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METHODOLOGY

MAST (Movement Analysis Software 
for Telemetry data), for the semi‑automated 
removal of false positives from radio telemetry 
data
K. Nebiolo1*   and T. Castro‑Santos2 

Abstract 

Introduction Radio telemetry, one of the most widely used techniques for tracking wildlife and fisheries popula‑
tions, has a false‑positive problem. Bias from false‑positive detections can affect many important derived metrics, 
such as home range estimation, site occupation, survival, and migration timing. False‑positive removal processes have 
relied upon simple filters and personal opinion. To overcome these shortcomings, we have developed MAST (Move‑
ment Analysis Software for Telemetry data) to assist with false‑positive identification, removal, and data management 
for large‑scale radio telemetry projects.

Methods MAST uses a naïve Bayes classifier to identify and remove false‑positive detections from radio telemetry 
data. The semi‑supervised classifier uses spurious detections from unknown tags and study tags as training data. 
We tested MAST on four scenarios: wide‑band receiver with a single Yagi antenna, wide‑band receiver that switched 
between two Yagi antennas, wide‑band receiver with a single dipole antenna, and single‑band receiver that switched 
between five frequencies. MAST has a built in a k‑fold cross‑validation and assesses model quality with sensitivity, 
specificity, positive and negative predictive value, false‑positive rate, and precision‑recall area under the curve. MAST 
also assesses concordance with a traditional consecutive detection filter using Cohen’s κ.

Results Overall MAST performed equally well in all scenarios and was able to discriminate between known false‑
positive detections and valid study tag detections with low false‑positive rates (< 0.001) as determined through cross‑
validation, even as receivers switched between antennas and frequencies. MAST classified between 94 and 99% 
of study tag detections as valid.

Conclusion As part of a robust data management plan, MAST is able to discriminate between detections from study 
tags and known false positives. MAST works with multiple manufacturers and accounts for receivers that switch 
between antennas and frequencies. MAST provides the framework for transparent, objective, and repeatable telem‑
etry projects for wildlife conservation surveys, and increases the efficiency of data processing.

Introduction
Wildlife telemetry is the practice of monitoring move-
ments of animals using systems of transmitters attached 
to individuals, and receivers that may be land-based or 
mobile. Radio telemetry is the most versatile and widely 
used tracking method in a variety of ecosystems. Its 
functionality in freshwater, including the flexibility of 
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transmission rates and detection ranges, is the reason it 
is the most common tool for understanding movements 
of migratory fish as they approach and pass barriers like 
hydroelectric dams, where millions of individual fish 
have been tagged and tracked worldwide [2].

Unfortunately, telemetry technologies are prone to 
both false positives (where a random noise or other fac-
tors produce a signal that is logged as a viable code) and 
false negatives (where a transmission fails to be detected, 
even though the tag is within range of a receiver). These 
receiver errors can bias estimates of occupancy, move-
ment, and survival [29]. Statistical tools developed 
for mark-recapture can be used to control for the bias 
induced by missed detections (false negatives): [9, 19, 
35]. No comparable methods exist to control for false 
positives, however [6]. This is problematic because false 
positives overestimate the frequency of occurrence for an 
event of interest and may assign an animal to a location, 
habitat, or state that they do not actually occupy. McClin-
tock et al. [25] found severe overestimation of site occu-
pancy with as little as 1% false-positive rate. For studies 
that assess migratory delay, false positives may bias 
towards longer presences and greater delay. Mark-recap-
ture approaches have been successfully applied to study 
migratory barriers [32] and the methodology inherently 
supports sites with imperfect detection rates at the cost 
of precision. However, mark recapture assumes the truth 
value of each detection is known with 100% accuracy. 
Mark recapture has no means to reduce bias from false 
positives; they must be identified and removed a priori. 
Therefore, a confirmation strategy as suggested by Cham-
bert et  al. [8] is required to assess the validity of every 
observation.

Methods currently in use for false-positive removal 
include eliminating records from transmitter codes not 
used in a study or occurring prior to time of release, 
imposing a minimum received signal strength, setting a 
minimum frequency of detections per unit of time at a 
given site, and examining the spatio-temporal distribu-
tion of detections for logical errors in site progression 
[37]. Beeman and Perry [6] and Simpfendorfer et al. [36] 
added to these steps by requiring sequential detections to 
be in series, e.g., if the nominal pulse rate on a tag was 3 
s, records within a contiguous set of detections should be 
3 s apart. Both Brownscombe et al. [7] and Heupel et al. 
[17] required multiple detections of an individual within 
a given time window, but did not require detections to be 
in series. When implemented in tandem, these filtering 
methods will remove a considerable amount of false-pos-
itive detections. However, these methods may also lead 
to overcorrection, which create instances of false nega-
tives. This overcorrection is problematic, particularly for 
studies with low sample sizes, where insufficient data can 

preclude accurate estimation. Therefore, most studies 
must rely heavily on manual classification, which is sub-
jective, non-reproducible, labor intensive, and takes away 
critical time from analysis and interpretation of data.

The field of machine learning explores the study and 
construction of algorithms that can learn from a train-
ing set and can then make predictions. Here, we present a 
false-positive identification algorithm based on the clas-
sic Naïve Bayes (NB) classifier ([28], please see Appendix 
Table 9 for a complete list of abbreviations and their defi-
nitions) that provides an objective score of the likelihood 
that a given observation is valid, and a transparent frame-
work and justification for the final assignment. Consid-
erable attention has been paid to binary classification 
problems, with NB used to identify ‘fake news’ [14], spam 
[3, 20], and medical diagnoses [40]. NB approaches are 
widely used in ecology as well, with Fernandes et al. [13] 
using NB to predict fish recruitment, Feki-Sahnoun et al. 
[12] using NB to predict likelihood of toxic algal blooms, 
and Lehikoinen et al. [22] using NB to assess the effects 
of environmental factors on ecological indicators. NB is 
simple, and with ample minimally biased training data, 
very robust. Radio telemetry false-positive screening is 
yet another appropriate use for the algorithm because of 
the large amount of training data created by the system.

