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METHODOLOGY

A satellite-linked tag for the long-term 
monitoring of diving behavior in large whales
Daniel M. Palacios1,2*†  , Ladd M. Irvine1,2†, Barbara A. Lagerquist1,2, James A. Fahlbusch3,4, John Calambokidis4, 
Stanley M. Tomkiewicz5 and Bruce R. Mate1,2 

Abstract 

Despite spending most time underwater, the technology in use to track whales over large geographic ranges via 
satellite has been largely limited to locational data, with most applications focusing on characterizing their horizon-
tal movements. We describe the development of the RDW tag, a new Argos-based satellite telemetry device that 
incorporates sensors for monitoring the movements and dive behavior of large whales over several months with-
out requiring recovery. Based on an implantable design, the tag features a saltwater conductivity switch, a tri-axial 
accelerometer, and an optional pressure transducer, along with onboard software for data processing and detection 
of behavioral events or activities of interest for transmission. We configured the software to detect dives and create 
per-dive summaries describing behavioral events associated with feeding activities in rorqual whales. We conducted 
a validation by proxy of the dive summary and event detection algorithms using field data from a medium-duration 
archival tag. We also conducted a simulation exercise to examine how the expected data recovery would vary under 
different dive behavior scenarios and compared those results to empirical values from field deployments of the RDW 
tag on blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. The dive summary algorithm 
accurately reported dive depth and duration, while the accuracy of the lunge-feeding event detection algorithm was 
dependent on the precision of the accelerometer data that was used, with a predicted accuracy of 0.74 for correctly 
classifying feeding dives from 1/64-G precision data and 0.95 from 1-mG precision data. Simulated data recovery 
was lower with sparser transmission schedules, shorter mean dive durations, and lower rates of successfully received 
transmissions. Empirical data recovery was lower than expected from the simulation, suggesting the effect of addi-
tional factors, such as data gaps. By measuring key aspects of the per-dive behavior of large whales over multi-month 
timescales of movement, the RDW tags provide the ability to monitor previously unobservable behaviors across entire 
geographic ranges, extending the applications of satellite telemetry devices to new areas of whale physiology, behav-
ior, ecology, and conservation.
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Background
The field of wildlife tracking and bio-logging using elec-
tronic devices has experienced explosive growth in the 
last two decades thanks to important technological 
advances and decreasing costs, which have made it a 
widely accessible approach for the study of movement, 
both in terrestrial and aquatic animals [1, 2]. Despite the 
dawn of this “golden age of animal tracking,” large whales 
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remain among the most difficult species to study using 
these technologies. Whales are large, highly streamlined 
animals that cannot be captured for tag attachment. In 
addition, deploying and recovering electronic devices at 
sea on animals that have the capability to move great dis-
tances in short periods of time involves complicated and 
expensive logistics [3]. Furthermore, as with other air-
breathing aquatic animals that spend most of their time 
underwater, data transmission to earth-orbiting satellite 
platforms is limited to the brief periods that a whale is 
at the surface and a receiving satellite is simultaneously 
passing overhead. While these challenges have been 
partially overcome at fine scales by high-resolution (but 
short-duration) archival tags (e.g., [4–6]), the constraints 
associated with the transmission of large amounts of 
data over extended times together with the limited 
functionality of longer duration tags has led to a dearth 
of behavioral data at large spatio-temporal scales. This 
situation has restricted the scope of questions that have 
been addressed regarding whale distribution, movement, 
behavior, and ecology.

The primary technology for tracking the long-distance 
movements of large whales, in use since 1997, has been a 
“consolidated” tag design [7] linked to the Argos satellite 
system. The electronics and retention elements of con-
solidated tags are typically incorporated into a single tag 
housing that is implanted on the whale’s dorsal surface, 
from which only the antenna and a salt-water switch are 
external to minimize hydrodynamic drag [3, 8, 9]. These 
non-recoverable tags can stay attached for long periods 
of time (typically several months) before they fall off. In 
addition to locational data, some consolidated tag models 
have included capabilities for reporting surfacing inter-
vals and summarized dive behavior data in the form of 
time spent in discrete depth or temperature intervals (i.e., 
“histogram data”) or as per-dive metrics, such as dive 
duration and maximum dive depth [10–14]. While such 
summaries have provided useful information on overall 
diving behavior and time budgets, these data cannot be 
used to make inferences about actual prey encounters or 
prey captures, and so their value in terms of understand-
ing feeding behavior is limited.

