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Abstract 

Insight into the detection range of acoustic telemetry systems is crucial for both sampling design and data interpre-
tation. The detection range is highly dependent on the environmental conditions and can consequently be sub-
stantially different among aquatic systems. Also within systems, temporal variability can be significant. The number 
of studies to assess the detection range in different systems has been growing, though there remains a knowledge 
gap in estuarine habitats. In this study, a 2-month experimental set-up was used to assess the detection range vari-
ability and affecting environmental factors of an estuary. Given the expected complex interplay of different factors 
and the difficulties it entails for interpretation, a structural equation modelling (pSEM) approach is proposed. The 
detection range of this estuarine study was relatively low and variable (average 50% detectability of 106 m and rang-
ing between 72 and 229 m) compared to studies of riverine and marine systems. The structural equation models 
revealed a clear, yet complex, tidal pattern in detection range variability which was mainly affected by water speed 
(via ambient noise and tilt of the receivers), water depth and wind speed. The negative effect of ambient noise 
and positive effect of water depth became more pronounced at larger distances. Ambient noise was not only affected 
by water speed, but also by water depth, precipitation, tilt angle and wind speed. Although the tilt was affected 
by water speed, water depth and wind speed, most of the variability in tilt could be traced back to the receiver loca-
tions. Similarly, the receiver locations seemed to explain a considerable portion of the detection range variability. 
Retrospective power analyses indicated that for most factors only a minor gain in explanatory power was achieved 
after more than two days of data collecting. Redirecting some of the sampling effort towards more spatially exten-
sive measurements seems to be a relevant manner to improve the insights in the performance of telemetry systems 
in estuarine environments. Since the low and variable detection range in estuaries can seriously hamper ecological 
inferences, range tests with sound sampling designs and appropriate modelling techniques are paramount.
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Background
Understanding the limitations of monitoring tools is key 
to any study design, to a correct interpretation of col-
lected data, and to draw scientifically sound conclusions 
[1, 2]. Acoustic telemetry, the use of electronic trans-
mitter tags and receivers to study movement behavior, 
is advancing rapidly and is increasingly being used for 
multiple aquatic species at different spatial and temporal 
scales [3–5]. Its technological advancement and increas-
ing use drive the demand for sound methodologies and 
an improved understanding of its limitations [2, 6]. In 
acoustic telemetry studies, a key methodological aspect 
to consider is the detection range (i.e., the relation-
ship between the detection probability and the distance 
between tag and receiver) and its variability [2]. Payne 
et al. for example, found that neglecting detection range 
variability would have led to opposite conclusions regard-
ing the diel patterns of cuttlefish behavior [7]. Simulation 
studies have shown how ignoring detection range vari-
ability during model development can lead to large biases 
in parameter estimates, variable degrees of confidence in 
position estimates and misinterpreted animal behavior 
[8, 9]. In addition, studies that rely on curtains of receiv-
ers to assess whether tagged animals enter and/or leave 
certain areas, might confuse variables affecting passage 
success with variables affecting detection range and the 
effectiveness of the curtain to detect passing animals [10, 
11].

Estuaries are of particular importance for fish popula-
tions due to their functions as nursery, feeding area and 
migration route between freshwater and marine habi-
tats [12]. Different fish species at different life stages use 
estuaries in various ways, giving rise to a broad range of 
movement behaviors [13]. The diadromous European 
eel (Anguilla anguilla), for example, uses selective tidal 
stream transport to move from its fresh water feed-
ing habitat to its marine spawning grounds [14]. The 
estuarine-dependent spotted grunter (Pomadasys com-
mersonnii) moves between the upper and lower estuary 
as a response to fluctuations in temperature and salinity 
[15], and the piscivorous red drum (Sciaenops ocellatus) 
adapts its home range to food availability [16]. The fine-
scale spatiotemporal variation in environmental condi-
tions, inherent to the dynamic nature of estuaries, will 
not only affect the movement behavior of fish [15], but 
also the detection range variability at a corresponding 
scale. To characterize movement behavior and disentan-
gle it from methodological biases, a sound understanding 
of the detection range variability in estuaries is therefore 
key. Nevertheless, to our knowledge, there are no dedi-
cated methodological studies evaluating detection range 
in estuaries. To ensure a sound methodological basis for 
future studies on estuarine detection range, the estuarine 

detection range and affecting variables were assessed 
using different data processing methods and a data analy-
sis technique not previously applied to range studies. 
Additionally, given the outcomes of this study, the suit-
ability of traditional sampling designs for detection range 
assessment was evaluated using power analysis.

Studies have identified strong tidal patterns in the per-
formance of marine networks, underlining the impor-
tance of considering detection range variability when 
interpreting results [17, 18]. However, the number of 
potential explanatory variables in these studies has 
remained limited and assessments were often restricted 
to exploratory wavelet analyses [17, 18]. Regression-based 
models with multiple variables and interactions have 
been developed to understand detection range variability, 
yet these models did not explicitly account for causality 
nor distinguish between indirect and direct drivers [19]. 
Since insight in the actual contributors to detection range 
variability is crucial to decide on the sampling design, 
and given the broad range of potentially correlated and 
important variables (e.g., tilt angle of the receiver, ambi-
ent noise and water speed) in an estuarine environment, 
an alternative approach might provide more insight. We 
propose piecewise structural equation models (pSEMs). 
pSEMs have been used in many disciplines to test causal 
structures and to identify whether variables have an indi-
rect or direct relationship with the considered response 
[20]. Although pSEMs have not been used in any meth-
odological telemetry study yet, they have the potential to 
provide a better understanding of detection range vari-
ability and were therefore used in this study.

In addition, although researchers have come to con-
sider range testing as essential for any telemetry study, 
guidelines and practical suggestions on how to perform 
range tests in estuaries have been lacking. Although a 
general understanding of the most important factors 
affecting detection range in a specific type of aquatic sys-
tem will already provide an important baseline [21], it 
is still recommended to assess and understand the net-
work performance in any new study area. Power analy-
ses are standard in many scientific fields to determine 
the magnitude and distribution of the required sampling 
effort. However, to our knowledge, there have not been 
any methodological telemetry studies that have made use 
of power analyses to determine how long experiments 
should run and how many receivers should be used 
to yield statistically reliable results. Here, we assessed 
the added value of power analyses for methodological 
telemetry studies using the available data and developed 
models.

Once the data have been collected, they need to be pro-
cessed before analysis. To determine the detection prob-
ability, detection data are often aggregated over a certain 
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time interval to account for not precisely knowing the 
exact moment at which a signal is transmitted. Since the 
transmission rate of most acoustic tags varies randomly 
about the nominal delay value to avoid collisions and loss 
of signals, it is often difficult to estimate the exact number 
of submitted transmissions within a certain time frame. 
Therefore, if the random burst interval between signals 
is large and the chosen temporal resolution small, the 
accuracy of the performance estimates will be poor and 
unrealistic performance values of more than 100 % might 
occur. Temporal aggregation is also often applied to align 
the resolution of the detection data with the resolution 
of the explanatory variables. However, the chosen resolu-
tion of the data does not necessarily reflect the resolution 
that is most appropriate to describe the variability of the 
detection range, which might introduce poor inferences 
and lack of insight in fine-scale processes. More recently, 
time-logging built-in tags record the exact moment at 
which a signal is transmitted, allowing to trace each indi-
vidual detection back to its original transmission and 
removing the necessity to aggregate the data. Since in 
this study receivers with time-logging built-in tags were 
used, both non-aggregated [22, 23] and aggregated data 
[19, 24, 25] were available for analysis. To assess the effect 
of data aggregation, and therefore temporal resolution, 
models of both datasets were developed and compared.

This study took place in the Permanent Belgian Acous-
tic Receiver Network (PBARN) which consists of receiv-
ers in the Scheldt Estuary and Belgian part of the North 
Sea (BPNS). This network is being used to monitor the 
behavior of multiple fish species [26]. Our results are of 
direct use for the optimization of the PBARN and the 
interpretation of the data it generates, but will also facili-
tate telemetry studies elsewhere, particularly in estuarine 
environments.

