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METHODOLOGY

Using skin temperature and activity profiles 
to assign chronotype in birds
Aurelia F. T. Strauß1,2*  , Dominic J. McCafferty3, Andreas Nord4  , Marina Lehmann5 and Barbara Helm1,3,6   

Abstract 

Chronotypes describe consistent differences between individuals in biological time-keeping. They have been linked 
both with underlying variation in the circadian system and fitness. Quantification of chronotypes is usually by time of 
onset, midpoint, or offset of a rhythmic behaviour or physiological process. However, diel activity patterns respond 
flexibly to many short-term environmental influences, which can make chronotypes hard to identify. In contrast, 
rhythmic patterns in physiological processes, such as body temperature, may provide more robust insights into the 
circadian basis of chronotypes. These can be telemetrically recorded from skin-mounted, temperature-sensitive 
transmitters, offering minimally invasive opportunities for working on free-ranging animals in the wild. Currently, 
computational methods for deriving chronotype from skin temperature require further development, as time series 
are often noisy and incomplete. Here, we investigate such methods using simultaneous radio telemetry recordings 
of activity and skin temperature in a wild songbird model (Great Tit Parus major) temporarily kept in outdoor aviaries. 
Our aims were to first develop standardised selection criteria to filter noisy time series of skin temperature and activity, 
to second assign chronotype based on the filtered recordings, and to third compare chronotype as assigned based 
on each of the two rhythms. After the selection of rhythmic data using periodicity and autocorrelation parameters, 
chronotype estimates (onset and offset) were extracted using four different changepoint approaches for skin tem-
perature and one approach for activity records. The estimates based on skin temperature varied between different 
approaches but were correlated to each other (onset: correlation coefficient r = 0.099–0.841, offset: r = 0.131–0.906). 
In contrast, chronotype estimates from skin temperature were more weakly correlated to those from activity (onset: 
r = −0.131–0.612, offset: r = −0.040– −0.681). Overall, chronotype estimates were less variable and timed later in the 
day for activity than for skin temperature. The distinctions between physiological and behavioural chronotypes in this 
study might reflect differences in underlying mechanisms and in responsiveness to external and internal cues. Thus, 
studying each of these rhythms has specific strengths, while parallel studies of both could inform broadly on natural 
variation in biological time-keeping, and may allow assessment of how biological rhythms relate to changes in the 
environment.
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Background
Diel activity patterns are widespread across all living 
organisms. For example, plant species rhythmically open 
and close their leaves [1] and zooplankton migrate verti-
cally through the water column between the photo- and 
scotophases [2]. These phenomena are broadly synchro-
nous to the daylight patterns of the 24-h  day (but see 
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[3]). Animals show a wide range of diel activity patterns, 
including crepuscularity, nocturnality or diurnality, as 
well as ultradian rhythmicity spread across day and night 
[4, 5]. Diel rhythms not only occur in behaviour, but 
also in physiological processes, such as metabolic rate, 
immune defence and body temperature. For instance, 
in endotherms body temperature shows a diel sinusoi-
dal pattern of rise and fall, with higher temperatures 
during the active phase, e.g., during the day for diurnal 
organisms (reviewed in [6, 7], but see also [8–10]). Even 
when temporal environmental cues are experimentally 
removed, most organisms retain an approximately diel 
(i.e., circadian) rhythmicity of behaviour and physiology 
due to the internal circadian clock [11–14]. The circadian 
clock system, in turn, coordinates animals’ responses to 
the environment, and is itself based on cellular cycles of 
clock proteins and several interacting physiological path-
ways [15, 16]. In natural environments, rhythms of most 
species entrain to the natural diel light–dark cycle. How-
ever, many further factors of both the external and inter-
nal (e.g., state) environment can affect timing [17].

The timing of activity and physiological processes is 
often essential for the success, health and well-being of 
organisms, including humans [18]. Therefore, biomedical 
sciences explore in particular the circadian basis of diel 
rhythms, whereas ecologists are increasingly interested in 
environmental context and fitness implications of rhyth-
micity [19, 20]. Timing can vary considerably between 
individuals within populations (e.g., [21–23]). When diel 
timing of trait expression is consistent within individu-
als, this can be defined as a chronotype. Chronotypes are 
scaled on a continuum from early to late activity relative 
to their conspecifics, based on characteristics, such as 
onset, offset or midpoint of activity (e.g., [24, 25]). These 
individual differences are genetically and environmen-
tally determined, but may also be obscured by additional 
variation [17]: first, chronotype is shaped by genetic dif-
ferences in the circadian system and in linked physiologi-
cal systems, including those that regulate environmental 
responses (e.g., light sensing). Second, due to the envi-
ronmental responsiveness of the circadian system, local 
factors (e.g., light exposure) and behavioural context (e.g., 
reproductive stage) can contribute to individual differ-
ences. Third, additional individual variation, i.e., devia-
tions from the chronotype, can arise from differences in 
the individual’s internal state (e.g., energy expenditure, 
health, age) and from short-term adjustments (temporal 
flexibility or “masking”), which can allow individuals to 
cope with sudden, unpredictable changes in the environ-
ment [17].

It is increasingly recognised that as temporal envi-
ronments are modified by indirect or direct anthropo-
genic disturbance, e.g., via artificial light or hunting, 

chronotype may shift, and that fitness implications can 
be major [26, 27]. However, the relative benefits and costs 
for the different chronotypes are mostly unclear, and it is 
also unclear whether the alignment between behaviour 
and physiology remains intact when diel rhythms shift 
[28]. Therefore, there is a need to better understand both, 
behavioural and physiological, aspects of chronotype. 
So far, chronotypes have been assigned to wild individu-
als using different types of remotely collected activity 
measurements: overall activity [29, 30] or sleep [31, 32], 
but also diel rhythms of feeding [33], parental care [34, 
35] or incubation [24]. More recently, fast technological 
developments improved remote recording not only by 
making data loggers and radio transmitters lighter, but 
also smarter. In particular, physiological measurements 
of heart rate, EEG or body temperature by the tags can 
also be transmitted over larger detection ranges making 
techniques developed in the 1980s for laboratory use [36, 
37] suitable for small free-ranging animals in the wild 
[38]. Body temperature in particular is widely assessed 
in the study of biological rhythms. While time series on 
activity and physiology are thus now readily available, a 
limiting factor for understanding chronotype are meth-
ods for extracting meaningful descriptors of temporal 
behaviour. Existing analytical methods have been mostly 
developed for studies under laboratory conditions, which 
typically yield high-quality data series (e.g., [10, 37, 39]). 
However, remotely collected data on chronotype exposed 
to multiple abiotic and biotic factors [40] are usually of 
much poorer quality. Therefore, the overarching aim 
of this study is to develop computational models that 
facilitate the use and analysis of information on chrono-
type from remotely collected data, in particular on body 
temperature.

Analyses of physiological and behavioural cycles are 
based on the extraction of different curve characteris-
tics [18, 41, 42]. As first steps, rhythms are sometimes 
distinguished from noise by testing for autocorrelation 
between subsequent data points [43]. Autocorrelation 
of rhythmic data is particularly strong between the data 
points with specific time lags of one full cycle of behav-
iour or physiology (i.e., period length). Thus, for diel 
rhythms, autocorrelation should peak at 24  h. Overall 
levels of the traits and the strength of the rhythms can 
be assessed using mean (mesor) and amplitude (differ-
ence between maximum or minimum with mean level) of 
the curves, respectively. This information can be used for 
exploration of individual variation and flexibility of the 
rhythmic traits. Phase markers (points repeated in each 
cycle of the rhythm) can be derived as reference points to 
characterise a rhythm, in particular onset, mid-point, off-
set, minimum, maximum, or inflection points of increase 
or decrease. These phase markers are then related to 
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environmental reference points, for example sunrise or 
midnight, and can be used to assign chronotype.

Various customised time series applications have been 
developed to extract curve characteristics described 
above, of which many are open source and based on the 
statistical software environment R [44]. For instance, the 
lomb (2.0 Ruf 2021 based on [45]) and cosinor (Sachs 
2014 based on [46]) packages are useful for basic analyses 
directly inside R, whereas more customised applications 
such as Chronoshop [47] and RhythmicAlly [48] provide 
user-friendly interfaces showing informative diagrams 
and can analyse multiple data sets simultaneously. Even 
though many settings and features are available in the lat-
ter, the programs have their limitations in the flexibility 
of adjustment to different data types, in the curve charac-
teristics to be extracted, and in the required engagement 
with circular data. Furthermore, curves can deviate con-
siderably from standard models, for example for activity 
by sudden shifts, or for body temperature by a spectrum 
from sinusoidal curves to time series with plateaus [6, 10, 
49, 50]. Therefore, many studies use generic procedures, 
such as visual data extraction [24] or employ changepoint 
analyses to extract phase markers of interest in their spe-
cific type of data [29, 51, 52]. Depending on the research 
question and the data available, changepoints can be 
assigned based on moving averages or on changes in 
variation between subsequent data points. These various 
methods likely differ in the chronotype descriptors they 
produce, and in their suitability for assigning chronotype 
to time series on behaviour and especially physiology of 
wild animals. To our knowledge, this has so far not been 
investigated.