We present a module of Movement Analysis Software 
for Telemetry data (MAST) for the semi-automated 
removal of false positive detections from radio and 
other forms of telemetry data [31]. MAST trains a semi-
supervised NB algorithm to identify false-positive detec-
tions in radio telemetry data with beacon and/or study 
tags. We will examine the effectiveness of the approach 
with a case study on the Connecticut River, USA. The 
large-scale study tracked 562 American Shad (Alosa 
sapidissima) and 80 Sea Lamprey (Petromyzon marinus) 
through a complex network that employed wide-and sin-
gle-band receivers with Yagi and dipole antenna configu-
rations. With over 600 active tags in the system, multiple 
frequencies were required, meaning single-band receiv-
ers switched between frequencies. We will demonstrate 
the algorithm’s ability to perform well with multiple tech-
nologies with various antenna configurations.

Methods
The identification and removal of false-positive detec-
tions from radio telemetry with MAST starts with the 
quantification and description of predictor variables. 
Then, MAST fits (or trains) a NB model, which calcu-
lates probability that a detection is valid or false positive 
given a set of observations. With probabilities in hand, 
MAST applies a decision criterion to remove false posi-
tives from record. To assess the algorithm’s ability to dis-
cern between valid and false-positive detections, MAST 
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performs a k-fold cross-validation and assesses model 
quality with the area under the curve (AUC) statistic as 
well as measures of sensitivity (sen), specificity (spc), neg-
ative and positive predictive value (npv, ppv), and false-
positive rate (fpr).

Selecting and quantifying predictor variables
In developing the classifier, it was important to select 
predictor variables that maximized the ability to discrim-
inate between valid and false-positive detections. These 
included: power or received signal strength ( RSS ), hit 
ratio ( HR ), consecutive record length ( CRL ), noise ratio 
( NR ), and the difference in the time-lag between detec-
tions ( δ2L ). Power refers to the received signal strength 
of a given transmission. Depending on the receiver model 
used, this may be reported in arbitrary units or dB. Of the 
predictor variables, power is the only one that is intrinsic 
to a given transmission; all other predictors were derived 
from detections recorded within a short period of time 
surrounding of a given transmission.

The Proximate Detection History (PDH or detec-
tion history) refers to a series of detections of a given 
tag recorded during a fixed number of pulse intervals 
immediately preceding and following a given detection. 
This describes the pattern of recorded to missed detec-
tions in series from the current record. The algorithm 
looks forwards and backwards in time a specified num-
ber of transmission intervals. For example, say a given tag 
detection occurs at midnight (00:00:00), has a 3-s pulse 
rate and produces the pattern of heard to missed detec-
tions in (Fig. 1). The middle integer is the initial detection 
(00:00:00), but it was not detected 3  s prior (11:59:57) 
or 3 s post (00:00:03). To create the PDH, the algorithm 
queries the recaptures database a set number of pulse 

intervals forward and backward in time from the current 
record. If the tag was detected in series, a ‘1’ was added to 
the history, if it was not then a ‘0’ was added. In Fig. 1, the 
fish was heard on the -12th, -6th, 0 (current record), 6th, 
9th and 12th s, and the resulting detection history was 
‘101010111’.

Radio telemetry receivers typically record detec-
tion times rounded to the nearest second. Sometimes, 
however, a given transmission might not fall within the 
expected second. This can arise because tags can be 
programmed with intervals that are not discrete integer 
values, or because a pulse randomizer is employed. The 
pulse randomizer slightly adjusts the signal burst rates by 
a small amount (depending on manufacturer this is typi-
cally ~ ± 500  ms), which reduces the probability of two 
signals colliding resulting in false negatives. Since most 
commercially available radio telemetry receivers record 
data to the nearest second, the algorithm must query the 
recaptures database within a 3-s moving window (the 
expected time, then that time plus and minus 1 s to allow 
for rounding). Any detection logged within this broader 
window is considered valid. For example, if a tag was 
detected at midnight (00:00:00) and has a 3-s pulse rate, 
MAST queries all recaptures from 11:57:56 to 11:57:58 
and from 00:00:02 to 00:00:04. In the case of Fig.  1, the 
tag was not detected within the first interval (forwards 
or backwards); meaning the original detection, which 
occurred at 00:00:00 would not be valid from a consecu-
tive detection in series perspective. Any detection occur-
ring outside of the interval +/− ǫ is not included in the 
PDH.

Having defined the detection history and its associ-
ated time window, we now can calculate HR , which is the 
number of detections within a PDH divided by the length 

Fig. 1 Creation of a detection history around the current detection (0 s)
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of the detection history. For a ± 4 detection hit ratio like 
the one pictured in Fig. 1, the length of the history is 9, 
and the HR is 6/9.

The second derived predictor is the consecutive record 
length ( CRL ). This refers to the longest contiguous sub-
set of 1’s in a given detection history. In Fig. 1, the CRL 
is 3. Table  1 contains examples of possible detection 
histories and their respective HR s and CRL s. Note that 
these PDHs have ± 4 intervals, and that the first row in 
the table corresponds to the detection history pictured in 
Fig. 1. The middle position in a PDH is the current detec-
tion and is always a 1. Also note the second and third 
rows, the histories have the same HR , but different CRL 
(Table 1).