In summary, the aims of this study are to (i) provide 
an in-depth assessment of indirect and direct drivers of 
detection range variability in an estuarine environment 
through a structural equation modelling approach (i.e., 
pSEMs); (ii) assess the added value of statistical power 
analyses and provide practical suggestions regarding the 
required experimental duration and number of receivers 
for range tests; and (iii) to assess the difference in infer-
ences drawn from models built on aggregated and non-
aggregated data.

Methods
Study area
The Schelde Estuary is a well-mixed estuary of 160  km 
long without transversal man-made migration barriers 
and is characterized by strong currents, high turbidity 
and a large tidal amplitude up to 6 m that connects to the 
North Sea [27]. The estuary can be divided in two regions 

(upstream to downstream): the Zeeschelde, which spans 
105 km from Ghent to Antwerp (Belgium), and the West-
erschelde, which covers the 55 km from Antwerp to the 
mouth of the estuary at Vlissingen (The Netherlands). 
The width of the Zeeschelde varies between 50 to 1350 m 
while that of the Westerschelde varies between 2000 and 
8000  m. The description of the study area was adapted 
from Bruneel et al. (2020) [10].

In the Zeeschelde, a relatively straight river stretch of 
1000  m was selected to place 8 InnovaSea receivers (69 
kHz VR2Tx and 69 kHz VR2AR) with built-in transmit-
ters along the river (Table 1, Fig. 1 and Inter activ e map 1). 
The experiment took place from the morning of the 1st of 
March 2020 until the afternoon of the 29th of April 2020. 
Data from the 1st of March 12:00 until the 29th of April 
12:00 were used. The built-in transmitters logged when 
each transmission was emitted, which allowed to trace 
back every detection to its original transmission. These 
receivers also measured temperature, ambient noise and 
tilt angle every hour. Technical details are provided in 
Table 1.

Environmental data were collected from nearby 
measuring stations (Fig. 1, Inter activ e map 2 and Inter 
activ e map 3). Water level measurements (meters TAW 
(Tweede Algemene Waterpassing): Horizontal water 
level reference level used in Belgium) with a temporal 
resolution of one minute from a measuring station at 
Schoonaarde (zes49a-1066, x:124649.40, y:188333.70 
(CRS: Lambert-72), HIC (Hydraulic Information Cen-
tre)) were used. Bathymetry measurements (meters 
TAW) of the study area with a spatial resolution of one 
meter were obtained from the Triton data base of Flem-
ish Hydrography. The difference between the water 
level measurements and bathymetry measurements was 
used as a proxy of the water depth (meters). The receiv-
ers were not in direct contact with the river bottom, 
but rather hovered at some distance above it. In addi-
tion, the 17-kg concrete block connected to the lower 
part of the receivers has the tendency to sink deeper in 
soft substrate than on hard substrate. Based on expert 
knowledge, the distance between the bottom and the 
receivers was assumed to be 0.5  m for receivers on 
hard substrate (Rt1, Rt2, and Rt8) and 0.3 m for receiv-
ers on soft substrate (Rt3, Rt4, Rt5, Rt6 and Rt7). A 
distinction between soft and hard substrate was made 
based on the Flemish ecotope map. We used salin-
ity and temperature measurements with a temporal 
resolution of five minutes from a measuring station at 
Schellebelle (zes54m-SF-CM, x:119267.00, y:189338.00 
(CRS: Lambert-72), HIC), precipitation with a tempo-
ral resolution of one hour from a measuring station 
at Zele (plu17a-1066, x:127468.00, y:192887.00 (CRS: 
Lambert-72), HIC), and wind speed and direction 

http://rpubs.com/spbruneel/Receiver_loc_DR_ZS
http://rpubs.com/spbruneel/Env_loc_DR_ZS
http://rpubs.com/spbruneel/Env_Rec_loc_DR_ZS
http://rpubs.com/spbruneel/Env_Rec_loc_DR_ZS
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measurements with a temporal resolution of 15  min 
from a measuring station at Liedekerke (ME07–006, 
x:130730.00, y:175177.00 (CRS: Lambert-72), VMM 
(Flemish Environment Agency)). Since no nearby meas-
urements of water speed or discharge were available 

during the study period, we used 1D model simulations 
of water speed and current direction with a temporal 
resolution of 10  min (x: 124677.18, y:188401.27 (CRS: 
Lambert-72)) provided by the Hydraulic Information 
Centre (HIC) instead [28].

Fig. 1 Depiction of the study area at different scales In A, the site at which the receivers were placed (B) and the measurement locations 
for the electrical conductivity, precipitation, water velocity, water depth and wind velocity are depicted. In B, a more detailed depiction of the site 
with receivers is given, ranging from the first receiver, Rt1, to the last one, Rt8

Table 1 Technical details and placement details of the receivers (Rec) with built-in tags

The average (standard deviation) values of the hourly ambient noise (mV), tilt angle ( ◦ ) measurements and depth (m) are given. Dist.: distance (m). RBI: random burst 
interval (s). Power output is expressed in dB. The VR2Tx combines a VR2W receiver with a built-in V16 transmitter. The VR2AR combines an acoustic release with a 
VR2Tx

Rec Dist. (m) Code Noise (mV) Tilt angle ( ◦) RBI (s) Depth (m) Power (dB)

Rt1 0 VR2Tx-480873 392 (149) 15 (15) 60-120 1.98 (1.13) 142 (L)

Rt2 50 VR2Tx-480874 376 (147) 21 (19) 60-120 1.83 (1.09) 142 (L)

Rt3 200 VR2Tx-480875 370 (136) 30 (4) 60-120 1.65 (1.02) 142 (L)

Rt4 300 VR2Tx-480876 357 (135) 20 (10) 540-660 2.20 (1.14) 142 (L)

Rt5 400 VR2Tx-480877 341 (127) 23 (6) 60-120 3.93 (1.14) 142 (L)

Rt6 500 VR2Tx-480878 316 (116) 18 (7) 60-120 3.89 (1.14) 142 (L)

Rt7 600 VR2AR-546043 344 (121) 51 (5) 540-660 1.71 (1.05) 142 (L)

Rt8 1000 VR2AR-546044 473 (166) 28 (12) 540-660 2.02 (1.13) 142 (L)
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Data preprocessing
Data preprocessing and analysis were done using the 
R software (version 3.6.2, R Developer Core Team, R 
Foundation for Statistical Computing, Vienna, Austria). 
The data, code and documentation can be found here 
(https:// doi. org/ 10. 5281/ zenodo. 10074 811 and  https:// 
doi. org/ 10. 5281/ zenodo. 10074 489).

Receivers are known to experience a time drift in their 
internal clocks. To account for this time drift, the exact 
moments the receivers were activated and data were 
downloaded, were compared to the internal clock read-
ings of the receivers themselves. Over the entire study 
period of approximately 60 days the time drift ranged 
between 15 and 162 s. We assumed a linear trend in this 
time drift to correct the internal clock readings of the 
receivers.

Two datasets were constructed from the raw data: in 
a first dataset the detections were combined in hourly 
bins per receiver-tag combination [19, 25], which we will 
refer to as the aggregated data. Since the transmission of 
each signal was time-stamped by the built-in tag of each 
receiver, we knew exactly when transmissions were sent 
and how many transmissions were sent per tag per spe-
cific hourly bin (Additional file  1). The hourly perfor-
mance per receiver-tag combination was defined as the 
hourly number of detected signals divided by the hourly 
number of emitted signals. Hourly bins at the beginning 
and end of the dataset did not comprise a full hour. These 
hourly bins were therefore removed from the dataset. 
Environmental data with a temporal resolution of less 
than one hour were aggregated into hourly measure-
ments using the median.