Here, we make use of temperature-sensitive radio 
telemetry that continuously and simultaneously records 
activity and skin temperature, applied to a small song-
bird, the Great Tit (Parus major, Linnaeus 1758). Telem-
etry in the wild often results in time series with gaps, 
depending on the distance of animals to the receivers 
[45]. As in many studies of wild animals, we examined 
peripheral body temperature from the skin, rather than 
core body temperature, to reduce invasiveness and to 
simplify remote data collection without a need for recap-
ture [53, 54]. Data on skin temperature carry particular 
challenges. Although peripheral body temperature cor-
relates with core temperature, these measurements are 
confounded by effects of ambient temperature, wind and 
solar radiation [54, 55]. Moreover, absolute temperatures 
from external skin measurements can be confounded 
by differences in the attachment of the transmitters 
(i.e., tightness and insulation). This can make mean and 
amplitude estimates unreliable [54, 56], whereas change-
points may be more robust, because they refer to intra-
individual data. These challenges mandate cautious data 

selection and analyses to avoid an arbitrary choice of suit-
able time series and subjective assignment of chronotype.

Methods
Aims
Using skin temperature and activity records from the 
transmitters, we thus aim to develop a standardised pro-
tocol to filter and process skin temperature data to assign 
chronotype from a physiological rhythm. To develop 
these analyses, we use data collected under semi-natural 
conditions in outdoor aviaries, where long recordings 
are available for some individuals. Our protocol includes 
(1) the proposal of an automatic and generalised proto-
col to select for rhythmic data based on periodicity and 
autocorrelation analyses and (2) the exploration of four 
different changepoint approaches to extract chronotype 
estimates from skin temperature patterns, i.e., for the diel 
onset and offset (i.e., increase and decrease) in tempera-
ture. In addition, ambient temperatures will be investi-
gated to account for potentially confounding effects on 
skin temperature measurements. (3) We will then com-
pare chronotype estimates from physiology to those 
from behaviour, using activity onset and offset derived 
from a well-developed Behavioural Changepoint Analy-
ses (BCPA, [29]). Through these protocols, we hope to 
stimulate use of the rapidly increasing time series data 
for investigating chronotype of behaviour and physiology, 
and for exploring potential discrepancies between them 
that may inform on responses to environmental change.

Data collection
20 Great Tits (5 females and 15 males) were caught dur-
ing roost checks on 1 November 2012 in southern Swe-
den 25 km east of Lund, individually ringed, and brought 
to the field station Stensoffa (55°42ʹN, 13°27ʹE). All birds 
were kept in four outdoor aviaries exposed to natural 
light–dark cycles and outside temperature fluctuations. 
Ambient temperature was measured every 10  min in 
the inside ceiling of the aviary roof using a small tem-
perature logger (iButton DS1922-L, Maxim Integrated 
Products, CA, USA; accuracy: ± 0.5  °C). Each individual 
bird was provided with a nestbox for roosting and had 
ad libitum access to food and water. Housing conditions 
are further detailed in Nord et al. [54]. As part of another 
experiment, individuals received a temperature sensitive 
PIT tag implanted subcutaneously at the right flank (for 
details see [54]).

Telemetry
On 29 November 2012, 19 individuals were tagged with 
a temperature-sensitive radio transmitter (PicoPip, 
Biotrack, Dorset, UK; temperature sensing: ± 2  °C accu-
racy and 0.1  °C resolution; 0.55  g, 3.1% of mean body 
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mass) after which data on skin temperature and activity 
were recorded for up to 19  days. In temperature-sensi-
tive transmitters, the duration of the interval between 
subsequent emitted signals changes with recorded tem-
perature, such that shorter intervals indicate higher tem-
peratures. The transmitters were individually calibrated 
from 22.9 to 48.1  °C by the manufacturer shortly before 
deployment. The externally recorded temperatures from 
the transmitters are further referred to as skin tempera-
tures. Variation in signal strength, generated by move-
ments of the animal relative to the receiver, was used to 
assess the individual’s activity (e.g., [29, 30, 55, 57]). To 
enlarge the attachment surface, the transmitters were 
sewed onto a 10 × 20 mm piece of cloth. For attachment, 
feathers on the back of the bird were brushed to the sides. 
After clipping feathers of a patch equalling the cloth size, 
a transmitter was attached to the skin and the clipped-
down feathers, using a thin layer of eyelash glue (DUO 
Eyelash Adhesive, American International Industries, 
CA, USA) and small drops of superglue at the cloth edges 
(Sekunden Alleskleber, UHU, Buehl, Germany). Fol-
lowing attachment of the transmitter (Additional file  1: 
Figure S1), feathers from adjacent plumage parts mostly 
covered the transmitter (for details see [54]).

The transmitter signals were recorded using a teleme-
try receiver (SRX400A, Lotek Wireless, Newmarket, ON, 
Canada) with a Yagi antenna (Lintec flexible 3-element 
Yagi antenna, Biotrack, Dorset, UK) on the rooftop of the 
building. The receiver was set to record each frequency 
(one frequency per transmitter: n = 19) for 8 s, resulting 
in data intervals of about 2.5 min per bird. The receiver 
filtered automatically for noise signals of > 20 ms length 
and recorded the calculated temperature from 3 consecu-
tive signals.

Data selection and diel rhythmicity
R (version 4.2.1) and RStudio (version 2022.07.01) were 
used for data processing and further analyses (documen-
tation of the R Script used for data selection and change-
point analyses are reported in Additional file 2). The first 
days (including 3 December) have been excluded from 
the data set due to disturbance for other studies (see [54, 
58]).

Ambient temperature was checked for periodicities 
using the Lomb–Scargle periodogram (lsp function of 
lomb package) and for autocorrelation (acf function) 
across the complete time series. Because no clear diel 
rhythmicity in ambient temperature could be found in 
our data, it was no longer considered in further skin tem-
perature analyses.

We then used the complete time series on signal 
strength and skin temperature of each individual for 
data exploration. The skin temperature data were filtered 

to retain only records higher than 23  °C and lower than 
40  °C to account for the calibrated temperature range 
and exclude unlikely high skin temperatures in winter 
[54, 59]. This excluded a malfunctioning transmitter (fre-
quency 173.951; 4.5% of the data  set) and an additional 
19.5% (10,561 of 54,111) of records from the remaining 
transmitters. The remaining data were assigned to 10 min 
bins by averaging values for skin temperature and sig-
nal strength. To indicate whether an animal was active, 
changes in signal strength were calculated as absolute 
deviation between two consecutive 10  min bins (e.g., 
[55]). We then used these deviations for further analyses, 
rather than the raw data, to account for between day dif-
ferences in mean signal strength. The skin temperature 
data of each individual were examined for rhythmicity 
using a 3-day sliding window for calculation of Lomb–
Scargle periodograms (lsp function of lomb package). 
The days when sliding windows showed diel rhythmic-
ity (defined by significant period length between 23 and 
25 h; further referred to as diel days) were retained (for 
details see Additional file 2: Selection of Rhythmic Days). 
When sliding windows stopped showing diel rhythmic-
ity, the day that caused deviation was excluded (Addi-
tional file  1: Figure S2). Furthermore, remaining data 
were analysed for positive autocorrelation (acf function) 
at a time lag of 24 h (Fig. 1D) and periodicity (Additional 
file  1: Figure S3A, Additional file  2: Autocorrelation 
and Periodicity). Periodicity and autocorrelation were 
also scrutinised for the activity data (Fig. 1E, Additional 
file  1: Figure S3B), which resulted in no further exclu-
sion of data  points. For creating bird-specific diel pro-
files of skin temperature and activity, we averaged the 
binned data per daytime (24  h = 144 times of day) over 
all included diel days and calculated standard errors for 
these mean skin temperature estimates as measure-
ment for their accuracy (Additional file  2: Average Diel 
Skin Temperature Profiles). Subsequently, highly inaccu-
rate skin temperature estimates (i.e., SEMs of more than 
three standard deviations from the mean accuracy: 21 of 
1292 data points) were excluded from the diel profiles as 
well as estimates with only one observation per daytime 
(i.e., accuracy/SEM = NA: 27 of 1292 data  points). All 
highly inaccurate estimates belonged to the time series 
of one particular bird (individual 173.258  M) because 
of low numbers of diel days available and some extreme 
noise at night, resulting in its exclusion due to large data 
gaps (> 25% of missing data, for details see Additional 
file 2: Average Diel Skin Temperature Profiles). The final 
data set consisted of eight individuals with 4–16 days of 
recording (Table 1). 