The next predictor is noise ratio ( NR ), which is sim-
ply the number of plausible study tag hits, divided by the 
total number of detections (i.e., including known noise 
detections but excluding beacon tags) within a 1-min 
interval around the current detection. Detections within 
the window were categorized into two classes, plausible 
and known false positive. Plausible detections are from 
those codes and frequencies currently active within the 
study area. The remaining detections are from unknown 
or unavailable codes, in other words, they are known 
false-positive detections ( f  ). The noise ratio ( NR ) is 
given with R = f /n , where f  is the number of false-pos-
itive detections within a 1-min window around the cur-
rent detection, and n is the total number of detections 
within a 1-min window around the current detection.

The last derived predictor calculates the second-order 
difference in time-lag between detections or δ2L . It is 
simply the difference of the difference in timestamps 
between sequential rows. When a tagged animal is within 
detection range, the tags will pulse and be recorded at 
the nominal rate set at the onset of the study. For exam-
ple, if the nominal pulse rate of the tag is 3 s, one would 
expect to hear that tag every 3 s. For a valid detection, 
the time-lag between successive detections should be 
3 s (first order), and the difference in time-lag between 
subsequent detections should be zero (second order). We 
expect true-positive detections to have a δ2L of zero, or 
fixed multiples of the pulse interval. The more consistent 

δ
2L is with expectations, the more belief we have in the 

record being true.

Treatment of continuous variables
All continuous classifier variables were discretized into 
bins. Discretization of continuous features has a num-
ber of advantages. Discretization roughly approximates 
probability distributions and helps to overcome inaccu-
rate shape assumptions [11, 41]. Hsu et al. [18] tested a 
number of discretization methods for NB classifiers, but 
found no performance improvements with algorithm 
complexity. Therefore, MAST uses a simple equal width 
interval discretization process.

Detection power was binned into equal width intervals 
of 5  dB or 5 arbitrary units depending upon manufac-
turer, NR was binned into 10 percentile units, and lag dif-
ferences were binned into equal width intervals as wide 
as the tag’s nominal pulse rate. HR and CRL were limited 
by the number of detections within the PDH, and thus 
limited to a set number of classes.

Discretization has one major limitation. If there were 
no observations for a particular bin, then the probability 
of it occurring is zero. This limitation negates the weight 
of evidence provided by the other predictor variables and 
is uninformative. To overcome this, we applied Laplace 
smoothing [21], which added a single observation to each 
bin and eliminated zero counts. This slight positive bias 
has almost no effect on training datasets with a large 
number of observations.

Training methods
When MAST trains a model, it reads raw telemetry data 
and separates it into rows with known valid detections, 
and rows of known false positives. Known false-positive 
detections are from tags not on the study tag list, while 
known valid detections come from beacon tags. Detec-
tions with known validity are the training set, while 
detections with unknown validity (i.e., study tags) are the 
classification set. MAST can construct a training data-
set two ways: by training on beacons (supervised) or by 
training on study tags themselves (semi-supervised).

Table 1 Detection history examples with corresponding hit ratio and consecutive record length

Detection history (± 4) Hit ratio Consecutive 
record length

1 0 1 0 1 0 1 1 1 6/9 3

1 0 1 0 1 0 1 0 1 5/9 1

1 1 1 1 1 0 0 0 0 5/9 5

1 1 1 1 1 1 1 1 1 9/9 9
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Training on beacons
It is common in telemetry studies for researchers to 
employ tags that are not on fish. These may be ‘beacons’, 
which are typically set to transmit at fixed intervals to 
provide a record of continued functioning of the receiver 
system; or ‘test tags’, which are typically drawn through 
the intended detection field in such a way as to emulate 
the movements of free-swimming fish. Either can be used 
to provide training data, but the greater verisimilitude 
provided by test tags makes them the better choice, pro-
vided sufficient volume of data are generated to create a 
suitable training dataset.

Training on study tags
There are limitations to using beacons as training data. 
The beacon may not be representative of a study tag. 
Transmission intervals might be too long, some tags 
cannot be cycled on and off in realistic ways, producing 
unrealistically long strings of valid detections, the tags 
themselves are typically in fixed locations, and it is pos-
sible for there to be false positives among the beacons 
(after all, it is the removal of data that look valid that 
drives this effort). When training on study tags, MAST 
constructs a training dataset that assumes all study tag 
records are true. This poses a dilemma as we anticipate 
there being false positives mis-labeled as valid. There-
fore, it is advised to re-classify the data by training on 
the previous iteration’s valid detections and known false 
positives from the initial training. There exists a tradeoff: 
with the beacons we had a limited number of tags (usu-
ally just one per receiver) so the likelihood of a false posi-
tive with that exact code is small. Because of that we were 
able to make the simplifying assumption that all beacon 
data were valid. We cannot make the same assumption 
with study tags because the purpose of this effort is to 
remove false positives.

The solution to this is to use an iterative approach, 
where on the first iteration, we train on beacon tags (or 
study tags themselves) and classify study tags. On sub-
sequent iterations, we train on the previous iterations’ 
valid detections and known false-positive detections 
from the first iteration. This alters the density functions 
of the predictor variables, with fewer known, but higher 
quality valid detections. A new iteration uses these new 
frequencies to re-classify the remaining study tag detec-
tions. This process continues until convergence when no 
new observations are classified as false positive.

False‑positive classification
Supervised learning algorithms use observed data with 
known classifications (training data) to classify unknown 
data. Bayes theorem takes training data and quantifies 

the probability that a record is either true or false positive 
given what we have observed about it [5]. This probabil-
ity, known as the posterior, is given with

where P(Ci|F1, . . . , Fn) is the posterior probability of 
a valid (or false positive) detection given the values 
of each observed predictor ( F1, . . . , Fn ); P(Ci) is the 
prior probability of the ith detection class occurring 
( C ∈

{

Valid, FalsePositive
}

 ), and P(Fj|Ci) is the likeli-
hood (conditional probability) of the jth observed pre-
dictor ( Fj ) value given the ith detection class ( Ci ). Naïve 
Bayes assumes that all predictor variables are independ-
ent, and hence, the likelihood of the observed predictor 
values given a detection class is a product. The posterior 
probability expresses our belief in the record being true 
or false positive given what we have observed.