For the second dataset, the non-aggregated data, each 
individual detection was traced back to its original trans-
mission. Although the linear interpolation is a very sim-
ple model to describe the time drift of the internal clocks 
of the receivers, the time drift itself was fairly limited 
over the entire study period and less than three-times the 
shortest random transmission interval. Adjusted times 
ranged from -162 to 26 s relative to the raw records. The 
linear interpolation could not be validated as there were 
only two data points to construct it (i.e., computer time 
and receiver time were only available when the receiver 
was started and when the receiver was turned down) and 
it is acceptable to assume that the relationship would 
not be perfectly linear and affected by other factors such 
as temperature. However, since the difference in time 
between the time-corrected transmission (i.e., signal 
departure) and detection (i.e., signal arrival) was always 
less than 1 s, it is reasonable to assume that this interpo-
lation was relatively accurate and that no transmissions 
were wrongly assigned to detections. Hence, the time 
stamp of each transmission could be considered reliable 

enough to link transmissions to detections and vice versa. 
For each detection the transmission nearest in time (after 
linear interpolation) was assigned to it. Being able to link 
the detections to the original transmissions allowed the 
identification of any ’double’ detections (e.g., transmis-
sions being reflected and detected several times) [29]. All 
detections could be traced back to one specific transmis-
sion and vice versa. Some signals may not have travelled 
in a direct line (e.g., by scattering and reflections along 
the river bank), yet there were no potential issues of over 
or under-counting detections in this dataset.

Data analysis
Single‑wavelet and cross‑wavelet analysis
Wavelet analysis allows to decompose a one-dimensional 
time series in a two-dimensional time-frequency space, 
providing insight in the dominant modes of variability and 
the way these modes vary in time [30]. To identify signifi-
cant (p-value < 0.05) temporal and environmental patterns 
(i.e., periodicity) in the performance, ambient noise, tilt 
angle, water height, water speed, temperature, conductiv-
ity and wind speed, continuous single-wavelet (to test the 
periodicity of single variables) and cross-wavelet (to com-
pare the frequency and synchronicity of two variables) 
analyses were conducted, respectively, after smoothing 
the time series of the aggregated data (via loess (degree of 
time series smoothing of 0.75)) and standardization using 
the R package WaveletComp [31]. 1-h time steps were 
chosen for the analysis. The wavelet power spectrum is 
determined by using the Morlet wavelet [32]. To test the 
null hypothesis that there is no periodicity, simulations are 
used. The obtained power spectrum is compared against a 
surrogate time series representing white noise [33].

Piecewise structural equation model
To identify and quantify the most important direct and 
indirect effects on performance, a piecewise structural 
equation model (pSEM) was constructed using the R 
package piecewiseSEM for the aggregated data. Struc-
tural equation models (SEMs) are probabilistic models 
that combine multiple response and predictor variables 
in one causal network [20]. Responses can serve as pre-
dictors and vice versa, allowing the assessment of any 
indirect effects [34]. The causal network is hypothesized 
and direct tests of separation are used to assess its valid-
ity [32]. Unlike the global estimation approach of tradi-
tional SEMs, piecewise (or directed acyclic) structural 
equation models  rely on multiple equations that are 
solved separately. This allows the combined assessment 
of multiple distributions and sampling designs [20]. The 
direct tests of separation test the hypothesis that all vari-
ables are conditionally independent (i.e., all relationships 
are accounted for). For more information on these type 

https://doi.org/10.5281/zenodo.10074811
https://doi.org/10.5281/zenodo.10074489
https://doi.org/10.5281/zenodo.10074489
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inferences, we refer the reader to Shipley et al (2000) [32]. 
Given the potentially cascading effect and the different 
underlying distributions of the considered variables (i.e., 
detection probability: binomial; ambient noise and tilt 
angle: Gaussian; see further), different model structures 
and different temporal resolutions of the data, a pSEM 
was used to assess the detection probability and affecting 
factors.

First, a full logistic regression model was constructed 
with the binomial performance (whether or not a trans-
mission was detected) as a response. Explanatory vari-
ables included the distance between transmitter and 
receiver, water speed (m/s), current direction (i.e. the 
angle of the current direction and transmission direction: 
0 or 180◦ (included as a categorical variable)), ambient 
noise (mV), water depth (m), tilt angle of the receiving 
receiver ( ◦ ), tilt angle of the transmitting receiver ( ◦ ), 
temperature ( ◦C), wind speed (m/s), wind angle (i.e., the 
sinus and cosinus of the angle between the wind direc-
tion and direction of the transmission) and precipita-
tion (mm). Since the direction and effect size of these 
variables may be distance-dependent, the interactions 
of all above-mentioned variables with distance were also 
included in the model. [26], for example, found that the 
negative effect of ambient noise and wind speed was 
higher at greater distance. Finally, we also included the 
following interactions: (1) wind speed and wind direc-
tion, (2) water speed and current direction, and (3) tilt 
angle and the angle of the current direction and trans-
mission direction. The latter served as a proxy for the 
direction in which the receiver was being tilted [35]. All 
explanatory variables were normalized (subtraction of 
mean and division by standard deviation) before model 
development.

To obtain the most parsimonious model, a forward 
selection procedure with BIC as selection criterion was 
used. BIC was chosen over AIC throughout the manu-
script, as the former accounts for the sample size in the 
penalty. Considering the unequal sample sizes of the 
aggregated and non-aggregated datasets, the BIC was 
more appropriate to compare the models.

In case some significant temporal autocorrelation was 
detected in the residuals of the model, we would assess 
whether a more flexible fit would have improved the 
model. To this end, a GAM approach as described by [25] 
was tested, with all explanatory variables and a first-order 
autoregressive error (AR1) included (a more detailed 
description of the developed GAMs can be found in 
the provided R scripts). In case the model fit improve-
ment was limited, the aforementioned logistic model was 
retained in the pSEM. Similar to the selection procedure 
of the logistic performance model, BIC was used as selec-
tion criterion to obtain the most parsimonious models.

Two additional models were provided as input to the 
pSEM to account for any indirect effects on the detection 
range via noise and tilt angle. First, a linear mixed model 
was constructed with noise as response variable, and 
water speed, water depth, precipitation, wind speed and 
direction (sine and cosine; see earlier), temperature, and 
tilt angle as fixed factors and receiver id as random fac-
tor. Second, a linear mixed model was constructed with 
tilt angle as response variable, water speed, water depth, 
wind speed and direction (sine and cosine; see earlier) as 
fixed factors and receiver id as random factor.

Since correlation does not necessarily imply causa-
tion, processes that were potentially correlated but were 
unlikely to hold a causal relationship (i.e., correlated 
errors) were declared as such before running the model. 
This was done for ambient noise measured at the receiv-
ing receiver and tilt angle of the emitting receiver as they 
were unlikely to affect each other but might seem so 
because of their shared assumed dependence on water 
speed. This was also done for tilt angle and temperature, 
and tilt angle of the emitting and receiving receiver.

Comparison of data types: aggregated 
versus non‑aggregated data
To construct the pSEM and conduct the power analy-
ses (see next section), we decided to use the aggregated 
data instead of the, temporally much finer, non-aggre-
gated data because of several reasons. First, the lowest 
resolution of the explanatory variables was one hour and 
hence the fine-scale variability of the performance could 
not directly be fitted to the fine-scale variability of all 
explanatory variables, causing a mismatch between the 
temporal resolutions of the sub-models. Second, since 
measurements of performance and explanatory variables 
were taken at different locations and moments in time, 
there was no perfect spatial and temporal fit between 
both. Although we aimed to understand and account for 
the spatial and temporal gaps between measurements, 
their remaining effect might still affect model outcomes, 
which is more likely to be prominent for fine-scale data. 
Third, the computation time was significantly higher for 
the non-aggregated data than the aggregated data, as the 
former dataset was 25 times larger than the latter.