Most of what we know about large whale diving behav-
ior comes from short- and medium-duration archival 
tags, which permit collection of continuous, sensor-rich 
data streams. For example, from these bio-loggers we 
have learned that prey capture events in several whale 
species are often associated with rapid changes in motion 
that can be identified by their stereotypical signatures in 
accelerometer data [15–18]. This information has been 
used to examine topics, such as the kinematics of feed-
ing behavior [6, 19, 20], feeding strategies in relation to 
the local prey field [21–25], or behavioral responses to 

anthropogenic activities [26–29]. However, the typical 
deployment period of these devices is limited to < 24  h 
(if attached with suction cups) or to a few days or weeks 
(if attached with subdermal anchors), and recovery of the 
tags is required to download the complete data record [4, 
26, 29–32].

At broader scales, whale foraging behavior has only 
been inferred indirectly from tracking data, either from 
the characteristics of horizontal movement (e.g., from 
concentrated locations [33]) or from summarized data 
(e.g., per-dive or histogram data [10, 11]). However, the 
relationship between inferred and direct measurements 
of whale feeding behavior across spatial and temporal 
scales remains unverified [34] and may vary with the 
scale of observation (i.e., the “grain size”; [35, 36]). As 
movement behavior is driven by resource tracking and 
food acquisition through a hierarchy of processes that 
operate at multiple spatio-temporal scales [37], obtain-
ing this information is essential to quantify the variability 
of resource dynamics and foraging strategies, to test pre-
dictions on emergent behavior, and to improve our over-
all understanding of how whales perceive and respond 
to their environment [2, 38]. Now more than ever, this 
information can be critical to guide biodiversity conser-
vation in the face of rapid global change [1, 2, 38].

Here we present a new satellite telemetry device for 
tracking the movements and dive behavior of large 
whales over several months without tag recovery. The 
tag, manufactured by Telonics, Inc. (Mesa, Arizona, 
USA), collects dive duration from a salt-water switch, 
inertial motion from a tri-axial accelerometer, and dive 
depth from a pressure transducer. The tag uses a micro-
processor-based approach [39] featuring data processing 
software for (a) detecting behavioral events from accel-
erometer data using an adaptive algorithm to account 
for individual variation in behavior, and (b) summariz-
ing and compressing dive data streams for transmission 
through the Argos system. While satellite-linked tag plat-
forms featuring accelerometers and associated software 
have been recently developed for detecting, abstracting, 
and transmitting behavioral measures of activity in other 
marine top predators [40–42], this is the first time that 
accelerometers with event detection software were used 
on a satellite-transmitting tag for large whales.

Methods
Tag development
Development of the tag proceeded incrementally 
between 2015 and 2017, during which time we tested a 
variety of tag and software configurations in collabora-
tion with Telonics. The initial model (RDW-640) used 
the salt-water switch to distinguish between dives and 
surfacings, and these data were compressed and relayed 
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via Argos. This model also included a tri-axial acceler-
ometer, but the software for processing this data stream 
was not yet developed, so the sensor was not active. A 
subsequent model (RDW-665) added a pressure sensor, 
increased battery capacity, and implemented a behavioral 
event detection algorithm to analyze the accelerometer 
data stream in real time. The updated model generated 
a data summary for every dive, consisting of dive dura-
tion, maximum dive depth, and number of behavioral 
events detected. Software onboard the tag’s microproces-
sor packaged these summaries into messages for trans-
mission through Argos, completing the development of 
the device. As the RDW-665 model included all compo-
nents and configurations that were used by the RDW-640 
model, from this point forward we refer to all tag versions 
as the “RDW tag” unless specifically noted.

