. However, the 
remaining two tags provided critical information about 
the accuracy and precision of light-based latitude and 
longitude and temperature–depth profiles in the release 
area through November 2019.

Longitude accuracy was high from February through 
May (RMSE = 0.56 degrees) but decreased in the sum-
mer months (June–November; RMSE = 1.3 degrees). 
Longitude values were biased to the west from Febru-
ary through May (mean error − 0.22 degrees, p = 0.0016) 
and from June through November (mean error −  0.43 
degrees, p = 0.0075). Conversely, latitude values were 
less accurate from February through May (RMSE = 2.6 
degrees) compared to June through November 
(RMSE = 1.8 degrees). Latitude estimates were biased to 
the south June–November (mean error −  0.43 degrees, 
p = 0.05187). In general, the accuracy of longitude esti-
mates was much higher than latitude. Few latitude or lon-
gitude observations were obtained during May and early 
June (Fig. 2). We used a value of 1.5 degrees to specify the 
standard deviation of light-based longitude in the model 
for the entire period; a more conservative value than the 
calculated RMSE was chosen for the variance, because 
accuracy of light-based estimates tends to be slightly 
lower for free-swimming fish (which can occupy varying 

depths during dusk and dawn) compared to stationary 
reference tags [12, 37].

Temperatures recorded by stationary tags had simi-
lar seasonal temperature trends but differed in magni-
tudes (Fig.  3). For all stations combined, temperatures 
at approximately 100-m depth ranged from 3.5 to 5.5 °C 
from February through May and 4 to 7  °C from June 
through September. Temperatures in Adak Strait and Sit-
kin Sound tended to be warmer than Nazan Bay.

Geolocation of tagged Pacific cod
Movement pathways were reconstructed for 6 fish. Diffu-
sion value and off-bottom constants derived from tagged 
fish with end locations in their release areas in March 
were 5  km2/day and 50  m, respectively (Table  2); these 
values were then applied to the recovery/spawning state 
for migratory fish. For migratory fish, diffusion values 
during the migration/foraging period ranged from 50 to 
75  km2/day, and off-bottom constants ranged from 50 to 
150  m. Tag 178690 had the largest off-bottom constant 
due to its travel over waters as deep as 1000  m during 
migration. Buffered pop-up locations were used for tag 
178697, which likely drifted prior to obtaining an Argos 
location, and tag 178704, which was preyed upon by a 
marine mammal (tag 178704 recorded temperatures to 
37 °C, see Bryan et al.). In terms of model fit, the RMSE 
between observed and model-estimated depth and lon-
gitude ranged from 16 to 48  m and 0.6 to 1.1 degrees, 
respectively (Table 2).

Movement between winter spawning areas and sum-
mer foraging areas could be reconstructed for 4 fish, 
including one preyed upon by a marine mammal and one 
captured in the commercial fishery (tag 178709). Migra-
tory fish displacement from release locations ranged 
from 60 to 395  km (Table  2). Migratory fish were esti-
mated to spend an average of 23  days on the spawning 
grounds (range 16–34  days), where they were tagged 
(Table 2). During this period, temperatures recorded by 
tagged fish were generally within 0.2 °C of temperatures 
recorded by stationary tags and fish with tagging mortali-
ties (Fig. 4). Migration initiation dates ranged from 3/12 
to 3/27. Migration periods lasted an average of 22  days 
(range 6–43  days). Longitude values during the migra-
tion period clearly reflected movement east or west 
with gradual sequential changes, but during the foraging 
period, longitude values tended to have greater variability 
(Fig. 5).