For the non-aggregated data a simple logistic model 
was constructed. For this model only, the aggregated 
data of ambient noise and tilt angle were brought to a 
finer temporal resolution through receiver-unique loess 
models with time as covariate and a minimal span (0.2%, 
also see Supplementary Information). First, a full logistic 
model with as response the Bernoulli performance and 
the same scaled explanatory variables as for the aggre-
gated-data-model was constructed. While the different 
random burst intervals (RBIs) of the different receivers 
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were no issue for the aggregated-data-model, they should 
be accounted for in this non-aggregated-data model as 
they determine the number of transmissions. Therefore, 
weights were given to the different transmissions in such 
a way that each receiver contributed equally to the con-
structed models, i.e., higher weights for transmissions 
of receivers with higher RBIs. Finally, to obtain the most 
parsimonious model a forward selection procedure with 
BIC as selection criterion was used.

Since the pSEM is built “piecewise” by combining dif-
ferent sub-models, the singular logistic performance 
model of the pSEM (based on the aggregated data) can 
be compared with the logistic performance model that 
was developed using the non-aggregated data. Both mod-
els have the same model structure and differences in the 
inferences drawn from both models should therefore be 
contributed to the data themselves.

Statistical power analysis
We conducted a power analysis to assess the minimal 
duration and number of receivers needed to identify the 
driving forces of the performance with sufficient sta-
tistical power ( ≥ 0.80). The most parsimonious perfor-
mance model for the aggregated data, developed in the 
first step of the pSEM, was run for different scenarios of 
experiment durations and numbers of receivers. For each 
unique combination of durations and number of receiv-
ers, 104 random subsets of data were created and used to 
fit the model. The periods were selected randomly. The 
receivers were picked in the order of their geographical 
placement (i.e., Rt1, followed by Rt2, Rt3, etc.). The statis-
tical power of each variable in the model was determined 
for every unique combination.

To assess and compare the effect of duration and num-
ber of receivers, a logistic model with as response statisti-
cal power and as explanatory variables the standardized 
number of receivers and the standardized duration of the 
experiment was constructed.

Results
Exploratory analysis
No false detections, as defined by Simpfendorfer et  al. 
(2015) [29], were recorded during the study. Neither the 
response nor the explanatory variables had any outliers 
(1.5-IQR-rule). However, as some water depth measure-
ments and corresponding tilt angle measurements sug-
gested that some receivers (mainly Rt1 and Rt2) might 
have been exposed to air, observations with estimated 
water depths below zero or tilt angles above 90◦ were 
removed (4.0 % of the data). Time series of the assessed 
explanatory variables are visualized in Fig. S1. Since tem-
perature and salinity were strongly correlated (r = 0.84), 
only temperature was used further on. Temperature was 

used because of the anticipated larger effect of tempera-
ture on sound transmission (increase in speed of sound: 
4.5 m per 1 ◦C ; 1.5 m per 1 psu increase [36]) given the 
observed range of salinity (range of 0.22 psu) and tem-
perature (range of 10.3◦C ). The tilt angles of the sub-
mitting and receiving receiver did not show a strong 
correlation (r = 0.12), unlike the ambient noise (r = 0.86) 
and temperature (r = 0.98) measurements of both receiv-
ers. Ambient noise and temperature measurements of 
the transmitting receiver were excluded from the analy-
sis. Finally, water speed and ambient noise showed a less 
strong correlation (r = 0.73), yet found still sufficient to 
potentially affect the interpretability of the models if both 
were retained.

Although a core strength of pSEMs is their ability to 
include correlated variables while maintaining a good 
level of interpretability, caution remains key. More specif-
ically, since there were some potentially quite important 
inaccuracies and biases for both the ambient noise meas-
urements (i.e., one hourly measurement to represent an 
entire hour (solar-day inspired temporal resolution) of 
detections, describing a tidal process which has a lunar-
day-periodicity) and flow velocity estimates (i.e., actual 
local conditions and depth dependency of the receivers 
were not taken into account), the remaining observed 
effect of the second-added correlated factor could be 
seriously inflated, hindering interpretation. Given their 
different origin (measurements versus simulations) and 
temporal resolution (1 h versus 10 min), it was therefore 
decided to retain the variable with the strongest fit to the 
response. Model structures were designed with both vari-
ables separately and the variable that resulted in the most 
parsimonious model (BIC) was retained. There were no 
other strongly correlated explanatory variables (r > 0.70). 
The water depth of the submitting and receiving receiver 
showed a moderate correlation (r = 0.58). The correlation 
between the water depth at a specific moment in time 
and the water speed were low (r=0.17), but increased 
and peaked when a delay of two hours was considered. 
The delay between the vertical tides (water depth) and 
horizontal tides (water speed) was therefore considered 
to be two hours. The decreasing trend of detection prob-
ability with distance between transmitter and receiver 
was apparent for all receivers, with the exception of Rt6, 
for which exceptionally high detection probabilities were 
recorded.

The unexpectedly high detection probability for Rt6 
(both as transmitting and receiving receiver) could not 
be explained by any of the developed models (see pSEM). 
The number of available variables describing spatial pat-
terns was limited in this study. Only the tilt angle and 
depth were available variables with some level of spatial 
information. The average tilt angle and depth of Rt6 were 
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only the second lowest and highest, respectively, and both 
variables were accounted for in the models. This suggests 
another series of unmeasured affecting factors. Typically, 
one would use a mixed-model approach to account for 
the unique, yet unobserved, properties of the individual 
receivers. However, since receivers were placed on differ-
ent distances from each other, it is likely that any random 
effect would compete with the fixed factor distance for 
the same information, leading to ambiguous results. That 
is why no mixed-model approach was used to analyse the 
detection probability (a more extensive discussion is pro-
vided in Supplementary Information). Given the inabil-
ity to properly describe the unexpected high detection 
probability for Rt6, it was decided to omit Rt6 from the 
analyses.

Wavelet analysis
According to Fig.  2, the single wavelet analyses of the 
performance suggest a strong tidal pattern with peaks 

at approximately 4 h (flood), 6 h (ebb) and 12 h (flood + 
ebb). Weaker, yet still significant periodical peaks can be 
observed at approximately 24 h and 360 h (spring - neap 
tide cycle). Tidal patterns are also apparent for ambient 
noise, tilt angle, water depth and water speed. A weaker, 
yet still significant, circadian pattern for wind speed also 
seems present.

Piecewise structural equation model for aggregated data
The most parsimonious logistic performance model for 
the aggregated data retained the variables distance, ambi-
ent noise, tilt angle of the submitting and the receiving 
receiver, water depth, the interaction of distance with 
ambient noise and the interaction of distance with water 
depth.

After assessment of the residuals of the pSEM using 
the autocorrelation function (ACF) and single-wavelet 
analysis, some considerable temporal patterns remained. 
These temporal patterns corresponded with the tidal 
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Fig. 2 Average wavelet power in function of period (hours) for different variables. For the performance all different distances between receivers are 
depicted. Darker blue colors represent smaller distances. For the tilt angle and ambient noise measurements, the different measuring receivers are 
depicted. Significant values (p<0.05) are depicted with red dots
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processes mentioned earlier, suggesting that the explan-
atory variables and/or the way they were fitted to the 
response were insufficient to describe the detectability. 
For the developed GAM, the most important explanatory 
environmental variables (i.e., noise and water depth) did 
not benefit from a more flexible fit or integration of AR1 
correlation. In addition, the temporal autocorrelation in 
the residuals persisted and the overall model fit was only 
marginally better, discouraging further use of the GAM 
approach. We therefore concluded that the remaining 
autocorrelation in the residuals was most likely the result 
of the inadequacy of some measurements to represent 
the local conditions accurately on a fine scale (i.e., per 
receiver). The unmeasured fine-scale unique properties 
of the direct environment of single receivers might have 
an important effect, which might also result in unique 
relationships between the performance and the explana-
tory variables of each receiver–transmitter combination. 
Were it not for the confounding effect of distance (see 
Methods), a mixed-model approach could have partially 
resolved this issue. However, since the retained variables 
had considerable effect sizes, it is unlikely that a better 
account of the remaining temporal patterns would have 
led to a very different model, justifying the further use of 
the logistic model for the construction of the pSEM.