Tag components and design
The RDW tag follows the same design of other consoli-
dated tags for large whales in use since 1997 [3], which 
consists of a main body, an antenna and external sensor 
endcap at the distal end, a penetrating tip at the proxi-
mal end, and an anchoring system (Fig.  1). The main 
body consists of a stainless-steel cylinder 18.5  cm in 
length × 1.9 cm in diameter that houses a motherboard, a 

certified Argos transmitter (401.650 MHz ± 30 kHz oper-
ational frequency), a thermistor for internal tag tempera-
ture monitoring, a tri-axial accelerometer, and a lithium 
battery pack (two DL2/3A Duracell® 1550 mAh 3 V cells 
in parallel). An external flexible whip antenna (15.8-cm 
long) and a stalked salt-water switch (2.2-cm long), both 
constructed of single-strand nitinol (1.27  mm in diam-
eter), are connected to the transmitter and mounted 
on a polycarbonate endcap (2.6  cm in external length) 
that seals the distal end of the cylinder with two rubber 
O-rings. The endcap is held in place by four stainless-
steel set screws drilled through the stainless-steel cyl-
inder. The port for the pressure sensor of the RDW-665 
model is also mounted on the endcap (Fig. 1).

The endcap has two perpendicular stops (1.5  cm 
long × 0.9 cm wide × 0.6 cm thick) extending laterally to 
prevent tags from embedding too deeply on deployment 
or from migrating inward after deployment. The pen-
etrating tip is attached to the main body by a threaded 
screw (1.17  cm long × 0.64  cm in diameter) and fixed 
with a set screw to prevent unthreading after deploy-
ment. It consists of a polyoxymethylene (Delrin®) nose 
cone into which a ferrule shaft with four double-edged 
blades is pressed and secured with a transverse roll-pin 
to prevent unintentional removal. The anchoring system 

Fig. 1 Schematic diagram of a fully assembled Telonics RDW-665 tag. Side view (top drawing) shows, from left to right, the distal endcap with the 
exposed Argos antenna and salt-water conductivity switch, the main body partially coated with antibiotic, and the penetrating tip and anchoring 
system with two rows of stainless-steel strips (“petals”) in deployed position. Top view (bottom drawing) shows the placing of the salt-water switch 
and the pressure transducer on the endcap. Both views show the two stop tabs extending laterally from the endcap to prevent the tag from 
embedding too deeply into the whale
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consists of two rows of ten outwardly curved metal strips 
(each strip was 3.2 cm long × 0.6 cm wide) mounted on 
the main body at the nose cone (proximal) end (Fig. 1). 
Total tag weight is approximately 300 g.

The tag’s cylinder is partially coated with a long-disper-
sant polymer matrix (Resomer® or Eudragit®) in which a 
broad-spectrum antibiotic (gentamicin sulfate) is mixed 
to allow for a continual release of antibiotic into the tag 
site for an extended time to reduce the chances of infec-
tion (Fig.  1). Like other consolidated tags, the RDW 
tag was designed to be almost completely implantable 
(except for the perpendicular stops, antenna, and salt-
water switch), and is ultimately shed from the whale due 
to hydrodynamic drag and/or the natural migration out 
of the tissue as a foreign body response [3]. The expected 
functional life of the RDW tags is 188 d when transmit-
ting 24 h per day with a 45-s repetition rate, and 95% of 
time spent underwater [43]. The ethics of the use of con-
solidated implantable tags on large whales are briefly dis-
cussed in the “Ethics approval and consent to participate” 
section.

Tag sensors
Argos transmissions are only attempted when the tag is 
above the water’s surface to save battery power [39]. The 
status of the salt-water switch (wet/dry) is used to record 
dive start and end times to calculate dive duration. The 
onboard pressure transducer allows collection of dive 
depth data with an accuracy of ± 2 m down to 200 m and 
then to ± 1% of deeper depths. A tri-axial accelerometer 
is also included, and records data at 8-bit precision (1/64 
G), with an accuracy of ± 0.003 G and a dynamic range 
of − 2 to 2 G. The sampling rate of tag sensors is user-
programmable and for our trials it was set to 1 Hz (1 s) 
for the salt-water switch, 0.2  Hz (5  s) for the pressure 
transducer, and 4  Hz (0.25  s) for the accelerometer. All 
versions of the RDW tag used in this study were tested 
in a water-pressure chamber to depths of 500 m with no 
failures.