The prior P(Ci) is the marginal probability of the ith 
detection classification occurring in the training dataset, 
where ( C ∈

{

Valid, FalsePositive
}

 ). MAST calculates the 
prior probability a record is valid P(T ) with a simple fre-
quency analysis; P(T ) = nT /n where nT is the number of 
valid records in the training dataset divided by the total 
number ( n ) of records in the training dataset. Since the 
priors are marginal, the prior probability that a record is 
false positive is given with 1− P(T ).

The likelihood P(Fj|Ci) is the conditional probability 
of the jth observed predictor value Fj given the ith detec-
tion class ( Ci ). MAST calculates the likelihood using 
a frequency table: P

(

Fj|Ci

)

= nF/nC , where nF is the 
number of records within detection class Ci that match 
the observed predictor value Fj , and nC is the number of 
records with the detection class Ci.

To classify, MAST applies the maximum a posteriori 
(MAP) hypothesis, and chooses the detection class that is 
most true. The algorithm’s decision rule becomes

Under this hypothesis, the detection class with the larger 
posterior probability is chosen. Under the MAP hypoth-
esis, any detection with a valid to false-positive ratio 
( P(T )

1−P(T )
 ) less than 1.0 as false positive.

Tables 2 and 3 follows the classification of two records 
from initial observation and description to the calcula-
tion of prior, likelihood, and posterior probabilities, and 
then the application of the MAP criterion. Table 2 con-
tains two records from two different study tags. The first 
detection was recorded on May 5th, and the second on 
July 4th. The first detection had a moderately full PDH 

(1)P(Ci|F1, . . . , Fn) ∝ P(Ci)

n
∏

j=1

P
(

Fj|Ci

)

,

(2)argmax
Ci







P(Ci)

n
�

j=1

P(Fj|Ci)







.
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with an HR of 0.45 and CRL of 4. The second record had 
a very sparse PDH, with an HR of 0.09. NR was also high 
for the second detection (Table 2).

Table 3 contains the prior, likelihood and posterior of 
the two detections identified in Table 3. Note, the poste-
rior is simply the product of all rows above it. The prior 
probability that a detection is false positive P(F) at this 
receiver is only 0.004 (Table  3), meaning there is over-
whelming evidence that a detection will be valid. The 
next 5 rows identify the likelihood of each observation 
occurring given the detection classification. The MAP 
hypothesis chooses the detection class with the larger 
posterior, therefore, the detection occurring on May 18 
was valid, while the detection occurring on July 4th was 
false positive.

Cross‑validation
MAST assesses the ability of the algorithm to discern 
between classified valid study tags and known false-pos-
itive detections with a k-fold cross-validation technique 
[39]. For studies that train-on-study tags, the training 
dataset includes those records classified as valid from 
the final iteration and known false-positive detections. 
The procedure partitions the training dataset into k equal 
sized subsamples. In each iteration, a single subsam-
ple (or fold) was retained as the test dataset (to be clas-
sified) and the remaining k − 1 subsamples are retained 
as the training dataset. The cross-validation process is 
then repeated k times over each fold, with each of the 
k subsamples used exactly once as validation data. This 

procedure allows a 1:1 comparison of known classifica-
tions against the algorithm’s classifications. A classifica-
tion can have 1 of 4 states, true positive ( tp , true negative 
( tn ), false positive ( fp ), and false negative ( fn ). Results of 
the k-fold cross-validation are summarized into a 2 × 2 
contingency table (Table 4).

Accuracy metrics derived from the 2 × 2 cross-vali-
dation contingency table include sensitivity and speci-
ficity. Sensitivity, or the true-positive rate, is given 
with: sen = tp/(tp + fn) , and measures the probabil-
ity that all valid detections were correctly classified as 
valid. Specificity, or true negative rate, is given with: 
spc = tn/(fp + tn) , and quantifies probability that all 
false-positive detections were correctly classified.

Precision metrics include the positive and negative 
predictive value or ppv and npv . The positive predictive 
value ( ppv ) is the proportion of detections classified as 
valid that were valid; ppv = tp/(tp + fp) . The negative 
predictive value ( npv) , which measures the proportion of 
detections classified as false that were false, is given with: 
npv = tn/(fn + tn) . Again, our objective is to maximize 
both measures. The higher the ppv the lower the number 

Table 2 Observation of two study tag records at Receiver T21. Abbreviations and variable names and units are as described in 
Appendix Table 9

Time stamp δ
2L PDH HR CRL RSS NR

2015‑05‑18 13:55:27 − 10 00010111100 0.45 4 − 101 0

2015‑07‑04 16:12:03 33,339 00000100000 0.09 1 − 107 0.8

Table 3 The prior, likelihood and posterior calculations for detections identified in Table 2. Abbreviations are defined in Appendix 
Table 9

Model component Term Valid Term False positive

2015‑05‑18 13:55 2015‑07‑04 16:12 2015‑05‑18 13:55 2015‑07‑04 16:12

Prior P(T ) 0.996 0.996 P(F) 0.004 0.004

Likelihood P(HR|T ) 0.05 0.259 P(HR|F) 0.051 0.083

P(CRL|T ) 0.052 0.466 P(CRL|F) 0.008 0.34

P(RSS|T ) 0.339 0.193 P(RSS|F) 0.02 0.036

P(NR|T ) 0.427  < 0.001 P(NR|F) 0.045 0.018

P(δ2L|T ) 0.011 2.841 P(δ2L|F) 0.002 0.001

Posterior P(T |HR, CRL, RSS, NR, δ2L)4.13E−06 7.49E−12 P(F|HR, CRL, RSS, NR, δ2L) 3.02E−12 5.23E−11

Table 4 2 × 2 contingency table summarizing results of k‑fold 
cross‑validation. Variables are defined in Appendix Table 9

True False positive

Classified valid tp fp

Classified false fn tn
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of potential false-positive detections in the dataset. Like-
wise, a high npv means a lower number of false negatives.