Overall diel profiles (means of all individuals) indicated 
that skin temperature showed a broadly sinusoidal pat-
tern with a tendency of plateau phases around minimum 
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and maximum temperatures followed by an increase in 
the early morning before sunrise and a decrease in the 
afternoon, respectively (Fig. 2A). In contrast activity data 
showed a sudden increase around sunrise and decrease 
around sunset (Fig. 2B).

Before assigning chronotype (i.e., onset and offset) 
based on skin temperature and activity, further prepara-
tions were necessary. A first step was to delineate regions 
of interest (here called “windows”) during which we 
searched for onset and offset. This was done to maxim-
ise accuracy and functionality of the search algorithms 
for detecting chronotype. We used the overall diel pro-
files (Fig. 2) to define the centre of the windows, i.e., one 
for onset and one for offset, as applied previously for 
seasonal timing [60]. For skin temperature, identifying 
the centre first required smoothing of the data series for 

noise reduction, for which we fitted a three-harmonic 
sinusoidal curve (Fig.  2A: blue curve). The choice of a 
three-harmonic curve was based on a visual compari-
son of the relative advantages of different numbers of 
harmonics (for one versus three harmonics, see Fig.  3), 
whereby fewer harmonics diminish noise but also dimin-
ish temporal resolution [61].

From the smoothed skin temperature time series, we 
then selected the times of minimal (03:10  h) and maxi-
mal (12:10 h) temperatures for centring two 24-h analysis 
windows for onset and offset, respectively. 24-h windows 
were used to avoid a priori limitation of onset and offset 
times, given the relatively large variation in the timing of 
diel skin temperature patterns observed in our data. For 
activity chronotype, we used unsmoothed data. As cen-
tre points of the windows, we used overall activity onset 

Fig. 1 Time profile of ambient temperature, and rhythmicity of skin temperature and activity. Upper three panels show time profiles of ambient 
temperature (A), skin temperature (B) and activity (C) (10-min binned) against date and time for an exemplary Great Tit (frequency 173.204, male) 
kept in an outdoor aviary during winter. Bottom two panels show corresponding autocorrelation plots for skin temperature (D) and activity (E), 
including a red vertical line to indicate 24 h
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and offset, defined by the intersections of the overall diel 
activity curve with the overall mean activity level (onset 
at 07:30  h and offset at 16:20  h; Fig.  2B: red line). We 
set window size to 6 h in total, and thus narrower than 
for skin temperature, to avoid artefacts from quick but 
intense activity level changes during night and day. Using 
these settings, the next step was to derive bird-specific 
times of onset and offset.

Chronotype estimates from skin temperature
For a comparison of methods to assign chronotype from 
skin temperature, we surveyed previous applications of 
identifying changepoints (here, onset and offset) in vari-
ous types of time series that showed similar curve char-
acteristics (i.e., increases and/or decreases) as seen in 
temporal patterns of diel body temperature [52] but also 
of torpor [51, 62], seasonal and diel activity [29, 30, 60] 
and moulting [63]. We identified three approaches use-
ful to our study. These included two approaches based 

Table 1 Final selection steps for inclusion of birds’ records into chronotype analysis. Sample size and applied criteria (i.e., diel 
periodicity of 23–25 h and presence of an autocorrelation peak at 24 h) for skin temperature and activity for the ten individual Great Tit 
[Female (F) and Male (M)] retained after initial filtering steps. Diel days available refers to the number of rhythmic days included while 
filtering skin temperature in the 3-day sliding window approach (incl. the total number of recorded days in brackets). The remaining 
nine filtered-out individuals with zero diel days are not shown. Two additional individuals (marked in bold font) were excluded 
from the chronotype analyses as they did not fulfil all selection criteria (173.391 M had no positive autocorrelation at 24-h peak and 
173.258 M had > 25% of data missing in the diel skin temperature profile (173.258 M)

Individual Sex Diel days 
available

Skin temperature Activity

Periodicity Autocorrelation Periodicity Autocorrelation

173.204 M 16 (16) 24.08 TRUE 24.07 TRUE

173.258 M 3 (16) 24.05 TRUE 23.42 TRUE
173.308 F 14 (16) 24.03 TRUE 24.07 TRUE

173.351 M 6 (16) 24.17 TRUE 23.81 TRUE

173.391 M 3 (16) 24.29 FALSE 24.09 TRUE
173.746 M 4 (10) 23.90 TRUE 23.51 TRUE

173.795 M 8 (16) 24.21 TRUE 24.15 TRUE

173.815 F 16 (16) 24.05 TRUE 24.03 TRUE

173.841 M 14 (16) 24.06 TRUE 24.04 TRUE

173.984 M 9 (16) 23.80 TRUE 23.82 TRUE

Fig. 2 Diel profiles for skin temperature (A) and activity (B) for each individual Great Tit (unsmoothed data in different colours) and mean (black 
solid curves) ± standard error (black dashed curves) for the full data set. Blue curve shows the fitted sinusoidal curve (with 3 harmonics) for skin 
temperature. Horizontal red lines show overall mean (levels). Daylight phases are indicated in yellow (sunrise–sunset)
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on segmented linear regressions (as in [52, 60]), whereby 
one (Broken Stick Regression) fits a single changepoint 
of slopes [51], whereas the second (Structural Changes) 
generates multiple changepoints of slopes, from which an 
optimal changepoint can be selected. A third approach 
estimates changepoints from distributions (Behavioural 
Changepoint Analyses, BCPA, by [29]), whereby multiple 
changepoints are generated, and the one that results in 

the best model fit is selected. Since these methods some-
times failed to pick up changepoints that visually aligned 
with the onset (i.e., start of increase in skin temperature) 
and offset (i.e., start of decrease), we also developed a 
fourth one specifically for our data type (named Change-
point here: see below).

Various R packages are available to extract these 
changepoints. For the Broken Stick Regression we chose 
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Fig. 3 Bird-specific skin temperature profiles, centred around minima and maxima to estimate onset and offset. Shown skin temperature curves for 
onset (A) and offset (B) are smoothed with 1 (red, dashed) and 3 (blue, solid) harmonics. Graphs also show means (black dots) ± standard error (grey 
bars) per 10-min bin. Daylight phases are indicated in yellow (sunrise–sunset). Sex: female (F) and male (M))
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the lm.br function (from lm.br package by Adams 2021 
based on [64]) used in Lewden et al. [51]. Different type 
settings (i.e., line–line, threshold–line, line–thresh-
old) can be adjusted and applied in combination with a 
selected analysis window depending on the customer’s 
needs. Confidence intervals can be extracted directly 
from the model. Here, we fitted two lines (type line–line) 
to assign one changepoint close to minimum or maxi-
mum for onset and offset, respectively.

For Structural Change the function breakpoints (from 
the strucchange package by Zeileis et  al. 2019 based on 
[65, 66]) was used to fit multiple models with several 
lines to the data. The function, then, selected the model 
with the optimal number of changepoints (with the low-
est Bayesian Information Criterion (BIC)). A maximum 
number of fitted changepoints could be enforced (using 
breaks setting) resulting in poorer fits (higher BIC) and 
slightly different changepoint estimates. To avoid poorer 
fits, we left breaks undefined, and instead used the best 
fitting model to select one changepoint that was closest 
to the temperature minimum or maximum for onset and 
offset, respectively. Confidence intervals for the change-
points can be calculated using the confint function.

In the BCPA, models with two normal distributions, 
and thus, one changepoint, are fitted (fitdistr function) 
for each potential timepoint in the observed window 
[29, P. Capilla pers. comm.]: one distribution for the 
data before a potential changepoint and another one 
for afterwards. The Log likelihood is calculated (logLik 
function) for each distribution and the Akaike Informa-
tion Criterion (AIC function) is obtained for each whole 
model. The model with the lowest AIC is selected and 
the associated changepoint is used as a chronotype esti-
mate. As AIC showed two minima in a 24-h window, 
i.e., one before and one after the skin temperature peak, 
the chosen changepoint (with lowest AIC) was ambiva-
lent before or after minimum or maximum. To detect 
increase (i.e., onset) or decrease (i.e., offset) in tempera-
ture, we reduced the window to 12  h using the second 
part of the analysis window only (i.e., 12  h from mini-
mum or maximum). BCPA applied to skin temperature 
data is further referred to as  BCPATskin.

Our new method, Changepoint, was based on the 
slope of change in the temperature data. This allowed 
us to extract the start of increasing temperature in the 
morning, which might reflect the rewarming of the 
body in preparation for the day. Likewise, we extracted 
the start of decreasing in the afternoon, which could be 
interpreted as the end of the physiological day, where 
thermoregulation is (partly) turned off allowing for pas-
sive cooling. In particular, we looked at the deviation of 
temperature in subsequent bins over time, i.e., relative to 
the previous 10-min bin. We calculated the slopes of the 

bins following the temperature minimum or maximum 
for onset and offset, respectively. One can apply differ-
ent thresholds for the slopes to estimate the changepoint, 
ranging from zero to maximum slope, and thereby adapt 
the algorithm to account for temperature plateaus with 
low slopes. Here, we used the first increase or decrease 
(slope > 0 or < 0) for estimating skin temperature onset 
and offset (for details on all changepoint analyses see the 
R script in Additional file 2 and 3).