Our modifications to the Viterbi method increased 
track quality and dramatically decreased processing time. 
Slight differences were observed between the Viterbi 
and weighted mean methods for calculating the most 
probable track for longitude (Fig.  5, 6, 7). However, the 
Viterbi method clearly produced more realistic estimates 
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Fig. 2 Error (degrees) in daily light-based longitude and latitude estimates from three stationary tags in the Aleutian Islands at depths of 105 m 
(Sitkin Sound), 117 m (Adak Strait), 110 m (Nazan Bay). Note that the scale of the error (Y axis) differs between latitude and longitude plots

Fig. 3 Stationary tag temperature data sets (10-min interval) at depths of approximately 100 m from Adak Strait (gray), Sitkin Sound (pink), 
and Nazan Bay (blue) during 2019
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Table 2 Geolocation information

Release date, migration timing, pop-up date, and net distance traveled (km). Geolocation coefficients: diffusion (D,  km2/day), off-bottom coefficient (OC, m) used 
during the recovery/spawning (R/S) movement state and migration/foraging (M/F) movement states, and root mean square error (RMSE) of model residuals (e.g., 
difference between observed and model-estimated values) for depth (m) and light-based longitude (degrees) based on Viterbi pathways

TagID Rel date Migr start Migr end Pop-up Dist (km) D (R/S) 
 (km2/
day)

D (M/F) 
 (km2/day)

OC (R/S) (m) OC (M/F) (m) RMSE 
depth 
(m)

RMSE 
long 
(deg)

178701 2/19/19 NA NA 3/12/19 24 5 NA 50 NA 16 0.6

178696 2/22/19 NA NA 3/28/19 16 5 NA 50 NA 25 0.6

178690 2/21/19 3/16/19 4/28/19 5/23/19 395 5 75 50 150 48 1.1

178697 2/22/19 3/16/19 4/2/19 8/23/19 316 5 50 50 50 35 1.0

178704 2/20/19 3/27/19 4/2/19 11/22/19 60 5 50 50 50 29 0.8

178709 2/23/19 3/12/19 4/4/19 6/8/19 298 5 75 50 50 24 0.6

Fig. 4 Example of using temperature–depth profile data to determine onset of Pacific cod migration from release area (Nazan Bay). Temperature 
observations A for geolocated fish (Tag 178690, Tag 178704) match the stationary tag data and two fish (Tag 178702 and Tag 178705) 
that experienced post-tagging mortality in the release area until likely dates of departure (dashed vertical lines, magenta = Tag 178690, orange = Tag 
178704). Temperature observations from geolocated fish B were similar (i.e., within 0.2 °C) to stationary reference tags despite depth changes 
of more than 100 m, while fish likely occupied release areas
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when comparing observed depth to depth at estimated 
locations (Fig.  8). Therefore, estimates from the Viterbi 
method were used as point estimates for reconstructed 
pathways for geolocated fish in subsequent analyses. 
Viterbi algorithm processing time was reduced from 
hours to seconds (Additional file  3) after implement-
ing the 95% cumulative probability threshold in the 
algorithm.

Simulation study to assess model adjustments for island 
topography
Model performance was dramatically improved for 
some nearshore simulated pathways using the expand-
ing kernel method (Fig. 9, Additional File 2 Fig. S2.4). For 

example, a large proportion of the residential distribution 
(and thus Viterbi and weighted mean estimated pathway 
locations) for Path 41 obtained from the standard ker-
nel method was located on the north-eastern side of the 
island, where no known (simulated) locations occurred, 
and no probability was present in the north-western side 
of the islands, where known locations did occur (Fig. 9A). 
In contrast, the residential distribution from the expand-
ing kernel method is much better aligned with the simu-
lated pathway (Fig. 9B).