Since we are identifying and removing false-positive 
detections, and false-positive detections are rare, the 
most important algorithm metric is the false-positive 
rate ( fpr ), which calculates the proportion of detec-
tions classified as valid that are in fact false positive with: 
fpr = fp/(fp + tn) , or 1− spc . Our objective is to mini-
mize fpr , the lower the rate, the fewer known false-posi-
tive detections were classified as valid.

MAST also produces the precision-recall curve (PRC) 
and calculates the area under the curve (AUC) statistic. 
Precision quantifies the number of correct false-positive 
predictions while recall quantifies the number of correct 
false-positive predictions made out of all false-positive 
predictions that could have been made. The AUC sta-
tistic summarizes area under the PRC curve for a range 
of threshold values. The PRC is a better performer on 
imbalanced datasets [34], which are typical of radio 
telemetry studies.

The results of the k-fold cross-validation can inform on 
the selection of predictor variables. Ling et al. [24] found 
AUC to be statistically consistent and more discriminat-
ing than accuracy alone. Rosset [33] used AUC as an eval-
uation criterion for scoring classification models where 
models with higher AUC are preferred. With MAST, it 
is possible to construct suite of classifiers that use differ-
ent combinations of predictor variables; the model that 
maximizes measures of AUC, sen, spc, ppv, and npv while 
minimizing fpr is the best.

Case study
MAST was implemented on a large-scale telemetry pro-
ject on the Connecticut River in 2015 that tracked 560 
American Shad and 80 Sea Lamprey with 30 continuous 
radio telemetry monitoring stations. The subset of receiv-
ers highlighted in this paper (Fig. 2) created 4 scenarios, 
which included multiple receiver manufacturers Sigma 
Eight Orion and Lotek SR×800 receivers, dipole and Yagi 
antenna configurations, receivers that scanned multi-
ple frequencies, and receivers that switched between 
antennas.

The receivers in scenario 1 were Orion units manu-
factured by Sigma Eight and consisted of detection 
zones T13, T15, T18, T21 and T22 (Fig. 2). These units 
spanned the full width and depth of the river and from 
a noise perspective were similar. Scenario 2 consisted of 
the detection zones T12E and T12W (Fig. 2), which was a 
single Orion receiver switching between two Yagi anten-
nas. Scenario 3 consisted of detection zones T09, T07 
and T30. The Orion receivers had a single dipole antenna 
and were typically deployed in areas where specimens 
were known to congregate. Scenario 4 included detection 

zones T03, T06, and T24. These were Lotek SR×800 
receivers with a single Yagi switching between 5 fre-
quencies. MAST accounts for number of frequencies (or 
antennas) and the scan time devoted to each while build-
ing the PDH and deriving CRL and HR statistics.

After training and classifying receivers within each 
scenario, we performed a k-fold cross-validation that 
assessed the ability of MAST to correctly identify and 
remove known false-positive detections from record with 
measures sen , spc , ppv , npv , fpr , and precision-recall 
AUC (PRC-AUC). Aside from assessing the quality of the 
model, these metrics also assist in model selection, as we 
will demonstrate.

As a last measure, we compared the saturated model 
in MAST with the filtering method proposed by Beeman 
and Perry [6], which stated for a detection to be classi-
fied as valid, it must be within a consecutive series of 
detections. We assessed concordance between methods 
with Cohen’s Kappa ( κ ) [26], which takes into account 
the possibility of agreement occurring by chance. A value 
of κ = 1 suggests perfect agreement between MAST and 
the consecutive detection requirement.

Results
Results are organized by case study scenario. For each 
scenario, a panel figure compares the distributions of 
each predictor variable across detection classes. Then, 
we determine concordance between MAST and the con-
secutive detection filter with Cohen’s κ . Then, we present 
results of the k-fold cross-validation procedure with a 
comparison of models using sen , spc , ppv , npv , fpr , and 
precision-recall AUC (PRC-AUC).

Scenario 1: Sigma Eight Orion receivers with single Yagi 
antenna
Scenario 1 included five Sigma Eight Orion receivers 
placed at optimal sites with a single Yagi antenna capa-
ble of sampling the full width and depth of the water 
body. MAST classified 94.4% of detections received by 
this group of receivers as valid. Cohen’s κ was 0.24, sug-
gesting a rather low agreement between MAST and the 
consecutive detection requirement. Figure  3 is a panel 
of histograms (A–F) showing the distributions of each 
predictor by detection class. Detections classified as 
valid had much higher HRs (Fig.  3A) and longer CRLs 
(Fig.  3B), while false-positive detections had higher δ2L 
(Fig.  3E). There does not appear to be much difference 
between valid and false-positive detections with respect 
to RSS (Fig. 3C) or NR (Fig. 3D).