This parsimonious logistic model in combination with 
the parsimonious linear mixed models of the ambi-
ent noise and tilt angle were fed into a pSEM. The tests 
of directed separation (used to evaluate the conditional 

independence claims) indicated that wind speed and tilt 
angle could have been important for the performance 
and measured noise, respectively. Therefore, both factors 
were also included in the respective parts of the model. 
The tests of directed separation also suggested to include 
flow velocity in the performance model. However, it was 
decided not to include water speed because of the issues 
related to the correlated measurements of noise and 
water speed in combination with the negligible increase 
in R 2 of 0.6 % after including water speed. Additionally, 
including water speed had almost no effect on the coef-
ficients of the other factors, with the exception of noise 
for which the coefficient decreased substantially due to 
the correlated nature of noise and water speed. The final 
pSEM is represented in Fig. 3 and the output is given in 
Table  2. Under average environmental conditions (i.e., 
values of 0 for the standardized environmental variables 
imply that the average values are used), the estimated 
detection probability reached 75, 50, 25 and 10 % at 20, 
103, 188 and 275  m, respectively (Fig.  4). As a result of 
the strong tidal dependency of the two most important 
explanatory variables, i.e., the flow-induced noise and 
water depth, the estimated detection probability also 
depended strongly on the tidal phase. The median D50 
(distance at which the detection probability is 50 %) per 
tidal phase ranged from 72 to 229 m (Figs. 5 and 6). Dur-
ing ebb the D50 decreased due to the combined negative 
effects of the increasing noise and decreasing water depth 
(Table  5). During flood the D50 initially increased but 

Table 2 pSEM model output for aggregated data without Rt6

For the different sub-models (i.e. performance (Perf.), noise and tilt angle), for each variable, the coefficient estimates (Est), standard error (SE), critical value (Crit.
Value), p-value and standardized estimates (Std.Est) are given

Response Predictor Est SE Crit.Value p-value Std.Est

Perf. Distance – 3.5378 0.0480 – 73.6953 <0.0001 – 0.7479

Noise – 1.1846 0.0413 – 28.6946 <0.0001 – 0.2504

Tilt angle (rec) – 0.4859 0.0173 – 28.0736 <0.0001 – 0.1027

Tilt angle (sub) – 0.4361 0.0178 – 24.4391 <0.0001 – 0.0922

Water depth (sub) 0.7096 0.0282 25.1729 <0.0001 0.1500

Wind speed – 0.1634 0.0149 – 10.9844 <0.0001 – 0.0345

Distance * Water depth 0.6283 0.0328 19.1276 <0.0001 0.1228

Distance * Noise – 0.4859 0.0437 – 11.1115 <0.0001 – 0.1090

Noise Water speed 0.7860 0.0.0025 313.4190 <0.0001 0.7860

Water depth – 0.3124 0.0030 – 104.6445 <0.0001 – 0.3124

Precipitation 0.0920 0.0024 38.8070 <0.0001 0.0920

Wind speed 0.0145 0.0024 6.0430 <0.0001 0.0145

Tilt angle 0.0449 0.0041 10.9782 <0.0001 0.0449

Water depth * speed – 0.1030 0.0023 – 44.4692 <0.0001 – 0.1057

Tilt angle Water speed 0.1637 0.0025 66.1016 <0.0001 0.1637

Water depth – 0.0721 0.0031 – 23.4724 <0.0001 – 0.0721

Wind speed 0.0416 0.0025 16.8743 <0.0001 0.0416
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after two hours decreased due to the competing negative 
and positive effects of the increasing noise and increasing 
water depth, respectively (Table 5).

Ambient noise was the most important environmen-
tal factor affecting the detection probability according 
to the pSEM model of the aggregated data. Water speed, 
precipitation and wind speed positively affected ambi-
ent noise, while water depth negatively affected ambi-
ent noise. There was a negative effect of the interaction 
between water depth and water speed, suggesting that 
the effect of water speed was less pronounced at larger 
depths. Water depth had a positive effect on the perfor-
mance. Tilt had a significant negative effect on the per-
formance. The interaction of current direction and tilt 
angle was retained in the non-aggregated-data model, 
but not in the aggregated-data-model. Tilt angle was 
most affected by the water speed and water depth, yet 
only 3 % of the variability was explained by these fac-
tors. 71 % of the variability was explained by the receivers 
themselves. It is important to note that this variation tied 
up with the receivers can either be the result of specific 

device characteristics or spatial factors of the environ-
ment that were not accounted for (Tables 3 and 4).

Logistic model for non‑aggregated data
The most parsimonious logistic model with performance 
as Bernoulli response for the non-aggregated data, con-
tained most variables that were fed into the model. The 
most important variables for the model based on aggre-
gated data (i.e., distance, tilt angle, water depth and wind 
speed) were also among the most important for the 
model based on non-aggregated data. Nevertheless, there 
were some clear differences between both approaches. 
The non-aggregated-data model showed a better fit when 
water speed rather than ambient noise was included. 
The model also retained many more factors compared to 
the aggregated-data-model. The only factor that was not 
retained was the interaction between angle wind sine and 
distance.
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Fig. 3 pSEM model with depiction of the different sub-models (i.e., performance, noise and tilt angle). The width of the arrows represents 
the standardized estimate of the relationship which is a measure of its relative importance
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Statistical power analysis
For most variables, increasing the number of receivers 
and duration of the range test had a positive logarith-
mic effect on the statistical power of the performance 
model for the aggregated data. When three or more 
receivers were used, the power for the factor dis-
tance became sufficient (0.80) after less than half a day 
(Table  6 and Fig.  7). The desired power of the factor 
noise was reached after 1.75 days, 1 day and 0.5 days 
when 3, 4 to 6 and 7 receivers were used, respectively. 
The desired power of the tilt angle of the receiving 
receiver was reached after 1.75 days and 0.5 days when 
3 to 4 and 5 or more receivers were used, respectively. 
Although noise showed a minor, yet significant, tempo-
ral periodicity of 360 h, related to the spring–neap tide 
cycle, accounting for this phenomenon was not nec-
essary to have sufficient statistical power. The desired 

power of the tilt angle of the submitting receiver was 
reached after 5, 3 and 1.5 days when 4, 3 and 5 or more 
receivers were used, respectively. The desired power 
of the water depth was reached after 14, 5, 2.5 and 
1.5 days when 3, 4, 5 to 6 and 7 receivers were used, 
respectively. For wind speed, the duration had a weaker, 
more linear than logarithmic, effect on the power. 
When using 3 and 4 receivers, the desired power was 
not even reached after more than 16 days. When more 
than 4 receivers were used, the desired power of the 
wind speed was reached after approximately 8.5 days. 
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Fig. 4 Detection probability in function of the distance 
between receiver and transmitter. Measurements (boxplots) 
and estimates (line) of detection probability in function of distance 
are depicted. The detection probability was estimated using 
the developed logistic submodel of the pSEM under average 
conditions of all other explanatory variables of the model

Table 3 R2 of the sub-models of the pSEM for data without Rt6

The marginal R 2 comprises the variance explained only by fixed effects while 
the conditional R 2 comprises the variance explained by the entire submodel, 
i.e., both fixed and random effects. The R 2 of the performance was determined 
using the McFadden method

Response Marginal R 2 Conditional R 2

Performance 0.57 /

Noise 0.61 0.71

Tilt angle 0.03 0.71
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Fig. 5 Detection probability in function of the distance 
between receiver and transmitter for different tidal phases. The tidal 
cycle was subdivided in hourly tidal phases. Each curve represents 
the detection probability (P) for each subsequent hourly tidal 
phase. The top and bottom panel depict the detection probability 
during ebb and flood, respectively. No distinction was made 
between neap tide, spring tide or intermediate tide. The detection 
probability was estimated using the developed logistic submodel 
of the pSEM under median conditions of noise, water depth and tilt 
angle for all the considered tidal phases. R code to create this figure 
was adapted from [50]. A larger version of this figure is provided 
in the Additional file 1
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A simple logistic model with as response the statisti-
cal power and as explanatory variables the standard-
ized number of receivers and the standardized duration 
of the experiment was developed. The model revealed 
that both distance and noise were not affected as much 
by the number of receivers as were wind speed, water 
depth and tilt angle. For distance and noise the effect 
size of the factor duration was 19 and 11 times larger 
than that of the factor number of receivers. For the tilt 
angle of the receiving receiver, tilt angle of the submit-
ting receiver, water depth and wind speed, the effect 

size of the factor duration was 9, 4, 3 and 2 times larger 
than that of the factor number of receivers.