Additional insights into the differences between the 
two methods are provided by examining the daily prob-
ability estimates. For example, probability on day 2 
using the standard movement kernel (Fig.  10A) crossed 

Fig. 5 Longitude values for geolocated Pacific cod. Raw longitude observations (black points) ± the standard deviation of longitude used 
in the hidden Markov model gray vertical lines). Gray triangles and squares indicate release and recovery locations, respectively. Minimum 
and maximum longitudes from daily 99% location probability polygons are indicated by black dashed lines. Longitude values from reconstructed 
pathways are shown for the weighted mean (red line) and Viterbi (blue line) methods. Dotted vertical lines indicate the beginning of the migration 
phase, and dashed vertical lines indicate the beginning of the foraging phase. Note that axes differ across panels
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Fig. 6 Daily probability polygons and estimated point locations (Viterbi method) for geolocated Pacific cod. Light gray and dark gray polygons 
represent daily 50% and 99% location probability polygons. Viterbi daily locations are color-coded by month. Release locations are indicated 
by a white triangle and recovery locations with a white square
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land and placed the location of the Viterbi path on the 
north-eastern side of the island, and the weighted mean 
path location was on land between the two high prob-
ability areas. In contrast, smoothed probability on day 
2 using the expanding kernel method (Fig. 10B) did not 
cross land and was concentrated near the known loca-
tion. Both Viterbi and weighted mean locations were 
near the known (simulated) location for that day. On day 
100 (the simulated trajectory mid-point), most of the 
smoothed probability from the standard method, along 
with the Viterbi and weighted mean path locations, was 
located on the north-eastern side of the island instead 
of the true (simulated) location on the south side of the 
island (Fig.  10C). However, when the expanding kernel 
was used, all of the probability was located on the south 
side of the island, and the Viterbi and weighted mean 
path locations were both close to the known (simulated) 
location (Fig. 10D).

Despite marked improvements for certain simulated 
trajectories, no differences in performance between the 
standard and the expanding kernel method were found 

across all 100 simulated data sets. No significant differ-
ence in the distance mean absolute error (MAE) between 
standard and expanding kernel treatments was observed 
for either the weighted mean or Viterbi pathway methods 
(Table 3). Of the simulated pathways that were improved 
by the expanding kernel method, distance MAE was 
lowered by an average of 4.2 km for the weighted mean 
method (n = 37, range 0.001–31.5 km) and 4.5 km for the 
Viterbi method (n = 42, range 0.001–34.5  km). In cases 
where the standard kernel performed better, distance 
MAE was lowered by an average of 2.1 km (range 0.009–
14.3 km) for weighted mean pathways and 2.5 km (range 
0.003–17.3 km) for Viterbi pathways.

Across all simulations, distance MAE for weighted 
mean paths was significantly lower than Viterbi for 
both the standard (p = 0.0002) and the expanding ker-
nel (p = 0.0038) treatments, although the magnitude of 
improvement was small (1.8 km for the standard kernel 
and 1.5 km for the expanding kernel). This phenomenon 
was also observed across a number of mini expansions 
(Additional file 2 Fig.S2.3). This result likely reflects the 
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Fig. 7 Comparison of temperature records for all three geolocated fish that likely occupied Seguam pass during summer foraging. A Temperature 
records from May through November (detailed temperature records for Tag 178709, which was captured in the commercial fishery, orange line, 
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effect of grid size and the method of calculating each 
pathway (the weighted mean is a continuous average of 
latitude and longitude, whereas the Viterbi location is 
taken as the center of the most probable grid cell).

In addition, the two pathway reconstruction methods 
differed significantly in their ability to produce realis-
tic locations. Viterbi paths out-performed the weighted 
mean method of calculating point locations in terms of 
depth RMSE at model-predicted versus known (simu-
lated) locations (p < 2.2 e-16) for both standard and 
expanding kernel weighted mean versus Viterbi compari-
sons (Table 3). This reflects the adherence of the Viterbi 
pathway to the highest probabilities from the smoothed 
posterior probability surface, whereas weighted mean 

locations can be located between posterior probability 
modes in either deeper water or land (Fig. 10).