The cross-validation procedure produced favorable 
metrics for the saturated model with a PRC-AUC of 
0.850 and fpr of 0.001 (Table 5). HR and CRL were highly 
correlated (R2 = 0.9048). When we removed CRL as a 
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predictor, the reduced model produced only slightly bet-
ter fpr (< 0.001 vs 0.001) (Table 5), which suggests there 
was no penalty when including correlated variables. A 
third model was created that removed NR and P, which 
appeared to be the least predictive variables (Fig. 3). The 
reduced model ( HR ∗ L) appears to perform the best by 

not producing any false-positive detections, thus mini-
mizing fpr . A model was constructed that included RSS 
as the only predictor. In Fig. 3, it appears as though valid 
detections have higher power, meaning the likelihood of 
a high-powered detection given that it was true is greater 
than the likelihood of a high-powered detection given 

Fig. 2 Site location map with receivers from the 2015 study
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that it was false positive. This resulted in most of the 
known false-positive detections classified as valid, which 
increased the fpr to 0.999 (Table 5).

Scenario 2: single Sigma Eight Orion receiver switching 
between antennas
Scenario 2 includes information from a single receiver 
that switched between two antennas to cover two dif-
ferent channels in the river. This meant there was a por-
tion of time a river channel was not observed. MAST 

accounts for the time spent observing the second chan-
nel when constructing the PDH. Therefore, detections 
classified as valid still have high HR (Fig.  4A) and CRL 
(Fig.  4B). Detections classified as false positive tended 
to have larger δ2L (Fig.  4E) and higher NR (Fig.  4D). 
Overall, MAST identified < 1% of records as false posi-
tive. Concordance between methods was very low ( κ = 
0.0010) as evident by 134,107 records classified as valid 
by MAST but false positive by the consecutive detection 
requirement.

Fig. 3 MAST predictor variable probability mass functions for detections at Sigma Eight Orion receivers (T13, T15, T18, T21, T22; Fig. 2.)

Table 5 Cross‑validation results for Scenario 1

Model tp tn f p f n se sp ppv npv f pr PRC‑AUC 

CRL ∗ HR ∗ NR ∗ RSS ∗ δ2L 2,062,067 101,292 63 17 1.0 0.999 1.0 0.999 0.001 0.850

HR ∗ NR ∗ RSS ∗ δ2L 2,062,079 101,337 18 5 1.0 0.999 1.0 1.0  < 0.001 0.850

HR ∗ δ2L 2,062,084 101,351 4 0 1.0 1.0 1.0 1.0 0.0 0.850

RSS 2,062,084 67 101,288 0 1.0 0.001 0.953 1.0 0.999 0.999
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The cross-validation procedure produced excellent 
results again with the fpr for all but the RSS-only model 
at or far below < 1% (Table 6). HR and CRL were highly 
correlated (R2 = 0.9137); however, there was no differ-
ence in fpr between the saturated and reduced model 
(Table 6). Removing δ2L from the model increased the 
fpr to 0.11, this demonstrates that δ2L still provides 
some discriminatory power. Figure 4C shows little dif-
ference in RSS between detections classified as valid 
and those classified as false positive. A model with just 

RSS still had high sensitivity (1.0), but fpr increased to 
21%.

Scenario 3: Sigma Eight Orion receivers with single dipole 
antenna
Scenario 3 includes information from Orion receivers 
T07, T09, and T30, which had a single dipole antenna 
each. These antennas were placed adjacent to areas of 
congregation, such as fish passage infrastructure, and 
classified 97% of the study tag detections as valid. Unlike 

Fig. 4 MAST predictor variable probability mass functions for detections at a single Sigma Eight Orion receiver that switched between antennas 
(T12E, T12W)

Table 6 Cross‑validation results for Scenario 2

Model tp tn f p f n se sp ppv npv f pr PRC‑AUC 

CRL ∗ HR ∗ NR ∗ RSS ∗ δ2L 319,526 1589 1 3 1.0 0.999 1.0 0.998 0.001 0.974

HR ∗ NR ∗ RSS ∗ δ2L 319,529 1589 1 0 1.0 0.999 1.0 1.0 0.001 0.974

HR ∗ NR ∗ RSS 319,529 1572 18 0 1.0 0.988 0.999 1.0 0.011 0.974

RSS 319,529 1260 330 0 1.0 0.793 0.999 1.0 0.208 0.979
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other receivers, there were detections classified as false 
positive that had moderately high HR values (Fig.  5A). 
These dipole antennas sampled almost no noise, as is evi-
dent with little difference in NR between false positive 
and valid detections (Fig. 5D). We found little agreement 
( κ = 0.11) between MAST and the consecutive detection 
requirement; MAST classified 22,041 records as false 
positive while the consecutive detection filter did not.

The saturated model had an fpr of less than 0.01 
(Table  7). HR and CRL were highly correlated 
(R2 = 0.9440) and removing CRL from the model 

lowered fpr even further. Removal of NR from the model 
improved fpr even more with no false positives recorded 
( fpr = 0.0). We tested a single predictor ( RSS ) model 
(Table 7) and found an fpr of 23%.

Scenario 4: Lotek SRX 800 with single Yagi antenna
Scenario 4 includes information from three Lotek 
SR×800 (T03, T06, and T24) receivers scanning five fre-
quencies. MAST parses Lotek SR×800 receiver raw data, 
extracts the number of channels and their scan time from 
the header information, then incorporates these data into 

Fig. 5 MAST predictor variable probability mass functions for detections at a single Sigma Eight Orion receiver that switched between antennas 
(T07, T09, T30)

Table 7 Cross‑validation results for scenario 3

Model tp tn f p f n se sp ppv npv f pr PRC‑AUC 

CRL ∗ HR ∗ NR ∗ RSS ∗ δ2L 2,644,723 12,597 33 25 1.0 0.997 1.0 0.998 0.003 0.975

HR ∗ NR ∗ RSS ∗ δ2L 2,644,744 12,622 8 4 1.0 0.999 1.0 0.999 0.001 0.975

HR ∗ RSS ∗ δ2L 2,644,748 12,630 0 0 1.0 1.0 1.0 1.0 0.0 0.975

RSS 2,644,747 9740 2890 1 1.0 0.771 0.999 0.999 0.229 0.981
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the logic behind the PDH creation. Like the Orion receiv-
ers, valid Lotek SR×800 detections generally had high HR 
(Fig. 6A) and CRL (Fig. 6B). Detections classified as false 
positive generally had lower RSS (Fig.  6C). MAST clas-
sified 95% of study tag detections as valid. When com-
pared with the consecutive detection filter, Cohen’s κ was 
0.20 suggesting low concordance between methods as is 
evident with 191,282 records classified as false positive 
by the consecutive detection requirement but valid by 
MAST.