Chronotype estimates from activity
For assigning chronotype parameters, onset and offset 
of activity were determined from the distinct changes 
of variation in signal strength using BCPA [29, P. Cap-
illa pers. comm.]. In our data, changes in variation were 
extracted from the previously calculated activity levels 
(i.e., absolute deviation of signal strength, see above and 
the R script in Additional file  2 and 3). Changepoints 
extracted from the activity data are further referred to 
as activity chronotypes to distinguish  them from the 
 BCPATskin output.

Comparison of chronotype estimates of skin temperature 
and activity
For comparison of methods and chronotype estimates 
from skin temperature and activity, we computed means, 
standard errors and a Pearson correlation matrix (cor 
function) for onset and offset separately. The correlation 
matrix was fed with estimates from Broken Stick Regres-
sion, Structural Change, Changepoint and  BCPATskin for 
skin temperature as well as activity chronotypes of all 
eight individuals.

Results
Diel rhythmicity of ambient temperature, and of activity 
and skin temperature
Ambient temperature was explored for diel rhythmic-
ity to assess confounding effects on rhythmic patterns of 
skin temperature. The diel temperature profile showed 
no clear 24-h pattern, but between day variation in pro-
files (Additional file  1: Figure S4). The data points were 
decreasingly autocorrelated with increasing time lags 
up to 48 h (acf = 0.37 for 24 h), instead of periodic auto-
correlation peaks at 24  h, 48  h, 72  h etc. as seen in the 
diel rhythms of the birds (compare Fig. 1D to Additional 
file  1: Figure S5A). The Lomb–Scargle analysis showed 
weak, but significant, periodicity at a time lag of 1  day 
and additional significant periodicities, at 2 and 3.4 days, 
with increasing normalised power reaching infinity for 
periods longer than 4 days (Additional file 1: Figure S5B).
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Skin temperature and activity data were filtered 
using inclusion criteria described above resulting in 
eight individual data  sets with a mean period length of 
24.04 ± 0.05  h (mean ± SEM) for skin temperature and 
23.94 ± 0.08 h for activity (Table 1).

Chronotype estimates from skin temperature
Skin temperature onsets and offsets were estimated 
from diel temperature profiles using the four described 
approaches. In most cases onset and offset estimates 
by Broken Stick Regression, Structural Change and 
Changepoint analyses fell between the time of relatively 

Fig. 4 Determination of onset and offset of diel change in skin temperature. Bird-specific onset (A) and offset (B) estimates are calculated by four 
methods (different colours) for eight Great Tits (female (F) and male (M)) kept in outdoor aviaries during winter. Mean (± SEM) chronotype estimates 
(in numeric daytime hours) and information on colour coding are given for each method in the inlay. Each panel represents skin temperatures 
of one Great Tit with mean (black dots) ± standard errors (grey bars) per 10-min bin, the fitted sinusoidal curve (blue, based on 3-harmonic 
smoothing), and the skin temperature chronotype estimates as vertical lines. Daylight phases are indicated in yellow (sunrise–sunset)
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constant temperature plateaus (close to the minimum or 
maximum, respectively) and the first change (increase 
or decrease) in slope. In contrast,  BCPATskin estimates 
were usually between steepest slope and the timepoint 
where temperature started flattening again within the 
chosen 12-h window (Fig. 4, Additional file 1: Table S1). 
All methods differed in their estimates, with on aver-
age earliest onset times (mean ± SEM) of 01:38 ± 0:23  h 
from the Broken Stick Regression and latest onsets of 
09:07 ± 0:19 h from the  BCPATskin. Onset estimates from 
the other two methods were in between and similar to 
each other, with Changepoint (03:06 ± 0:28 h) being over-
all 9.6 min later than Structural Change (02:56 ± 0:34 h). 
For the offset,  BCPATskin had again the latest time esti-
mates of on average 19:30 ± 0:30  h, clearly distinct 
from the other three methods which were between 
12:19 ± 0:47  h and 12:52 ± 0:21  h. Of those, the offsets 
of Structural Change were earliest, followed by the esti-
mates from Changepoint (29 min later) and Broken Stick 
Regression (34 min later; for details see Additional file 1: 
Table  S1 and Figure S6). The standard errors for onset 
and offset were similar to each other and ranged from 19 
to 47 min.

Chronotype estimates from activity
Using BCPA, individual activity onsets and offsets were 
estimated from diel activity profiles. From visual inspec-
tion the estimates and the AIC values fitted the change 
of variation in the data reliably without arbitrary assign-
ments (Additional file 1: Figure S7). Individuals became 
active on average at 07:30  h (SEM: 4.2  min) with low 
between individual variation (range: 07:10 to 07:50  h) 
and 56  min before mean sunrise (08:26  h). Similar, but 
reverse, patterns were found for activity offset which 
occurred on average at 16:15  h (SEM: 6.0  min), with a 
range from 16:00 to 16:40 h and 41 min after mean sunset 
(15:34 h) (Additional file 1: Table S2).

Comparison of chronotype estimates from skin 
temperature and activity
The relationship between chronotype from skin tempera-
ture and behavioural activity depended on the estimation 
method from skin temperature. Most methods showed a 
much earlier increase, and also earlier decrease, of skin 
temperature than of activity. Behavioural activity started 
on average 5.86  h (Broken Stick Regression), 4.56  h 
(Structural Change) and 4.4  h (Changepoint) after the 
skin temperature estimates for onset, but it was 1.62  h 
earlier than the  BCPATskin onset estimates. Similarly, 
activity ended on average 3.38  h (Broken Stick Regres-
sion), 3.94  h (Structural Change) and 3.46  h (Change-
point) after the skin temperature offset estimates, but 
3.25  h before  BCPATskin offsets (Fig.  5). Variation in 

activity chronotype estimates was about four- to eight-
fold lower than found in estimates from skin temperature 
for onsets (SEM: 4.2 vs. 19.2–34.2 min) as well as for off-
sets (SEM: 6.0 vs. 21.6–46.8 min).

Skin temperature estimates from Broken Stick Regres-
sion, Structural Change and Changepoint were strongly 
positively correlated with each other with r = 0.646–
0.841 for onset and r = 0.719–0.906 for offset. In contrast, 
they were more weakly correlated with activity chrono-
types (onset: r = − 0.131–0.138 and offset: r = − 0.394– 
−0.681). In contrast,  BCPATskin estimates showed weaker 
correlations with the other skin temperature estimates 
(onset: r = 0.099–0.195 and offset: r = 0.131–0.676) and 
different correlations with the activity onset (r = 0.612) 
and offset (r = − 0.040) than the other methods (Table 2).

Discussion
Minimally invasive, remotely collected data can provide 
great opportunities to study diel patterns of behaviour 
and physiology in free-ranging animals. However, these 
data also bring new challenges for data processing and 
analyses. Here, we processed and analysed activity and 
skin temperature records from externally attached radio 
transmitters to extract and compare estimates of physi-
ological and behavioural chronotype.

Fig. 5 Individual chronotype estimates based on individually 
averaged diel patterns of skin temperature and activity. Colours 
indicate different analytic methods for skin temperature, estimates for 
activity chronotype are shown as black diamonds. Great Tits (female 
(F) and male (M)) are ranked by activity onset. Daylight phases are 
indicated in yellow (sunrise–sunset)
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Evaluation of methodology
Although in some cases relatively clean rhythmic 
records can be achieved [57, 67], data on skin tempera-
ture are prone to confounding effects. In particular, 
ambient temperature, wind [54, 56, 68] and solar radia-
tion [55] can affect skin temperatures, and such con-
founds can be accentuated depending on the tightness 
between skin and transmitter (e.g., if the attachment 
loosened). Strong effects of solar radiation, depending 
on exposure, in particular can make skin temperature 
measurements from daytime harder to interpret than 
those from the night [55]. Therefore, for estimating 
chronotype, measures at night and in the early morn-
ing are particularly suitable, when body temperature 
increases in diurnal animals. In addition to confound-
ing the skin measurements, ambient temperature can 
also physiologically alter the daily profiles of body tem-
perature and activity. Experimental studies in small 
mammals have reported altered amplitudes and abso-
lute levels, but divergent effects on the shape and phase 
(i.e., timing) of rhythmic profiles. For example, with 
colder ambient temperatures, (core) body temperature 
decreased and levels of activity increased, whereas the 
shape and phase of both rhythms did not change in two 
studies [69, 70]. In contrast, if ambient temperatures 
reached the individual’s physiological constraints (e.g., 
energetical depletion or overheating) and its inter-
nal state was affected, activity patterns were shifted 
in phase or altered in shape either asynchronised [71] 
or synchronised with the individual’s physiological 
rhythms [72].