Discussion
Estuarine detection range
In our study, which took place in the freshwater part of 
the Scheldt Estuary, the average D50 (distance at which 
the detection probability is 50 %) was 106 m and ranged 
on average between 71 to 229 m (Innovasea, 69 kHz, 142 
dB). It is important to note that, although a wide range 
of parameters was assessed, not all potentially important 
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Fig. 6 Detection probability in function of the distance between receiver and transmitter for different hourly tidal phases. The tidal cycle 
was subdivided in hourly tidal phases. Each plot represents a subsequent hourly tidal phase. No distinction was made between neap tide, spring 
tide or intermediate tide. The detection probability was estimated using the developed logistic submodel of the pSEM under median conditions 
of noise, water depth and tilt angle for all the considered tidal phases. For each tidal phase the distance at which the detection probability was 50% 
was given (D50). HW and LW stand for high water and low water, respectively. R code to create this figure was adapted from [50]
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parameters were considered (or at least not to the full 
extent of their range). When comparing the results of 
this study with the outcomes of other studies, the unique 
circumstances at which they were obtained should not 
be disregarded. For example, transmitters with a higher 
power output are known to have a higher detection range 
[37]. In summary, these results pertain to the freshwa-
ter part of a single estuary for which 69 kHz Innovasea 
receivers and transmitters with a power output of 142 dB 
were used.

Studies on the detection range of telemetry systems 
have been numerous and the range of outcomes exten-
sive [18, 19, 24, 37–42]. For example, Klinard et  al 
(2019) described a D50 in large deep lakes of more 
than 1000  m (Innovasea, 69 kHz, 145–158 dB) [37], 
while Selby et al (2016) found a D50 of no more than 
40  m in high rugosity coral reefs [24] (Innovasea, 69 
kHz, 147–152 dB). In the Belgian Part of the North 

Sea (BPNS), the area into which the Scheldt Estuary 
transitions, the average D50 was 230  m (Innovasea, 
69 kHz, 148 dB) [19]. The higher power output (148 
versus 142 dB) and considerable larger depth (23 ver-
sus 2.31  m) and weaker ambient noise (316 versus 
378 mV) of the BPNS compared to our study area are 
most likely what caused the much higher D50 of the 
former. It is advised that future studies consider using 
the same power output, or, preferably, assess multi-
ple power outputs to allow a better assessment of the 
effect of environmental conditions. Nevertheless, as 
the variability in detection range within the Perma-
nent Belgian Acoustic Receiver Network (PBARN), 
which stretches from the Scheldt Estuary to the BPNS 
[19], is most likely very pronounced due to the wide 
range of environmental conditions, caution is advised 
when setting up experimental designs and interpret-
ing results. Even when considering the relatively low 

Table 4 Model output of the most parsimonious logistic model for the non-aggregated-data without Rt6 with as response the 
Bernoulli performance

For each variable, the coefficient estimate (Est), standard error (SE), z-value, and p-value are given

Predictor Est SE z-value p-value

(Intercept) – 3.251 0.004 – 762.476 <0.001

Distance – 3.496 0.005 – 659.352 <0.001

Water speed – 0.941 0.003 – 366.237 <0.001

Tilt angle (sub) – 0.384 0.003 – 147.082 <0.001

Water depth (rec) 0.448 0.002 189.136 <0.001

Tilt angle (rec) – 0.577 0.003 – 184.318 <0.001

Water depth (sub) 0.546 0.003 215.572 <0.001

Wind speed – 0.287 0.003 – 109.307 <0.001

Precipitation – 0.270 0.004 – 64.826 <0.001

Temperature 0.066 0.002 26.488 <0.001

Current signal angle (180◦) – 0.058 0.005 – 11.155 <0.001

Angle wind cosine – 0.005 0.002 – 1.919 0.055

Angle wind sine – 0.004 0.001 – 3.365 0.001

Distance * water depth (rec) 0.275 0.003 78.950 <0.001

Distance * water depth (sub) 0.508 0.004 136.725 <0.001

Distance * water speed – 0.271 0.003 – 93.773 <0.001

Distance * tilt angle (sub) – 0.185 0.003 – 56.887 <0.001

Distance * wind speed – 0.155 0.003 – 46.212 <0.001

Distance * precipitation – 0.203 0.005 – 42.722 <0.001

Distance * tilt angle (rec) – 0.133 0.004 – 35.126 <0.001

Tilt angle (rec) * current signal angle (180◦) 0.224 0.003 71.309 <0.001

Tilt angle (sub) * current signal angle (180◦) – 0.156 0.003 – 60.121 <0.001

Distance * temperature 0.088 0.003 27.072 <0.001

Distance * current signal angle (180◦) – 0.080 0.007 – 12.313 <0.001

Water speed * current signal angle (180◦) 0.015 0.003 5.573 <0.001

Wind speed * angle wind sine 0.007 0.001 5.344 <0.001

Wind speed * angle wind cosine – 0.007 0.001 – 4.796 <0.001

Distance * angle wind cosine 0.012 0.003 3.967 <0.001
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power output of the transmitters used in this study, 
the detection range in the Scheldt Estuary seemed to 
be relatively low compared to other aquatic systems, 
probably because of the strong tidal currents of the 
estuary and relatively shallow placement of the receiv-
ers. The few studies which reported a lower detection 
range than for this study were characterized by high 
background noise conditions from hydropower plants 
(JSATS, 417 kHz, 153 dB) [43], shallow waters (Inno-
vasea, 69 kHz, power output not mentioned) [40] and 
high surface complexity (Innovasea, 69 kHz, 147–152 
dB) [24].

Indirect and direct drivers of estuarine detection range 
variability
Tidal periodicity
In this study, detection probability was characterized 
by a pronounced, yet relatively predictable, temporal 
variation that coincided with the tidal dynamics of the 
estuary. Although different couples of receivers showed 
higher and lower peaks of detection probability, the 
consistent and significant periodicity of the peaks was 
undeniable. The different peak heights of couples of 
receivers could generally be traced back to the different 
distances between them, with larger distances result-
ing in lower detection probabilities. However, some 
variation remained as couples with similar distances 
between receivers could still differ greatly, indicating 
some additional spatial factors and/or receiver char-
acteristics affecting the detection probability. In the 
following sections, the observed drivers of estuarine 
detection range variability are discussed. Differences in 
conclusions regarding identified drivers drawn from the 
models built on aggregated and non-aggregated data 
are discussed.

Distance and spatial factors
Distance between transmitter and receiver was not only 
the most important factor to affect the detection prob-
ability, it also had an important interaction effect with 
other factors such as noise and water depth. If an inter-
action effect with distance was recorded, it always rein-
forced the positive or negative individual effect of the 
considered factor. At a closer range the detectability is 
sufficient to overcome the most extreme conditions, 
while at longer distances the more severe absorption and 
attenuation of the weakened signal causes it to be more 
susceptible to other affecting factors.