The saturated model performed very well with a low 
fpr of 0.001 (Table  8); however, HR was highly corre-
lated with CRL (R2 = 0.8810). A reduced model demon-
strated no change in fpr (Table 8), which suggests there 
is no penalty for including correlated predictors. In Fig. 6, 
there does not appear to be much noise present within 
these three receivers (Fig. 6D), nor is there much differ-
ence in RSS (Fig.  6C). We constructed single predictor 
models for NR and RSS to demonstrate the effect of vari-
ables with low discriminatory power. The fpr for a model 

Fig. 6 MAST predictor variable probability mass functions for detections at a single Sigma Eight Orion receiver that switched between antennas 
(T03, T06, T24)

Table 8 Cross‑validation results for scenario 4

Model tp tn f p f n se sp ppv npv f pr PRC‑AUC 

CRL ∗ HR ∗ NR ∗ RSS ∗ δ2L 765,976 3858 3 3 1.0 0.999 1.0 0.999 0.001 0.973

HR ∗ NR ∗ RSS ∗ δ2L 765,977 3858 3 2 1.0 0.999 1.0 0.999 0.001 0.973

NR 765,889 868 2993 90 0.999 0.225 0.996 0.906 0.7752 0.993

RSS 765,979 0 3861 0 1.0 0.0 0.995 0.0 1.0 1.0
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with NR only was 0.76, while the fpr for a model with 
only P was 1.0 (Table 8).

Discussion and conclusion
In this paper, we have shown that MAST is effective at 
removing false-positive detections from radio telem-
etry data. MAST provides a framework for transparent, 
objective, and repeatable telemetry projects for wildlife 
conservation surveys, and increases the efficiency of data 
processing. We have demonstrated this effectiveness with 
a range of scenarios that included: multiple manufactur-
ers, multiple antenna configurations, wide-band receivers 
switching between antennas, single-band receivers scan-
ning multiple frequencies, and highly correlated predic-
tor variables. The cross-validation procedure assessed the 
ability of the algorithm to correctly identify and remove 
false-positive detections and provided a means to rank 
and compare models. MAST is available open-source 
on the Python Package Index (https:// pypi. org/ proje 
ct/ pymast/) and is copyrighted under the MIT License. 
While MAST was developed with radio telemetry in 
mind, applications such as Simpfendorfer et al. [36] sug-
gest that the PDH approach can be extended to acoustic 
telemetry.

The predictor variables used for MAST describe the 
characteristics of valid and false-positive detections 
and were able to discriminate between detection classes 
with high degrees of accuracy (Tables  5–8). For unbal-
anced NB applications such as this, predictor variables 
that provide the greatest degree of difference between 
valid and false-positive detections will perform the best 
[15]. Almost all known false-positive detections had low 
HR, while valid detections had high HR, even in cases 
where a receiver was switching between frequencies or 
antennas (Figs. 4, 6). However, valid detections had only 
slightly higher power (Figs.  3–6), which suggests that 
this predictor may not be strong enough on its own; as is 
evident in Tables 5–8 where a reduced model using only 
RSS as a predictor was compared with a more saturated 
model. Higher power was associated with valid detec-
tions P(highpower|valid) > P(highpower|falsepositive) ; 
however, there were known false-positive detections with 
high power. Therefore, if power is the only predictor, then 
all high-powered detections are classified as valid, which 
resulted in a higher fpr for those models (Tables  5–8). 
Likewise, higher NR was associated with false-positive 
detections (Figs.  3, 4), inclusion of NR as the only pre-
dictor in the model may bias the model towards classify-
ing most detections as false positive. The Lotek receivers 
with Yagi antennas produced lower noise (Fig.  6) than 
Sigma Eight Orion receivers with Yagi antennas (Figs. 3, 
4), although this was probably related to site specific 
conditions and not manufacturer. Results of the k-fold 

cross-validation procedure suggest the predictor vari-
ables designed for MAST provide excellent discrimi-
natory power regardless of manufacturer, or antenna 
configuration.

The naïve assumption that all predictor variables were 
independent is remarkably robust, even when multicol-
linearity is present. This assumption almost never holds 
for natural data sets [23], including MAST where HR 
and CRL were highly correlated. However, MAST still 
performed well. Stephens et  al. [38] found the naïve 
assumption valid even in the presence of strong attrib-
ute dependence due to cancellations between errors in 
the likelihoods of different classes. They do caution that 
this assumption will breakdown when the set of predictor 
variables is large and suggest combining correlated fea-
tures then judging the relative performance of the algo-
rithm with and without the combined variables. While 
we did not combine variables, we found that removing 
CRL as a predictor improved the fpr (Tables 5 and 7) or 
had no effect (Tables 6 and 8). The fpr of the saturated 
model was generally low and within acceptable ranges.

Discretization of continuous predictor variables did 
not appear to affect the performance of the NB algo-
rithm as evidenced by high sen and low fpr. We found 
discretization simplified the calculation of likelihood and 
was able to describe complex multi-modal PMFs. How-
ever, Dougherty et  al. [11] have shown that the equal 
width interval method chosen for MAST is vulnerable 
to outliers that may drastically skew ranges. While an 
examination of PMFs produced for this project did not 
demonstrate an effect of outliers, the authors will amend 
MAST in future iterations to include other discretiza-
tion methods should the need arise. We do caution 
against too many bins. One could use the PDH itself as 
a predictor, however, the number of bins produced and 
low number of observations in each would not produce 
informative likelihoods and could lead to single precision 
floating point decimal errors.