In our study, skin temperature records showed high 
variability in noise across the data set. Attachment of 
transmitters was sometimes relatively loose, because we 
did not pluck feathers and also attached the transmitters 
to a piece of cloth to increase area of adhesion leading to 
partly noisy data and high variability in data quality of the 
skin temperature measurements (also discussed in [54]). 
Thus, prior to analyses we first assessed ambient tem-
perature fluctuations. We found high variation between 
days and weak diel periodicity, which suggests that effects 

of ambient temperature on rhythmicity were small. Fur-
thermore, all individuals were exposed to the same ambi-
ent temperatures, and diel profiles of skin temperature 
and activity were averaged across days accounting for 
between day variation of ambient temperature. There-
fore, we focussed on skin temperature analyses without 
further consideration of ambient temperature. How-
ever, ambient temperature should always be recorded 
for further investigation, especially when individuals are 
exposed to different environmental temperatures.

Subsequently, we filtered our noisy time series to high 
quality levels, which greatly diminished the availability 
of data for analyses of chronotype. For these remaining 
data, however, diel fluctuations in skin temperature were 
well suited for analysis. Our time series were successfully 
filtered using rhythmicity parameters from periodicity 
and autocorrelation, and the derived diel skin tempera-
ture profiles showed the expected, roughly sinusoidal 
curves, with lower temperature during the inactive phase 
(e.g., [6, 8, 50]).

Extracted chronotype estimates from skin temperature 
(onset and offset) were correlated but differed between 
the four changepoint approaches because of the ways 
the changepoints were assigned, and because of the win-
dows selected for analyses. In our study, the Broken Stick 
Regression and the  BCPATskin assigned only one change-
point. However, for different applications, settings can be 
adjusted and analysis windows reduced and/or shifted, to 
extract different changepoints of interest. In our study, 
there was high variation in skin temperature chrono-
types so that one general analysis window did not fit all 
individuals equally well, especially for the  BCPATskin. In 
contrast, a standard window is suitable for traits with low 
variation within or between individuals, such as chrono-
types from locomotion activity, where  BCPATskin selects 
distinct changes in variation and mean [29, 30]. Further 
important considerations for the selection of windows 
also include variation in environmental conditions, 
such as changes in light–dark cycle across the season. 
Issues relating to window selection can partly be solved 
by fitting models with multiple changepoints, and then 

Table 2 Correlation table between estimates of chronotype from different methods, for onset (below diagonal) and offset (above 
diagonal, and italicised)

Onset\Offset Broken Stick 
Regression

Structural Change Changepoint BCPATskin Activity

Broken Stick Regression 1 0.719 0.906 0.676 − 0.475

Structural Change 0.692 1 0.858 0.131 − 0.394

Changepoint 0.646 0.841 1 0.335 − 0.681

BCPATskin 0.195 0.194 0.099 1 − 0.040

Activity 0.138 0.012 − 0.131 0.612 1
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selecting the one in the region of interest, as in our Struc-
tural Change approach.

One criterion for method selection, given our noisy 
time series, was relative independence from between 
individual differences in recorded absolute skin tempera-
tures. Even though three of our methods (Broken Stick 
Regression, Structural Change and  BCPATSkin) used the 
absolute temperature records for analyses, the algorithms 
estimated changepoints based on the input data set and, 
thus, for each individual independently. Our Changepoint 
method additionally accounted for this by focussing on 
temperature changes at the regions of interest (close to 
minimum or maximum) using a slope-based threshold 
rather than one absolute temperature threshold for all 
individuals which seems suitable for defining deep torpor 
[62]. Similarly, individual-based temperature thresholds 
have been proposed [39, 62, 73] and discussed [57] to 
account for individual variation in absolute temperature 
recordings in the face of methodological differences, e.g., 
in transmitter attachment.

In our study, variation in skin temperature profiles 
between individuals was the focal interest. Thus, high 
temporal resolution was crucial to detect patterns, but at 
the same time, data needed to be of high quality. If dif-
ferences between individuals are large, as is the case for 
our chronotype estimates from skin temperature, they 
are easy to detect despite binning and smoothing. How-
ever, if temporal resolution is too coarse, and filtering is 
too strict, it can hamper the detection of low amounts 
of variation and obscure small differences [54, 70]. Thus, 
sampling interval and degree of filtering need to be care-
fully chosen to minimise potential loss of information.

Comparison of chronotype estimates of skin temperature 
and activity
Our data showed an increase in skin temperature antici-
pating the activity onset as shown in previous studies for 
birds and mammals, supporting the hypothesis of physi-
ological preparation for diel activity [6, 52, 61, 74]. This 
rise occurred several hours before sunrise and activity 
onset according to most of the methods we used. As in 
humans and other species, skin temperatures of the birds 
we studied started to fall before the end of the active 
day. Thereby, most estimates of skin temperature offset 
occurred well before the end of activity, shortly after mid-
day, and decreased thereafter [18]. The only exception 
was chronotype estimates based on  BCPATskin, for which 
onset occurred around sunrise and offset well after sun-
set. The reason was that  BCPATskin was fitting one distri-
bution to the steep slope and another one to the plateau 
thereafter, whereas the three remaining methods aligned 
with skin temperature changes close to minimum or 
maximum.

In general, birds can show different magnitudes of 
temperature decrease during inactive phases ranging 
from shallow rest-phase hypothermia (few degrees) up 
to deep torpor (occasionally up to several tens degrees) 
depending on species, environmental conditions and the 
individuals’ states [75, 76]. Small passerines, such as the 
Great Tit, exhibit mainly the rest-phase hypothermia 
with decreases of max. 10  °C only [8, 37, 77]. The tim-
ing of hypothermia onset and offset depends on internal 
mechanisms and external cues associated with the light–
dark cycle, ambient temperature and food availability 
[10, 78, 79]. In addition, locomotion activity itself can 
generate heat resulting in accelerated rewarming, and 
higher body temperatures during the active phase [7, 13, 
52, 57]. In our study, the timing of temperature decrease 
must be carefully interpreted due to the potentially con-
founded skin temperature measurements during the 
active phase and effects of smoothing. Overall, skin tem-
perature onsets (= offset of hypothermia, but onset of the 
physiological day) might be a more reliable tool to assign 
chronotypes than skin temperature offsets, for the rea-
sons explained above.

Overall, we found large differences between individuals 
in skin temperature onset and offset, but the magnitude 
of these differences varied between analytic methods 
used. Furthermore, the chronotype estimates from most 
methods based on skin temperature differed consider-
ably from estimates based on activity. In addition to dif-
ferences in phase (timing) between skin temperature and 
activity explained above, estimates also differed in vari-
ation. Whereas activity chronotypes showed small vari-
ation as in previous studies [23, 29, 30], standard errors 
of the mean chronotypes (here, indicating variation 
between individuals) of skin temperature onset and off-
set were up to eightfold larger. This might partly be due 
to the chosen methodology, i.e., the chosen changepoint 
approach and the external measurement of skin tempera-
ture, but can also indicate large differences in the regu-
lation of skin temperature and activity. One possibility 
could be differences in the adjustment of the two rhythms 
to the light–dark cycle. Especially activity is highly and 
directly affected by light cues, such as sunrise and sunset, 
light pulses and artificial light at night, either in the short- 
or long-term [10, 12, 47, 80, 81]. For example, various 
species first “light sample”, i.e., assessing the light levels 
after awakening but before leaving roosting sites [82]. In 
contrast, body temperature rhythms might rather reflect 
physiological and internal time, with reduced immediate 
responsiveness to the light–dark cycle and other environ-
mental effects [17].

Closer investigation of day-to-day variation of skin 
temperature chronotypes could inform on such temporal 
flexibility within individuals and on their responsiveness 
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to external cues. The methodology we have proposed can 
also be applied for day-to-day analyses. Thereby, onsets 
and offsets could be separately estimated for a series of 
days. These daily data could be used to disentangle con-
sistent chronotypes from individual flexibility (i.e., cal-
culate consistency and repeatability), and to quantify 
influences of specific environmental factors on skin tem-
perature rhythmicity. However, this requires high-quality 
data and will bring additional challenges, such as the 
interpolation of data gaps, choice of selecting the analysis 
windows, and statistical analysis of potentially autocorre-
lated day-to-day estimates of onset and offset [83].