Discussion
This study is the first to deploy PSATs on Pacific cod. It 
demonstrates that it is possible to reconstruct plausible 
movement of tagged Pacific cod from winter spawning 
areas to summer foraging areas using PSAT data. Mor-
tality of tagged animals following capture was high and 
likely due to barotrauma of fish captured at deep loca-
tions [6]. However, with refined capture and release 
methods, PSATs can provide important details about 
Pacific cod post-spawning migrations in the Aleutian 
Islands in future studies.

Fig. 8 Comparison of weighted mean and Viterbi methods for estimating the most probable track (daily point estimates) of a tagged Pacific cod. 
A Residence distribution (surface color-coded by quantile probability) for tag 178690 with weighted mean (pink) and Viterbi (blue) pathways (land 
indicated by gray areas). B Maximum daily depth observed for the tagged fish (black) compared to depth at weighted mean (pink) and Viterbi (blue) 
locations. Root mean square error (RMSE, m) between observed and estimated depths for each method shown in the legend, is higher for locations 
estimated using the weighted mean method, because the weighted mean of the probability surface falls between two high-probability areas 
in deep water regions, whereas the Viterbi method is constrained to high-probability grid cells in shallower waters that more closely match 
the observed depths recorded by the fish
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Prior to this study, information on seasonal move-
ment of cod in the Aleutian Islands was obtained from 
recapture locations of conventional and archival-tagged 
fish only [3, 5]. The distance and directions traveled by 
migrating fish in this study are similar to results from 
previous studies. However, reconstructed pathways from 
PSAT data have provided the first information on migra-
tion timing (i.e., departure from spawning areas and 
arrival in summer foraging areas) and possible pathways. 
Thus, the use of PSATs appears to be a promising method 
for providing insights into the nature of seasonal migra-
tion of Pacific cod in Alaska.

Geolocation of Pacific cod
Light-based longitude was the most important geoloca-
tion variable for reconstructing cod migratory pathways 
in the Aleutian Islands, as it clearly detected east–west 
movement during the winter and early spring. Accuracy 

of longitude estimates from the stationary test tags dur-
ing this period (RMSE = 0.56 degrees) was comparable to 
stationary test tags at lower latitudes [12] despite being 
placed at water depths of 100 m or more. This result may 
be due to excellent water clarity in the study area during 
the winter and early spring, as this region does not have 
glacial inputs that can impact water clarity as in other 
regions of Alaska. The lack of longitude estimates dur-
ing May for both stationary tags and tagged fish could 
be caused by decreased water clarity during the spring 
phytoplankton bloom. The mean bloom timing in the 
Aleutian Islands between 1998 and 2006 was April 28 
(± 24 days) with an average duration of 39 ± 25 days [42]. 
This timing matches the approximate gap in light-based 
data for both stationary tags and fish. During summer, 
primary productivity has been observed to be low in 
the Aleutian Island passes as the Alaska Coastal Cur-
rent brings depleted water from the Gulf of Alaska to the 

Fig. 9 Residential distributions (color-coded surfaces) resulting from geolocation of simulated pathway (Path 41) using standard (A) and expanding 
(B) movement kernels. Lines indicate simulated (orange), weighted mean (pink) and Viterbi (blue) pathways
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Fig. 10 Comparison of standard kernel (A, C) and expanding kernel (B, D) daily probability surfaces for simulated pathway #41 on days 2 and 100 
(mid-trajectory). Smoothed probability surfaces are normalized to the maximum value for each day and truncated at normalized values of 0.05. 
Land is indicated by gray areas. Triangles indicate known (simulated) locations (orange), weighted mean pathway locations (pink), and Viterbi 
pathway locations (blue)

Table 3 Distance mean absolute error (MAE) of estimated locations and depth root mean square error (RMSE) for 4 geolocation 
treatments of 100 simulated data sets: (1) Standard movement kernel (no mini expansions) and weighted mean most probable track, 
(2) Standard movement kernel and Viterbi most probable track, (3) Expanding movement kernel (25 mini expansions) and weighted 
mean most probable track, (4) Expanding movement kernel and Viterbi most probable track