MAST is able to account for receivers that switch 
between antennas or frequencies. However, care must 
be taken when setting up study parameters such as the 
scan time of the receiver and the pulse rate of the tag. 
Poor setup will result in missed detections and sparse 
PDHs, which would reduce the power of the HR and 
CRL predictors. For this study, the scan time was set to 
an interval slightly longer than the pulse rate of the tags. 
This increased the likelihood the tag was detected when 
the receiver cycled back to the original frequency and 
reduced the likelihood of missed detections. While we 
were careful, our setup still resulted in missing detec-
tions. However, it only slightly affected HR and CRL as 
evident by little to no difference in HR for valid detec-
tions across scenarios.

https://pypi.org/project/pymast/
https://pypi.org/project/pymast/
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By relaxing the MAP criterion, a researcher can control 
their level of confidence in a given score considered to be 
true. For example, a ratio close to unity is weak evidence 
of a false positive or negative detection. This applica-
tion used a strict interpretation of the MAP hypothesis, 
but rather than implementing MAP, we can require the 
rejection ratio to be smaller than a certain threshold 
before we prompt classification as false positive. Con-
versely, we can require overwhelming evidence to accept 
that a record is true and mandate that the ratio is greater 
than 1.0 by a certain threshold. However, in doing this, 
one would expect to create instances of false negatives, 
where marginal detections are classified as false positive. 
The algorithm is meant to be adaptable to study goals 
and site conditions, where one may want a stricter clas-
sifier due to electronic or radio interference, or where the 
consequences of mis-assignment dictate a conservative 
approach. Researchers must recognize and balance the 
two types of errors in setting the classification threshold.

Likewise, the researcher may want to negate the weight 
of evidence provided by the prior probability. There may 
be instances where there is an overwhelming number 
of detections in one class verses another. So much so, 
that obvious misclassifications occur. In these cases, the 
researcher can implement an uninformative prior, where 
there is an equal split between detections classes. With 
an uninformative prior, our problem reduces to a maxi-
mum likelihood approach.

This study lumped multiple receivers of like-types 
together when creating training data for classification 
and cross-validation purposes. By lumping receivers 
together, we reduced positive bias that was introduced by 
Laplace smoothing, increased statistical power, and gen-
eralized training data making it more applicable to other 
locations within the same study. However, care must be 
taken when lumping. Single-band receivers should not 
be lumped with wide-band receivers. Likewise, receivers 
with Yagi antennas should not be grouped with receiv-
ers that have dipole antennas. Even if two receivers have 
the same type of antenna, they should not be grouped 
together if their noise profiles are entirely different. Noisy 
sites happen, and they are fundamentally different from 
low-noise sites or receiver-antenna configurations that 
produce less noise.

The algorithm only classifies a single receiver at a 
time; however, it may be possible to use recapture histo-
ries from multiple receivers to inform on movement or 
overlap between receivers. For example, it is possible to 
build receiver-to-receiver logic that identifies improb-
able site progressions. Once a telemetry network has 
been expressed as a graph with telemetry receivers for 
nodes and logical migratory pathways described with 
directed edges, we can calculate two important matrices: 

the adjacency and distance matrix. With an adjacency 
matrix, we can identify illogical movements. For exam-
ple, a fish cannot swim upstream through the power-
house of a dam.

Choice of a tag’s burst rate is critical. With short burst 
rates, we are able to assess fine scale movements and 
increase the temporal accuracy of assessments of migra-
tory delay. However, short burst rates come at the cost 
of reduced predictive power. We can increase the dis-
criminatory power with longer burst rates, as detections 
occurring between defined pulses are not even consid-
ered for inclusion in the PDH. However, this problem will 
become moot when all receiver manufactures increase 
time-step precision to sub-second intervals. Until then, 
the likelihood of two false-positive detections occurring 
in series is low, as is evident in Figs. 3B, 4B, and 6B, which 
suggests that this problem may not bias posteriors too 
much.

The intention of this effort was to develop a method 
that assists the researcher in culling the volume of false-
positive data that telemetry projects produce. The data 
must still go through quality control procedures. When 
coupled with a robust data management system, MAST 
increases the efficiency of data processing and provides 
the researcher with a quantitative measure backed up 
with evidence. A researcher is then able to diagnose why 
a detection was classified a certain way leading to objec-
tive and repeatable studies.

Telemetry methods have undergone substantial devel-
opment and evolution in recent decades, with radio and 
acoustic telemetry methods offering complementary 
capabilities [2, 10, 27]. With improved technologies, 
costs have declined and dimensions of radio (including 
passive integrated transponders) and acoustic tags have 
gotten smaller, broadening the scope and scale of spe-
cies and studies that these tools can support. All telem-
etry approaches have the potential to yield false positives, 
and the ability to reliably score individual detections is 
needed to support this development. This will allow for 
new applications, such as the use of received power from 
receivers with overlapping detection ranges among mul-
tiple antennas to position tags in space [4, 16]. Retaining 
valid detections improves per-transmission detection 
efficiency, which will improve the power and reliability of 
mark-recapture studies [32] and other investigations of 
habitat use, movement, and survival [1, 30]. These data 
are essential for improving understanding of habitat con-
nectivity and movement corridors as well as identify-
ing and mitigating risks to populations. By providing an 
objective measure of data quality this approach should 
help managers working in a variety of environments and 
habitat types to better manage species of interest.
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Appendix 1
See Table 9
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