In our study, for the eight individuals with sufficient 
data, onset and offset of skin temperature and activity 
were only weakly and partly negatively correlated. Several 
other studies, usually under strictly controlled environ-
mental conditions, have described both synchronisation 
and desynchronisation of body temperature and activ-
ity rhythms (reviewed in [6]). Often studies focus on 
changes in amplitudes and mean levels of diel rhythms, 
i.e., suppression or amplification (e.g., [39, 69, 84]). How-
ever, shifts in timing are important for understanding 
variation in chronotype, as well as responses of wildlife 
to anthropogenic changes [85]. External and internal fac-
tors can alter both rhythms, but effects and dynamics of 
change can differ for skin temperature versus activity, and 
results are heterogenous. Some studies found no change 
or synchronised shifts in body temperature and activity 
rhythms for stressors. Whereas both rhythms were unaf-
fected by social stress situations in rats [39], synchronised 
shifts have been observed in free-running rats under con-
stant dim light conditions [86] as well as in pigeons that 
were subject to manipulation of melatonin levels [87]. In 
contrast, food supplementation of resveratrol, a natural 
phenol from grapes, affected timing of body temperature 
and activity differently depending on age and the treat-
ment duration in lemurs [88]. In cattle the two rhythms 
have been desynchronised with increased intraspecific 
competition shifting them in opposite directions [89]. 
Desynchronisation can also be forced by manipulation 
of the light–dark cycle either into constant free-running 
conditions [90] or into extended days of 28 h [91] result-
ing in shorter period lengths of body temperature than 
activity. Discrepant findings of different studies depend 
on the stressor and study model used, highlighting the 
complexity of the underlying mechanisms and functions 
of the two rhythms. Much of this still needs to be discov-
ered in wildlife.

Conclusions
In this study we proposed methods to assess chronotype 
from skin temperature data. We developed standardised 
protocols to filter skin temperature data for rhythmicity, 

using periodicity and autocorrelation parameters. The 
protocols worked well and helped avoid arbitrary data 
selection but came at a cost of greatly reduced sam-
ple sizes. We then tested four different changepoint 
analyses for extracting chronotype estimates, i.e., the 
morning onset and evening offset of sinusoidal skin tem-
perature curves. We found that three analyses (Broken 
Stick Regression, Structural Change and Changepoint) 
performed similarly well and yielded closely correlated, 
but somewhat different, estimates of chronotype. The 
fourth method,  BCPATskin, gave weakly correlated esti-
mates of chronotype that were starkly differently phased. 
These discrepancies suggest that the methods are pick-
ing up different shape characteristics of skin temperature 
profiles. The choice of suitable methods might, there-
fore, depend on recorded time series curves, and further 
adjustments can be made to account for different species 
and study questions. Compared to chronotype derived 
from activity, estimates based on skin temperature were 
timed far earlier, were more variable, and magnified 
between individual differences. Estimates of chronotype 
based on activity and skin temperature were only weakly 
correlated. Through our protocols, we hope to stimulate 
use of the rapidly increasing time series data for inves-
tigating chronotype of behaviour and physiology, and 
for exploring potential discrepancies between the two 
processes that may indicate responses to environmen-
tal change. Future studies might include the comparison 
of day-to-day variation within individuals and overall 
between individual variation to disentangle temporal 
flexibility from consistent chronotypes. A main observa-
tion in our study are the distinct differences between skin 
temperature and activity in time series patterns as well 
as in chronotype and its variation. The activity chrono-
type is a useful tool to study behavioural and ecological 
timing, whereas body temperature chronotype might 
inform about individual timing of physiological processes 
broadly related to thermoregulation and metabolic rate. 
However, simultaneous investigation of behavioural and 
physiological rhythms has the advantage of exploring 
similarities and differences in proximate and ultimate 
processes in wildlife.
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by Aurelia F. T. Strauß. Figure S2. Skin temperature (10-min binned and 
unfiltered) against date and time for 18 Great Tits (female (F) and male (M)) 
kept in outdoor aviaries during winter. Colour indicates if days are rhyth-
mic (black) or arrhythmic (red) according to the 3-day sliding window 
filtering. Two individuals were additionally excluded from further analyses 
due to later filtering steps (i.e., 173.391 M had no positive autocorrelation 
at 24 h peak in skin temperature data and 173.258 M had >25% of missing 
data in the diel skin temperature profile). Figure S3. Lomb–Scargle peri-
odograms for skin temperature (A) and activity (B) with red vertical lines to 
indicate significant peaks for an exemplary Great Tit (Frequency 173.204, 
male). Figure S4. Diel profiles of ambient temperature (10-min intervals) 
for each day (different colours) and mean ± standard error temperatures 
(black). Figure S5. Rhythmicity of ambient temperature (10-min intervals): 
(A) Autocorrelation including a red vertical line to indicate 1 day; (B) 
Lomb–Scargle periodogram with significant peaks at period lengths of 
1, 2.3 and 3.6 days. Figure S6. Comparison of onset and offset estimates 
from four different skin temperature methods for eight Great Tits (female 
(F) and male (M)) and their mean (black rhombus). Daylight phases are 
indicated in yellow (sunrise–sunset). Figure S7. Overall onset (A) and 
offset (B) estimates from BCPA (red line, including scaled AIC indications 
in green) for activity of eight Great Tits (female (F) and male (M)) kept in 
outdoor aviaries during winter. Each panel represents one Great Tit with 
mean temperatures (black) ± standard errors (grey) for each 10-min bin. 
Daylight phases are indicated in yellow (sunrise–sunset). Table S1. Esti-
mates for onset and offset (in numeric daytime hours) from four different 
changepoint analyses as well as overall means and standard errors (SEM). 
Confidence intervals are shown for Broken Stick Regression and Structural 
Change analyses. Table S2. Activity chronotypes for onset and offset (in 
numeric daytime hours) from BCPA as well as mean and standard error 
(SEM) for activity onset, offset and daylight (sunrise and sunset from 4 to 
19 December 2012). Sex: Female (F) and Male (M).

Additional file 2: R documentation of data selection and chronotype 
estimations.

Additional file 3: R documentation of changepoint functions.

Acknowledgements
We thank Ruedi G. Nager, Jan-Åke Nilsson and Ross MacLeod for help with the 
initial field work, Pablo Capilla and Nadieh Reinders for kindly sharing R scripts 
for the BCPA activity analyses and the anonymous reviewers for useful com-
ments on the manuscript.

Author contributions
All authors conceived of the study design. AN, ML, DM, and BH contributed 
to the animal work. AS, ML and AN analysed the data, and AS wrote the 
manuscript with input from all co-authors. All authors read and approved the 
final manuscript.

Funding
The international collaboration was facilitated by an ERASMUS Training Mobil-
ity Grant to BH. AS was supported by the Adaptive Life programme of the 
University of Groningen, the Netherlands. We gratefully acknowledge support 
to AN by the Swedish Research Council (Grant Nos 637-2013-7442, 621-2009-
5194 and 2020-04686, respectively) and the Helge Axson Johnson Foundation. 
ML received funding from the Baden–Württemberg Stiftung through the Elite-
programm and the International Max Planck Research School for Organismal 
Biology at Konstanz University, Germany.

Availability of data and materials
Data and materials are stored in a project repository on https:// figsh are. com/: 
raw telemetry files (https:// doi. org/ 10. 6084/ m9. figsh are. 20072 720), data of 
ambient temperature and sex information (https:// doi. org/ 10. 6084/ m9. figsh 
are. 20072 789) and R Markdown files (https:// doi. org/ 10. 6084/ m9. figsh are. 
20072 795).

Declarations

Ethics approval and consent to participate
Experimental procedures on the Great Tits were approved by the Malmö/Lund 
Animal Ethics Committee (Permit No. M236–10). Catching and ringing of birds 
were permitted by the Swedish Ringing Centre (Licence No. 475), and the use 
of radio transmitters by the Swedish Post and Telecom Authority (Permit No. 
12–9096).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Research Group Biological Rhythms of Natural Organisms, Groningen Insti-
tute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijen-
borgh 7, 9747 AG Groningen, The Netherlands. 2 Research Group Wild Clocks, 
Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-
KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands. 3 Scot-
tish Centre for Ecology and the Natural Environment, Institute of Biodiversity, 
Animal Health & Comparative Medicine, College of Medical, Veterinary and Life 
Sciences, University of Glasgow, Drymen G63 0AW, Scotland, UK. 4 Department 
of Biology, Section for Evolutionary Ecology, Lund University, 223 62 Lund, 
Sweden. 5 Department of Biology, University of Konstanz and Max Planck Insti-
tute for Ornithology, PO Box 616, 78457 Constance, Germany. 6 Bird Migration 
Unit, Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland. 

Received: 25 December 2021   Accepted: 19 July 2022

References
 1. Ueda M, Sugimoto T, Sawai Y, Ohnuki T, Yamamura S. Chemical studies on 

plant leaf movement controlled by a biological clock. Pure Appl Chem. 
2003;75:353–8.

 2. Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. Circadian 
clock involvement in zooplankton diel vertical migration. Curr Biol. 
2017;27:2194–201.

 3. Bloch G, Barnes BM, Gerkema MP, Helm B. Animal activity around the 
clock with no overt circadian rhythms: patterns, mechanisms and adap-
tive value. Proc Royal Soc Biol Sci. 2013;280:20130019.