Treatment Mean distance MAE (km) Range distance MAE (km) Mean depth RMSE (m) Range 
depth 
RMSE (m)

Standard/Wt. mean 37.5 18.1–82.3 335 122–883

Standard/Viterbi 39.3 19.1–85.9 45 10–156

Expanding/Wt. mean 37.3 17.2–83.3 337 120–858

Expanding/Viterbi 38.7 17.1–86.4 45 10–157



Page 18 of 22Nielsen et al. Animal Biotelemetry           (2023) 11:29 

area [43]. Thus, water clarity conditions may be generally 
favorable for light-based geolocation in Aleutian waters 
aside from the spring plankton bloom in May and June.

Reduced accuracy of the stationary tag longitude esti-
mates (RMSE = 1.3 degrees) and more variable longitude 
estimates from tagged fish (Fig.  4) during the summer 
months suggest that geolocation results will be less pre-
cise for Pacific cod during the summer foraging phase 
compared to spawning or spring migrations from spawn-
ing areas. In addition to possible decreases in water 
clarity during the summer, increased variability in light-
based longitude among tagged fish during summer could 
also be caused by increased depths occupied during sum-
mer foraging or seasonal change in depth at dawn and 
dusk [5]. However, despite the slight decrease in accuracy 
of longitude observations, the geolocation model was 
still able to identify distinct areas that fish were likely to 
occupy during the summer, such as Seguam Pass.

In addition to longitude, the stationary tag data pro-
vided reasonable light-based latitude estimates. We did 
not include latitude in the data likelihood model for 
Pacific cod, because the orientation of depth gradients in 
the study area effectively provides more precise informa-
tion on latitude, but the information on latitude precision 
from the stationary tags at depth is potentially valuable 
for other high-latitude applications. The increase in sta-
tionary tag precision in summer compared to winter/
early spring could be caused by the well-known difficul-
ties in estimating latitude during spring and fall equi-
noxes [13, 44, 45]. These results are encouraging for the 
use of light-based latitude in study areas with similar 
water quality, where depth gradients do not approximate 
latitude; however, as for longitude, seasonal changes in 
the vertical distribution of some fish species are likely to 
decrease the precision of latitude estimates compared to 
stationary tags.

Although depth is typically one of the most impor-
tant geolocation variables for demersal fish in the North 
Pacific Ocean [19], we found that this was not necessarily 
the case in the Aleutian Islands study area. As mentioned 
above, light-based longitude is the primary variable for 
detecting migrations (east–west movement) in the Aleu-
tian Islands region, while depth provides information 
about latitude. The steepness of the depth gradients in 
the area means that even large differences in depth (e.g., 
100 m) correspond to very small changes in latitude. It is 
possible that the assumption of some degree of off-bot-
tom behavior (e.g., the off-bottom coefficient used in the 
maximum depth likelihood) could bias the location prob-
ability toward deeper water if the maximum depth of the 
tagged fish is actually recorded, while the fish is on the 
seafloor, but the steepness of the depth gradients acts to 
minimize the effect of this potential bias on geolocation 

estimates in this study. In areas with shallow depth gradi-
ents, great care should be taken in the use and selection 
of the off-bottom coefficient as a potential bias toward 
deeper waters would affect the geolocation estimates 
more than in steep depth gradient areas. This points to 
the need to identify and understand off-bottom behavior 
from the standpoint of geolocation as well as other pur-
poses (i.e., assessing vulnerability to capture with differ-
ent gear types).