Because of the important effect of distance and pro-
nounced temporal tidal dynamics, one might expect that 
there would be little variation attributable to spatial fac-
tors. However, some of the differences in performance 
between receivers were neither the result of distance 
nor tidal dynamics which would suggest some linger-
ing, unaccounted affecting conditions. Sadly, these can 
not be identified and quantified with this dataset alone. 
Although this dataset has a good temporal resolution 
(minutes) and temporal extent (months) of most included 
factors, the spatial resolution of the environmental meas-
urements (kilometers) and spatial extent of the study area 
(meters) were relatively poor. In addition, potentially 
important spatial factors such as habitat [24] (e.g., soil 
texture and structure, pools and riffles) and actual depth 
of the receivers, had not been measured. This limited our 
ability to attribute spatial variation to potential spatial 

Table 5 Per tidal phase the D50 (distance at which the 
detection probability was 50%), median noise, median water 
depth, median tilt angle and median water speed are given

The tidal cycle was subdivided in hourly tidal phases. No distinction was made 
between neap tide, spring tide or intermediate tide. The detection probability 
was estimated using the developed logistic submodel of the pSEM under 
median conditions of noise, water depth and tilt angle for all the considered 
tidal phases. For each tidal phase the distance at which the detection probability 
was 50% was given

Phase 
(hours)

D50 (m) Noise (mV) Water 
depth 
(m)

Tilt angle 
( ◦)

Water 
velocity 
(m/s)

HW (1) 171 326.80 3.60 19.00 – 0.65

Ebb (1) 229 224.35 3.28 18.00 0.11

Ebb (2) 200 223.40 2.72 21.00 0.62

Ebb (3) 123 370.00 2.30 23.00 0.72

Ebb (4) 100 443.20 1.81 23.00 0.72

Ebb (5) 89 468.95 1.35 24.00 0.71

Ebb (6) 83 482.25 0.92 25.00 0.70

Ebb (7) 71 472.15 0.52 29.00 0.68

LW (1) 88 418.40 0.46 28.00 0.64

Flood (1) 189 193.45 0.88 21.25 0.04

Flood (2) 203 192.90 1.51 20.00 – 0.38

Flood (3) 157 283.45 2.46 23.00 – 0.66

Flood (4) 88 474.00 3.32 23.00 – 0.88

HW (1) 171 326.80 3.60 19.00 – 0.65

Table 6 Required number of days to reach a statistical power of 
80 % for different variables and different numbers of receivers

Variables Number of receivers

3 4 5 6 7

Noise 1.75 0.75 0.75 0.75 0.50

Distance 0.50 0.25 0.25 0.25 0.25

Tilt angle (rec) 1.75 1.75 0.50 0.50 0.50

Tilt angle (sub) 3.00 5.00 0.75 0.75 0.50

Water depth 12.00 4.00 2.50 2.50 1.25

Wind speed 16.00 16.00 8.00 8.00 8.00
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factors and/or receiver characteristics and also made us 
decide to omit Rt6 from the main analysis.

Ambient noise, wind speed and precipitation
Ambient noise had an important negative effect on the 
detection probability and seemed to be mainly affected 
by the flow according to the aggregated-data-model, 

corroborating the results of other studies on the flow-
induced nature of the ambient noise [44]. Though the 
fit of the noise model was already relatively good (R2 
of 0.71), some of the remaining unaccounted variation 
might have been the result of boats passing through the 
study area. Unfortunately, the available sluice operation 
data turned out to be insufficient to predict the moment 
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Fig. 7 Statistical power analysis for the assessment of the drivers behind the performance based on the aggregated data without Rt6. The statistical 
power is given in function of the duration of the experiment. The different colored lines represent scenarios with different numbers of receivers 
with built-in transmitters. The horizontal red dashed line represents the threshold of 0.8 at which the power is considered sufficient
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of boat passage through the study area. Real-time boat 
location data or cameras to detect passing traffic can be 
useful in future studies to assess the effect of boat traf-
fic on detection range. In the aggregated model, ambi-
ent noise was the preferred variable to retain while for 
the non-aggregated model this was water speed. This is 
most likely because of the type of data aggregation and 
the characteristics of the hourly noise measurements 
versus the 10-min resolution flow estimates. If the flow 
estimates are aggregated into hourly averages it is reason-
able that the hourly noise measurements provide a better 
proxy of the flow-noise-related effects on the detection 
probability. In contrast, if a simple loess model is used 
to artificially inflate the temporal resolution of the ambi-
ent noise measurements, than it makes sense that the 
high resolution flow estimates, derived from a complex 
process-based model, provide a better proxy of the flow-
noise-related effects.

Given that these models were constructed with data 
of different temporal resolutions and with different fac-
tors, it was likely that they would yield different insights. 
Indeed, even though the direction of the effects of each 
considered factor was the same for both models, the 
relative effect size often differed. This was for example 
the case for precipitation, which had a relatively strong 
effect on the detection probability in the non-aggregated 
model compared to the aggregated model, causing it 
even to be omitted in the latter. Wind speed, on the other 
hand, seemed to negatively affect the detection prob-
ability directly for both models, which was most likely 
the result of the mixing of air bubbles that attenuates the 
acoustic signals [45]. However, according to the pSEM 
there also seemed to be an indirect effect as wind speed 
increased the ambient noise, which was most likely the 
result of the sound produced by the entrained air of the 
mixed bubbles [45]. Given the relatively strong effect of 
precipitation on noise, the apparent necessity to include 
precipitation to explain detection probability would 
indeed be much greater in a model that only accounted 
for the flow-induced noise (i.e., the non-aggregated 
model with water speed instead of noise as explanatory 
factor). Finally, there was more ambient noise when the 
water was more shallow, which is most likely the result 
of the greater effect of the bottom, as more frequent and 
stronger sound-absorbing interactions will take place 
[46], and the closer proximity to the surface promoting 
air entrapment, especially at higher flows (see further).

Tilt
The negative effect of tilt is most likely the result of the 
increased angle between the sound wave and receiv-
ers and the shadowing effect of the receiver itself [38]. 
Multiple studies have found a significant relationship 

between flow and tilt angle [35] and although flow was 
the most important variable to affect the tilt angle in this 
study, the differences between the receivers themselves 
were much more pronounced than any effect caused by 
flow. This might be due to their placement in the water, 
the surrounding obstacles affecting the local flow regime 
or some other unaccounted factors. Although the direc-
tion of the tilt is not known, results from earlier studies 
[35] and the fact that the magnitude of the tilt seems to 
depend on the water speed, suggests that it is reasonable 
to assume that the direction of the tilt is dependent on 
the current direction. Given this assumption and accord-
ing to the non-aggregated model, it seemed that for 
receivers that tilted more towards each other the nega-
tive effect of tilt angle was less pronounced. Although to 
some extent confounded with the flow dependency of 
the tilt angle, signals moving against the current seemed 
to have had a lower detection probability. However, this 
direct effect of water current was only minor compared 
to the indirect effect of water current via the tilt direc-
tion. Ammann et al (2020) also found that receivers tilt-
ing downstream because of the current were more likely 
to detect transmitters downstream [38], corroborating 
our results on the importance of tilt direction in addi-
tion to tilt angle. The established direct effect of current 
should also be considered with care. Not only was the 
effect minor, the unexpectedly low correlation between 
tilt angle and water speed, and the large discrepancy of 
the tilt angle between receivers, suggests that local flow 
conditions were considerably different for each of the 
receivers. Local flow measurements might be an added 
value in future studies, either to account for directly or to 
assess the viability of tilt angle as a proxy for water speed 
in this specific system [35]. In addition, researchers have 
recently also been using more sturdy frames to reduce 
the tilting and improve detection probabilities [23]. It is 
important to note that this direct and indirect direction-
ality were only apparent for the non-aggregated model. In 
the aggregated model and the associated pSEM no direc-
tionality was retained, most likely because of the smaller 
dataset and the poorer fit with water velocity (see pre-
vious section) compared to the non-aggregated model. 
This is why the detection probability depicted in Fig.  6, 
constructed via the pSEM, is spherical and not elliptical. 
A similar approach based on the non-aggregated model 
would have resulted in more elliptical figures.