 4. Halle S, Stenseth NC. Activity patterns in small mammals an ecological 
approach. In: Halle S, Stenseth NC, editors. Ecological Studies. 1st ed. 
Berlin, Heidelberg: Springer; 2000.

 5. Bennie JJ, Duffy JP, Inger R, Gaston KJ. Biogeography of time partitioning 
in mammals. Proc Natl Acad Sci USA. 2014;111:13727–32.

 6. Refinetti R, Menaker M. The circadian rhythm of body temperature. 
Physiol Behav. 1992;51:613–37.

 7. Weinert D, Waterhouse J. The circadian rhythm of core temperature : 
effects of physical activity and aging. Physiol Behav. 2007;90:246–56.

 8. Prinzinger R, Preßmar A, Schleucher E. Body temperature in birds. Comp 
Biochem Physiol. 1991;99A:499–506.

 9. Brown M, Downs CT. Daily and seasonal differences in body and egg 
temperature in free-ranging crowned lapwings (Vanellus coronatus). 
African Zoology. 2004;39:115–22.

 10. Dawson A. Daily cycles in body temperature in a songbird change 
with photoperiod and are weakly circadian. Physiol Biochem Zool. 
2017;32:177–83.

 11. Aschoff J. Temporal orientation: circadian clocks in animals and humans. 
Anim Behav. 1989;37:881–96.

 12. Binkley S, Mosher K. Photoperiod modifies circadian resetting responses 
in sparrows. Am J Physiol. 1986;251:R1156–62.

 13. Cohen R, Smale L, Kronfeld-Schor N. Plasticity of circadian activity 
and body temperature rhythms in golden spiny mice. Chronobiol Int. 
2009;26:430–46.

https://figshare.com/
https://doi.org/10.6084/m9.figshare.20072720
https://doi.org/10.6084/m9.figshare.20072789
https://doi.org/10.6084/m9.figshare.20072789
https://doi.org/10.6084/m9.figshare.20072795
https://doi.org/10.6084/m9.figshare.20072795


Page 15 of 16Strauß et al. Animal Biotelemetry           (2022) 10:27  

 14. Lehmann M, Spoelstra K, Visser ME, Helm B. Effects of temperature on 
circadian clock and chronotype: an experimental study on a passerine 
bird. Chronobiol Int. 2012;29:1062–71.

 15. Cassone VM. Avian circadian organization: a chorus of clocks. Front Neu-
roendocrinol. 2014;35:76–88.

 16. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between 
nutrition, metabolism, and the circadian clock. Cell. 2015;161:84–92.

 17. Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, 
et al. Two sides of a coin: ecological and chronobiological perspectives of 
timing in the wild. Biol Sci Philos Trans R Soc B. 2017;372:20160246.

 18. Koukkari WL, Sothern RB. Introducing biological rhythms: a primer on 
the temporal organization of life, with implications for health, society, 
reproduction, and the natural environment. Berlin: Springer; 2006.

 19. Kronfeld-schor N, Visser ME, Salis L, Van GJA. Chronobiology of 
interspecific interactions in a changing world. Philos Trans R Soc B. 
2017;372:20160248.

 20. Levy O, Dayan T, Porter WP, Kronfeld-Schor N. Time and ecological resil-
ience: can diurnal animals compensate for climate change by shifting to 
nocturnal activity? Ecol Monogr. 2019;89:e01334.

 21. Randler C. Sleep, sleep timing and chronotype in animal behaviour. Anim 
Behav. 2014;94:161–6.

 22. Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and social 
jetlag: a (self-) critical review. Biology. 2019;8:1–19.

 23. Schlicht L, Kempenaers B. The effects of season, sex, age and weather on 
population-level variation in the timing of activity in eurasian blue tits 
cyanistes caeruleus. Ibis. 2020;162:1146–62.

 24. Graham JL, Cook NJ, Needham KB, Hau M, Greives TJ. Early to rise, early 
to breed: a role for daily rhythms in seasonal reproduction. Behav Ecol. 
2017;28:1266–71.

 25. Gharnit E, Bergeron P, Garant D, Reále D. Exploration profiles drive activity 
patterns and temporal niche specialization in a wild rodent. Behav Ecol. 
2020;31:772–83.

 26. Gaynor KM, Hojnowski CE, Carter NH, Brashares JS. The influence of 
human disturbance on wildlife nocturnality. Science. 2018;360:1232–5.

 27. Martorell-Barceló M, Campos-Candela A, Alós J. Fitness consequences of 
fish circadian behavioural variation in exploited marine environments. 
PeerJ. 2018;6:e4818.

 28. West AC, Bechtold DA. The cost of circadian desynchrony: evidence, 
insights and open questions. BioEssays. 2015;37:777–88.

 29. Dominoni DM, Carmona-Wagner EO, Hofmann M, Kranstauber B, 
Partecke J. Individual-based measurements of light intensity provide 
new insights into the effects of artificial light at night on daily rhythms of 
urban-dwelling songbirds. J Anim Ecol. 2014;83:681–92.

 30. Maury C, Serota MW, Williams TD. Plasticity in diurnal activity and tempo-
ral phenotype during parental care in European starlings Sturnus vulgaris. 
Anim Behav. 2020;159:37–45.

 31. Steinmeyer C, Schielzeth H, Mueller JC, Kempenaers B. Variation in sleep 
behaviour in free-living blue tits, Cyanistes caeruleus: effects of sex, age 
and environment. Anim Behav. 2010;80:853–64.

 32. Rattenborg NC, De IHO, Kempenaers B, Lesku JA, Meerlo P, Scriba MF. 
Sleep research goes wild: new methods and approaches to investigate 
the ecology, evolution and functions of sleep. Philos Trans R Soc B. 
2017;327:20160251.

 33. van der Vinne V, Tachinardi P, Riede SJ, Akkerman J, Scheepe J, Daan S, 
et al. Maximising survival by shifting the daily timing of activity. Ecol Lett. 
2019;22:2097–102.

 34. Titulaer M, Spoelstra K, Lange CY, Visser ME. Activity patterns during food 
provisioning are affected by artificial light in free living great tits (Parus 
major). PLoS ONE. 2012;7:5–8.

 35. Pagani-Núñez E, Senar JC. More ornamented great tit parus major fathers 
start feeding their offspring earlier. Ardea. 2016;104:167–76.

 36. MacDonald DW, Amlaner CJ. A practical guide to radio tracking. In: 
DavidW MacDonald, editor. Amlaner CJ. Pergamon Press Oxford and New 
York: A Handbook on Biotelemetry and Radio Tracking; 1980. p. 143–59.

 37. Reinertsen RE, Haftorn S. Different metabolic strategies of northern birds 
for nocturnal survival. J Comp Physiol B. 1986;156:655–63.

 38. Dominoni DM, Åkesson S, Klaassen R, Spoelstra K, Bulla M. Methods in 
field chronobiology. Philos Trans R Soc B. 2017;372:20160247.

 39. Meerlo P, Van Den Hoofdakker RH, Koolhaas JM, Daan S. Stress-induced 
changes in circadian rhythms of body temperature and activity in rats are 
not caused by pacemaker changes. J Biol Rhythms. 1997;12:80–92.

 40. Kronfeld-Schor N, Bloch G, Schwartz WJ. Animal clocks: When science 
meets nature. Proc Royal Soc B. 2013;280:20131354.

 41. Refinetti R, Cornélissen G, Halberg F. Procedures for numerical analysis of 
circadian rhythms. Biol Rhythm Res. 2007;38:275–325.

 42. Schwartz WJ, Helm B, Gerkema MP. Wild clocks: preface and glossary. Biol 
Sci Philos Trans R Soc B. 2017;372:20170211.

 43. Diggle P. Time series: a biostatistical introduction. New York: Oxford 
University Press; 1990.

 44. R Core Team. R: a language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing; 2022.

 45. Ruf T. The lomb scargle periodogram in biological rhythm research: 
analysis of incomplete and unequally spacced time-series. Biol Rhythm 
Res. 1999;30:178–201.

 46. Tong YL. Parameter estimation in studying circadian rhythms. Biometrics. 
1976;32:85–94.

 47. Spoelstra K, Verhagen I, Meijer D, Visser ME. Artificial light at night shifts 
daily activity patterns but not the internal clock in the great tit (Parus 
major). Proc Royal Soc B. 2018;285:20172751.

 48. Abhilash L, Sheeba V. RhythmicAlly: your R and shiny-based open-source 
ally for the analysis of biological rhythms. J Biol Rhythms. 2019;34:551–61.

 49. Dausmann KH. Measuring body temperature in the field—evaluation 
of external vs implanted transmitters in a small mammal. J Ther Biol. 
2005;30:195–202.

 50. Linek N, Volkmer T, Shipley JR, Twining CW, Zúñiga D, Wikelski M, et al. 
A songbird adjusts its heart rate and body temperature in response 
to season and fluctuating daily conditions. Philos Trans Royal Soc B. 
2021;376:20200213.