Another potential source of bias from the model stems 
from the way the depth likelihood is calculated and the 
presence of different depth gradients on the north and 
the south sides of the island chain. Given the same study 
area grid cell mean, the maximum depth likelihood 
assigns a higher likelihood to grid cells with a smaller 
variance for a grid cell depth that is similar to depth 
measured by the tagged fish. Therefore, grid cells that 
contain the depth of the fish measured by the PSAT but 
have steep depth gradients receive much lower likelihood 
values than grid cells with very shallow gradients at the 
same depth. Because depth gradients are shallower on 
the south side of the chain (i.e., the variance of depth in 
each grid cell is smaller), this could drive the increased 
location probability to the south side of the island chain 
(where most of the location probability for 3 of the 4 
geolocated fish was observed during migration). If fish 
swim along steep gradients along the north side of the 
island chain during migration, this might not be reflected 
in the data likelihood model. For one tagged cod (tag 
178690) that migrated west to Petrel Bank, movement on 
the south side of the island chain would be energetically 
beneficial, since the prevailing Alaska Coastal Current 
and Alaskan Stream flow from east to west [46]. How-
ever, the rapid eastward movement south of the island 
chain as estimated for two other cod would have been 
hindered by the prevailing current. An eastward migra-
tion on the north of the islands would be energetically 
more efficient as the Aleutian North Slope current runs 
east to west on the north side of the island chain begin-
ning at Amchitka Pass [46].

Adding water column temperature data to the data 
likelihood model [26] may allow additional insights 
into which side of the island chains are used during 
migration. In general, water temperatures on the Ber-
ing Sea side of the chain will be colder than the Gulf 
of Alaska side. This effect is observed with changing 
of water temperature by at least 1 degree C between 
high and low tides in the data sets from the three cod 
that occupied Seguam Pass during summer foraging. 
We investigated using two temperature–depth profile 
maps that could potentially be included in the data 
likelihood model (Additional file  1). The HYCOM 
model [47] is a global ocean circulation model that has 
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been used for temperature–depth geolocation likeli-
hoods for other fish species for which geolocation is 
challenging, including Atlantic cod [48], basking shark 
[49], swordfish [50], and Mediterranean spearfish [51]. 
Based on the data from the three stationary tags, the 
HYCOM matches observed temperature-at-depth dur-
ing winter and early spring, when migration occurs. 
However, the spatial accuracy and resolution of the 
global HYCOM model depth bins were inadequate for 
the nearshore conditions in our study area. For exam-
ple, HYCOM depth bins in nearshore areas tended 
to be much shallower than actual depths due to the 
coarse bathymetry used to generate them, whereas the 
finer-scale bathymetry used for the depth-based like-
lihood contained deeper depths that matched depths 
measured by the fish. Because likelihoods for each 
geolocation variable are multiplied to obtain the over-
all likelihood, this resulted in a negation of high likeli-
hood values in the nearshore region.

We also compared estimated temperatures from 
the Bering Sea 10  K ROMS model [52], which pri-
marily covers the Bering Sea region, to the stationary 
tag data. Although the spatial accuracy of depth bins 
for this model was better than HYCOM in nearshore 
areas, the estimated temperatures were much colder 
than observed temperatures year-round (Additional 
file 1, Fig. S1.1). The Aleutian Islands are close to the 
edge of the Bering Sea ROMS 10 K model and are thus 
not likely to be accurate for the study area (Kelly Kear-
ney, NOAA, pers. comm.). Blended HYCOM models 
[53] or other hydrographic models (Seth Danielson, 
University of Alaska Fairbanks, pers. comm.) may be 
available in the future that could provide better accu-
racy in nearshore conditions within our study area.

This study has revealed that cod in the Aleutian 
Islands have a large range of movement in the water 
column during all migration phases. This behavior 
means a temperature–depth profile likelihood could 
be a valuable addition for the data likelihood model if 
accurate maps become available. However, tempera-
tures in major passes, such as Seguam, where tempera-
tures can differ by more than 1 °C based on tide stage, 
will likely be challenging to map accurately. Currently, 
the temperature–depth profile data are primarily used 
for determining residence in release areas (where tem-
perature–depth profiles from tagged fish match tem-
perature from stationary tags and tagging mortalities 
in the release area) and broad indications of movement 
(i.e., rapidly changing temperature-at-depth profiles or 
distinct changes in temperature–depth profiles over 
time can indicate movement and thus aid the assign-
ment of movement states in the HMM).