Water depth
The number of methodological telemetry studies to con-
sider water depth have been limited and the few stud-
ies that did include it, mainly focused on larger depths 
(> 10  m) [42] and/or were limited to the assessment of 
the variable depth of the transmitters alone [21, 47]. In 
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these studies, the depth of the receivers was either fixed 
by design or considered as such. In addition, water depth 
is often considered a mainly spatial factor, which is a rea-
sonable assumption for most lakes, rivers and deeper seas 
[40], but in shallow seas and estuaries, the tidal dynamics 
lead to important temporal, sometimes even dominant, 
depth variability. Sound speed is known to increase with 
depth due to the increasing ambient pressure. How-
ever, since the increase in sound speed is only 0.016 m/s 
per meter depth it is unlikely that the almost negligible 
increase in sound speed at depths of maximally 7  m is 
responsible for the considerable observed effect [45]. It 
is much more likely that it is the increased interaction 
with the bottom and water surface and larger reflection 
angle under shallow conditions that affects the detection 
probability. Not only will the increased number of inter-
actions with the bottom and water surface cause sound 
energy to be absorbed (mainly through contact with the 
bottom) scattered and lost more often, the larger reflec-
tion angle will also increase the amount of energy to be 
absorbed with each bottom interaction.

It is expected that in shallow waters there will be rela-
tively more wind-and-rain induced air bubbles which will 
increase the attenuation of signals through absorption 
and scattering, negatively affecting the detection prob-
ability [21, 48]. However, in this study, the interaction 
effects of water depth with wind speed and precipita-
tion were negligible for all developed models, providing 
no evidence for such an indirect effect of water depth. A 
considerable interaction between water depth and water 
speed was found however, suggesting a weaker effect of 
higher water speed when the water is deep. Although no 
vertical profiles of water velocity were available, the effect 
is most likely the result of flow-induced air bubbles. It is 
most likely that both the enhanced effect of the bottom 
and the closer proximity to the water surface, negatively 
affect the detection probability via increased noise.

Temperature and salinity
The presence of a thermocline (i.e., an abrupt tempera-
ture gradient) is another potentially confounding factor 
of water depth that has been found to affect the detection 
probability [49]. However, estuaries are typically well-
mixed (as is the estuary of this study) which prevents 
the formation of a thermocline. Even if a thermocline, 
a horizontal boundary in the water, would have existed, 
transmitters and receivers were most often at comparable 
depths causing the signal to move mainly in a horizontal 
direction along, and not across, any potential thermo-
cline. The presence of a temperature gradient between 
receiver and transmitter and the resulting refraction of 
the signal (due to differences in speed of sound within 
the thermocline) are typically more important for the 

detection probability than the reduced sound speed at 
lower temperatures. It is therefore recommended to 
determine on beforehand whether a water body is mixed 
or not and set-up a range test accordingly. In case strati-
fication takes place it is recommended to make sure that 
there are signals traveling across the thermocline and sig-
nals traveling parallel to it to ensure a good representa-
tion of the potential signal pathways.

Temperature exhibited a positive, yet relatively poor, 
effect on detection probability which would be expected 
because of the higher sound speed in warmer water [45]. 
Temperature showed a relatively strong positive correla-
tion with salinity, which is known to also positively affect 
sound speed [45]. Nevertheless, since the speed of sound 
is known to increase with 4.5 m per 1 ◦C and with 1.5 m 
per 1 psu increase, it is much more likely to be tempera-
ture (range of 10.3◦C ) than salinity (range of 0.22 psu) to 
affect the detection probability [36].

Causes of tidal periodicity
In summary, the tidal periodicity of the detection prob-
ability was mainly the result of the tidal periodicity of 
the two most important environmental explanatory 
variables: flow-induced noise (associated with the water 
speed and the horizontal movement of water also known 
as the horizontal tide) and water depth (associated with 
the vertical movement of water also known as the verti-
cal tide). Although the direction of the horizontal tide 
had almost no effect on the detection probability (as it 
was only the water speed and not the current direction 
to impact the magnitude of the noise), the direction of 
the vertical tide (i.e., ebb versus flood) did have a strong 
effect on the detection probability because of the chang-
ing water depth. During ebb the water flow (and noise) 
increased and water depth decreased. Given the opposite 
effects of these factors on the detection probability, the 
detection probability decreased consistently during ebb. 
During flood on the other hand both the water flow (and 
noise) and water depth increased. At the first half of flood 
the increasing water depth dominates over the increasing 
noise, resulting in an increasing detection probability. At 
the second half the increasing noise dominates over the 
increasing water depth, resulting in a decreasing detec-
tion probability. Because of the delay between the vertical 
and horizontal tide in combination with the contrasting 
effects of noise and water depth, the two peaks of detec-
tion probability took place approximately one hour into 
ebb and approximately two hours into flood.

Sampling design
For most assessed variables the duration of the experi-
ment turned out to be unnecessarily long and the number 
of receivers unnecessarily high. Variables that exhibited 
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some level of spatial variation, such as water depth and 
tilt angle, benefited more from an increased spatial sam-
pling effort, i.e., more receivers, than variables exhibit-
ing a negligible level of spatial variation, such as ambient 
noise. However, for wind speed this was not the case. 
All receivers were assumed to be subjected to the same 
wind speed at a certain moment in time, yet there was 
a very strong effect of changing the number of receivers 
on the statistical power. This might be the result of the 
small range of wind speed susceptibility of the first four 
southernmost receivers. The reason for this difference in 
wind speed susceptibility remains unclear. The fifth and 
sixth receivers were positioned relatively deep compared 
to the first four receivers, but as indicated earlier, depth 
does not seem to affect the wind speed susceptibility.

The established statistical power analyses of this study 
had some clear limitations: only one set of eight receiv-
ers, limited to just one fixed location were used and these 
receivers most likely had different levels of susceptibility 
to different measured and unmeasured factors. In addi-
tion, the different distances between receivers complicated 
interpretability. More specifically, since the effect of most 
factors intensified at larger distances, the gain in power was 
most apparent when the range in distances was as large 
as possible. Hence, although the statistical power almost 
always increased with increasing number of receivers, its 
increase was also partially due to the increasing range of 
available distances between receivers as it increased the 
range of the susceptibility of the detection probability to 
the different factors. Finally, since the experiment took 
just a few months the seasonal variation in environmental 
conditions was not accounted for. Temperature and salin-
ity show a strong seasonal pattern and therefore the range 
observed during the study period (10.3◦C and 0.22 psu) is 
considerable smaller than that for a full year (25.5 ◦C and 
0.30 psu). Wind speed and precipitation show less of a 
seasonal pattern though the range increases when longer 
study durations are considered. During the study period 
very little rain fell (compared to the rest of the year) and no 
extreme wind events were noted. Although, it is unlikely 
that the aforementioned four environmental variables will 
become more important than the tidal variables (i.e. water 
speed and depth), their effect might become more sub-
stantial when a full year (or longer) is assessed. Given the 
gradual trends of temperature and salinity throughout the 
year, most interesting would be to select a period during 
which the change is most pronounced. For wind speed and 
precipitation, sufficient calm and extreme weather events 
are advised to cover the range properly.

The variability in the duration required to obtain a 
power of more than 80 % was extensive among the sce-
narios and ranged from half a day to 16 days, depending on 
the variable of interest and the number of receivers used. 

As indicated, the obtained results are not universal and 
should not simply be extrapolated to different systems. 
They do serve however as a more data-driven guideline for 
detection range test designs than the currently available 
rules of thumb. For example, the suggestion of Gjelland 
et  al (1998) to collect data for at least one full tidal cycle 
would have been adequate for most variables if 7 or more 
receivers were used and if hourly data were available. Less 
receivers and temporally coarser data would however have 
resulted in insufficient statistical power to assess variables 
[21]. Rather than the provision of guidelines for sampling 
designs, these results highlight the potential that additional 
power analyses have. A global power study on all the availa-
ble large datasets to assess detection range variability in dif-
ferent systems would provide a statistically sound baseline 
to set up sampling designs in a much more optimal way.
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