 51. Lewden A, Bonnet B, Nord A. The metabolic cost of subcutaneous and 
abdominal rewarming in king penguins after long-term immersion in 
cold water. J Therm Biol. 2020;91:102638.

 52. Appenroth D, Nord A, Hazlerigg DG, Wagner GC. Body temperature and 
activity rhythms under different photoperiods in high arctic Svalbard 
ptarmigan (Lagopus muta hyperborea). Front Physiol. 2021;12:633866.

 53. McCafferty DJ, Gallon S, Nord A. Challenges of measuring body tempera-
tures of free-ranging birds and mammals. Anim Biotelemetry BioMed 
Cent. 2015;3:1–10.

 54. Nord A, Lehmann M, Macleod R, McCafferty DJ, Nager RG, Nilsson JÅ, 
et al. Evaluation of two methods for minimally invasive peripheral body 
temperature measurement in birds. J Avian Biol. 2016;47:417–27.

 55. Adelman JS, Córdoba-Córdoba S, Spoelstra K, Wikelski M, Hau M. Radiote-
lemetry reveals variation in fever and sickness behaviours with latitude in 
a free-living passerine. Funct Ecol. 2010;24:813–23.

 56. Dausmann KH. The pitfalls of body temperature measurements. Natur-
wissenschaften. 2012;99:511–3.

 57. Willis CKR, Brigham RM. Defining torpor in free-ranging bats: experimen-
tal evaluation of external temperature-sensitive radiotransmitters and the 
concept of active temperature. J Comp Physiol [B]. 2003;173:379–89.

 58. Winder LA, White SA, Nord A, Helm B, McCafferty DJ. Body surface tem-
perature responses to food restriction in wild and captive great tits. J Exp 
Biol. 2020;223:1–8.

 59. Carere C, Van Oers K. Shy and bold great tits (Parus major): body tem-
perature and breath rate in response to handling stress. Physiol Behav. 
2004;82:905–12.

 60. Doren BMV, Liedvogel M, Helm B. Programmed and flexible: long-term 
Zugunruhe data highlight the many axes of variation in avian migratory 
behaviour. J Avian Biol. 2017;48:155–72.

 61. Baehr EK, Revelle W, Eastman CI. Individual differences in the phase and 
amplitude of the human circadian temperature rhythm: with an empha-
sis on morningness-eveningness. J Sleep Res. 2000;9:117–27.

 62. Barclay RMR, Lausen CL, Hollis L. What’s hot and what’s not: defining 
torpor in free-ranging birds and mammals. Can J Zool. 2001;79:1885–90.

 63. Karagicheva J, Rakhimberdiev E, Dekinga A, Brugge M, Koolhaas A, Ten 
Horn J, et al. Seasonal time keeping in a long-distance migrating shore-
bird. J Biol Rhythms. 2016;31:509–21.

 64. Knowles M, Siegmund D, Zhang H. Confidence regions in semilinear 
regression. Biometrika. 1991;78:15–31.

 65. Bai J, Perron P. Computation and analysis of multiple structural change 
models. J Appl Economet. 2003;18:1–22.

 66. Zeileis A, Kleiber C, Walter K, Hornik K. Testing and dating of structural 
changes in practice. Comput Stat Data Anal. 2003;44:109–23.



Page 16 of 16Strauß et al. Animal Biotelemetry           (2022) 10:27 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 67. Brigham RM. Daily torpor in a free-ranging goatsucker, the common 
poorwill (Phalaenoptilus nuttallii). Physiol Zool. 1992;65:457–72.

 68. Barclay RMR, Kalcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson 
L, et al. Can external radiotransmitters be used to assess body tempera-
ture and torpor in bats? J Mammal. 1996;77:1102–6.

 69. Aujard F, Vasseur F. Effect of ambient temperature on the body tem-
perature rhythm of male gray mouse lemurs (Microcebus murinus). Int J 
Primatol. 2001;22:43–56.

 70. van Jaarsveld B, Bennett NC, Hart DW, Oosthuizen MK. Locomotor activity 
and body temperature rhythms in the Mahali mole-rat (C. h. mahali): 
the effect of light and ambient temperature variations. J Therm Biol. 
2019;79:24–32.

 71. Van Der Vinne V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M, et al. 
Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl 
Acad Sci USA. 2014;111:15256–60.

 72. Chappell MA, Bartholomew GA. Activity and thermoregulation of the 
antelope ground squirrel ammospermophilus leucurus in winter and 
summer. Univer Chicago Press J. 1981;54:215–23.

 73. Jonasson KA. The effects of sex, energy, and environmental conditions on 
the movement ecology of migratory bats. University of Western Ontario; 
2017.

 74. Hoffmann K, Coolen A, Schlumbohm C, Meerlo P, Fuchs E. Remote long-
term registrations of sleep-wake rhythms, core body temperature and 
activity in marmoset monkeys. Behav Brain Res. 2012;235:113–23.

 75. McKechnie AE, Lovegrove BG. Avian facultative hypothermic responses: a 
review. Condor. 2002;104:705–24.

 76. Schleucher E. Torpor in birds: taxonomy, energetics, and ecology. Physiol 
Biochem Zool. 2004;77:942–9.

 77. Nord A, Nilsson JF, Sandell MI, Nilsson J-Å. Patterns and dynamics of rest-
phase hypothermia in wild and captive blue tits during winter. J Comp 
Physiol [B]. 2009;179:737–45.

 78. Reinertsen RE. Physiological and ecological aspects of hypothermia. In: 
Carey C, editor. Avian energetics and nutritional ecology. Chapman & 
Hall; 1996. p. 125–57.

 79. Dawson A. Both low temperature and shorter duration of foof availability 
delay testicular regression and affect the daily cycle in body temperature 
in a songbird. Physiol Biochem Zool. 2018;91:917–24.

 80. Daan S, Aschoff J. Circadian rhythms of locomotor activity in captive 
birds and mammals: their variations with season and latitude. Oecologia. 
1975;18:269–316.

 81. de Jong M, Jeninga L, Ouyang JQ, van Oers K, Spoelstra K, Visser ME. 
Dose-dependent responses of avian daily rhythms to artificial light at 
night. Physiol Behav. 2016;155:172–9.

 82. DeCoursey PJ. Light-sampling behavior in photoentrainment of a rodent 
circadian rhythm. J Comp Physiol A. 1986;159:161–9.

 83. Harrison XA. A brief introduction to the analysis of time-series data from 
biologging studies. PhilosTrans Royal Soc B. 2021;376:20200227.

 84. Murakami N, Kawano T, Nakahara K, Nasu T, Shiota K. Effect of melatonin 
on circadian rhythm, locomotor activity and body temperature in the 
intact house sparrow. Jpn Quail Owl Brain Res. 2001;889:220–4.

 85. Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? 
Curr Opin Neurobiol. 2020;60:55–66.

 86. Aguzzi J, Bullock NM, Tosini G. Spontaneous internal desynchronization 
of locomotor activity and body temperature rhythms from plasma mela-
tonin rhythm in rats exposed to constant dim light. J Circadian Rhythm. 
2006;4:1–6.

 87. Oshima I, Yamada H, Goto M, Sato K, Ebihara S. Pineal and retinal mela-
tonin is involved in the control of circadian locomotor activity and body 
temperature rhythms in the pigeon. J Comp Physiol A. 1989;166:217–26.

 88. Pifferi F, Dal-Pan A, Languille S, Aujard F. Effects of resveratrol on daily 
rhythms of locomotor activity and body temperature in young and aged 
grey mouse lemurs. Oxid Med Cell Longev. 2013;2013: 187301.

 89. Palacios C, Plaza J, Abecia JA. A high cattle-grazing density alters circa-
dian rhythmicity of temperature, heart rate, and activity as measured by 
implantable bio-loggers. Front Physiol. 2021;12:707222.

 90. Aschoff J, Gerecke U, Wever R. Desynchronization of human circadian 
rhythms. Jpn J Physiol. 1967;17:450–7.

 91. Gander PH, Lydic R, Albers HE, Moore-Ede MC. Forced internal desynchro-
nization between circadian temperature and activity rhythms in squirrel 
monkeys. Am J Physiol Regul Integr Comp Physiol. 1985;248:R567–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Using skin temperature and activity profiles to assign chronotype in birds
	Abstract 
	Background
	Methods
	Aims
	Data collection
	Telemetry
	Data selection and diel rhythmicity
	Chronotype estimates from skin temperature
	Chronotype estimates from activity
	Comparison of chronotype estimates of skin temperature and activity

	Results
	Diel rhythmicity of ambient temperature, and of activity and skin temperature
	Chronotype estimates from skin temperature
	Chronotype estimates from activity
	Comparison of chronotype estimates from skin temperature and activity

	Discussion
	Evaluation of methodology
	Comparison of chronotype estimates of skin temperature and activity

	Conclusions
	Acknowledgements
	References