Adjustments for island chain topography
We made two adjustments to HMM geolocation meth-
ods to improve performance in nearshore areas. The first 
adjustment, the expanding kernel method used in the 
forward filter/backward smoothing, improves the qual-
ity of the posterior probability surfaces resulting from the 
HMM in nearshore areas. When narrow landmasses such 
as islands or peninsulas are present in the study area, the 
diffusion kernel used to represent the movement of the 
tagged fish may cross them when the standard method 
(convolution of the prior with one update by the move-
ment kernel followed by the data likelihood update) is 
used. This issue was addressed by Liu et  al. [54] by cal-
culating the diffusion kernel using distance between 
grid cells adjacent only to water. We used an alternative 
approach that is likely simpler to implement: a series of 
incremental expansions of the movement model followed 
by eliminating probability on land after each incremental 
expansion [17, Uffe Thygesen, DTU, pers. comm.]. This 
method does not appreciably increase processing time to 
run the HMM; however, it effectively prevents movement 
probability from crossing land barriers.

Although the simulation study did not identify any 
quantitative improvements in distance between known 
and estimated locations (e.g., reduced distance MAE) 
across all simulated pathways using the method, poste-
rior probability surfaces from some nearshore pathways 
were significantly improved. The lack of significant dif-
ferences between the two methods is likely due to issues 
with the simulated pathways. First, approximately half of 
the simulated pathways were mostly offshore and thus 
would not be improved by the expanding kernel method. 
Second, geolocation error added to longitude in the sim-
ulated data sets could have a much larger effect on model 
estimates than refinements in the movement kernel.

For the trajectories that were improved, model accu-
racy increased (e.g., distance MAE was reduced) with 
increasing numbers of mini expansions up to a certain 
point, after which accuracy decreased with increas-
ing numbers of mini expansions (Additional file  2). In 
terms of guidelines for choosing the optimal number of 
mini expansions, the simulations revealed a potential 
upper limit for the number of expansions that can be 
used (described in detail in Additional file  2). However, 
for specific applications, researchers should endeavor 
to determine the smallest number of mini expansions 
needed for the study area (e.g., consider the thickness of 
land barriers relative to cell size and movement speed of 
the animal).

The second adjustment, the Viterbi method for deter-
mining the most probable track improves the ability 
to estimate daily point locations from posterior prob-
ability surfaces. The most probable track may be used 
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to represent reconstructed pathways in graphics, to test 
the fit of models by comparing observed depth or tem-
perature data to conditions at estimated locations, or to 
conduct movement analyses based on point locations. 
For study areas, where the posterior probability surface 
is confined to a single high-probability area and is unob-
structed by land (e.g., in pelagic systems), the weighted 
mean method works well to produce a point estimate 
corresponding to the highest probability from the poste-
rior probability surfaces. In addition, our simulations also 
revealed slightly lower distance MAE for weighted mean 
compared to the Viterbi method, likely due to the con-
tinuous nature of the weighted mean latitude and longi-
tude estimates compared to the grid cell center provided 
by the Viterbi method. Therefore, in such situations the 
use of the weighted mean method may be preferable to 
the Viterbi method.

However, in study areas with multi-modal probability 
surfaces (such as probability on either side of an island 
chain), the weighted mean method tends to place the 
point estimate in low-probability areas that lie between 
multiple high-probability areas (such as land).

When multiple high-probability areas exist for a given 
time, we found that the Viterbi method, which finds the 
most probable sequence of grid cells occupied, was far 
more likely to provide point estimates consistent with 
high-probability areas from the posterior probability 
surface compared to the weighted mean method. This 
was observed for reconstructed Pacific cod trajectories 
(Fig. 8) and pathways reconstructed with simulated data 
(Fig.  9). The significant reduction in depth RMSE for 
locations estimated by the HMM compared to true (sim-
ulated) locations also indicates that the Viterbi method 
results in more realistic point location estimates for 
tagged fish.

The key to the Viterbi approach described here is to 
use the posterior probability estimates that result from 
the forward/backward filter as the likelihood input in the 
algorithm instead of the data likelihood values used in 
the forward/backward filter. In this way, the Viterbi algo-
rithm controls which paths are admissible and globally 
decodes the most probable path through the posterior 
probability estimates [41]. This modification results in 
point locations that are always placed in high-probability 
areas and correspond directly to error estimates gener-
ated by the posterior probability surfaces.

Although substituting the posterior probability from 
the HMM for the data likelihood model saved some pro-
cessing time (Additional file  3), the amount of process-
ing time was still prohibitive (on the order of hours). 
We found that truncating the posterior probability sur-
face to the top 95% of probability values each day greatly 
decreased processing time (on the order of seconds 

to minutes) and made the method feasible for use with 
model diagnostics and other products associated with 
the geolocation process.

The adjustments for island chain topography are com-
plementary when used together in near-shore applica-
tions, resulting in better probability surfaces and more 
realistic pathways that do not cross land. However, the 
Viterbi improvements will also be valuable for finding the 
most probable path for any application, where multiple 
areas of high probability are present. R code for both the 
expanding kernel and Viterbi algorithm will be available 
in a future version of the open source geolocation soft-
ware HMMoce [26].

Conclusions
This pilot study has demonstrated the value of deploying 
PSATs that provide archival data for understanding sea-
sonal movement of Pacific cod in the Aleutian Islands. 
We were able to use the archived data to reconstruct 
migration pathways between winter spawning and sum-
mer foraging areas. In addition to providing preliminary 
insights into the movement and behavior of Pacific cod 
in the Aleutian Islands, this work provides an example of 
adapting a geolocation model for a specific application 
that provides valuable advances for the broader commu-
nity of fisheries researchers. Analysis methods developed 
here will benefit future research on the seasonal move-
ment and behavior of Pacific cod and other demersal 
fish species in the region and any fish species occupy-
ing nearshore areas with convoluted coastlines or island 
chain topography.

Abbreviations
D  Diffusion
HMM  Hidden Markov model
MAE  Mean absolute error
PSAT  Pop-up satellite archival transmitting tag
RMSE  Root mean square error
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simulated locations close to islands; thus, location estimation may be 
improved using the expanding kernel method. Paths 7 and 12 (bottom 
panels) are located mostly offshore and thus are unlikely to be improved 
by the expanding kernel method. Figure S2.3. Mean absolute error (MAE) 
between estimated and known (simulated) locations for each example 
pathway shown in Figure 2.2. Weighted mean pathways are solid lines; 
dashed lines are Viterbi pathways. Treatments consist of 1 (standard 
method), 10, 25, 50, 100, and 200 updates. Figure S2.4. Example of resi-
dence distributions (e.g., summary of the entire pathway) obtained using 
different numbers of mini-expansions. Simulated path (#41) is indicated 
by orange lines in the top left panel. Color-coded surfaces indicate the top 
99% of quantile probability for each expansion treatment.

Additional file 3: Additional information about the Viterbialgorithm 
modification and processing time comparisons.  Figure S3.1. Study 
area cropped to the vicinity of the residency distribution for tag 178690 
(see Table 2 in main text for information on geolocation parameters). 
Figure S3.2. Example of three different types of input into the Viterbi 
algorithm for day 46 of the 92-day trajectory: A) unmodifed (data likeli-
hood model), B) modified to use posterior probability instead of data 
likelihood model, and C) truncated at highest 95% of posterior probability 
(probability values are normalized by the maximum value). Grid cells on 
land are indicated in black, and grid cells with values of zero are indicated 
in white.
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