Tag software

(a) Dive summary algorithm:

 Dive behavior is continuously recorded and sum-
marized for “selected dives,” defined as dives meet-
ing user-specified criteria for depth and duration, to 
generate “dive summaries”. For the tag deployments 
presented here, selected dives were identified as 
dives > 2 min in duration and > 10 m in depth. Sum-

mary parameters including the start date, time, and 
duration of each selected dive were recorded, along 
with the maximum depth of the dive. Other possi-
ble dive depth-related metrics can be reported by 
the tag, such as a summarized profile of individual 
dives based on a subset of inflection points or the 
percentage of time spent in user-defined depth bins 
[44], but we did not record them in this study.

(b) Event detection algorithm:
 The RDW tag can optionally be programmed for 

behavior event detection within selected dives 
using the accelerometer to detect rapid changes 
in motion, such as those often associated with 
lunge-feeding, or as a more general measure of 
activity based on variability of the accelerometer 
data, with the results included in the dive sum-
mary. Accelerometer sensor data are processed by 
the tag’s microprocessor using an adaptive event 
detection algorithm. Threshold parameters for the 
event detection algorithm are continually updated 
from the sensor data stream and informed future 
iterations of the algorithm, allowing it to adapt 
over time. This adaptability can account for differ-
ences in tag placement on the whale’s body, which 
can affect the magnitude and potential offsets of a 
sensor’s signal owing to site-specific differences 
in acceleration and mechanical processes [17, 45, 
46]. The event detection algorithm was specifi-
cally developed to detect lunge-feeding behavior 
in rorqual whales (family Balaenopteridae), which 
produces strong stereotypical signatures in accel-
eration data [47, 48] that can be used as a measure 
of feeding effort.

 For selected dives, events are inferred from the change 
in the acceleration vector (“jerk”), which for high-res-
olution archival tags is calculated as the norm of the 
difference in consecutive acceleration readings [17]. 
However, for this application, the jerk calculation is 
integrated over one full second (four measurements) 
by taking the magnitude of the vector difference in 
the current accelerometer readings from those one 
second previous. This variation is used to standard-
ize each measurement to 1 s and to reduce the effect 
of spurious readings. In addition, accelerometer read-
ings from the first 5 s and final 5 s of each selected dive 
are excluded to eliminate artifacts from fluke stroking 
associated with the start or end of a dive [19], as well as 
from ocean surface wave drag [20].

 The development of the event detection algorithm 
went through two iterations:



Page 5 of 17Palacios et al. Animal Biotelemetry           (2022) 10:26  

Version 1: A study by Simon et al. [19] showed that 
rorqual feeding lunges produce distinct peaks in 
jerk, so the initial event detection algorithm iden-
tified jerk values that exceeded the mean jerk by a 
threshold of 3.5 standard deviations (sd), with a 
30  s blanking time [17] between identified events 
to account for prey handling. If the threshold was 
exceeded multiple times during the blanking time, 
only the first instance was recorded. Software in 
the tag’s microprocessor allowed mean and sd of 
jerk values to be continually updated following each 
selected dive, making them the mean and sd of jerk 
for all selected dives up to that point. By updating 
criteria to identify lunge-feeding events, the algo-
rithm was able to adapt over time and converge on 
threshold values that better accounted for individual 
differences in accelerometer readings.

Version 2: A subsequent study by Allen et  al. [16] 
indicated that rorqual feeding lunges were best char-
acterized by a jerk value above a specified threshold 
(jerk maximum) followed by a value below a lower 
threshold (jerk minimum), so we updated the event 
detection algorithm to identify instances when 
the jerk value exceeded a threshold of 1.5 sd above 
the mean, followed by a value less than one half of 
the mean occurring within 30 s after the jerk peak. 
Jerk values had to exceed the upper threshold for 
2  s to qualify as a lunge-feeding event, to account 
for transitory crossings possibly generated by error. 
Lunge-feeding events for each selected dive were 
then counted after applying a 35  s blanking time, 
which retained the first event if multiple ones were 
detected. As with version 1, the threshold mean and 
sd jerk values were updated following each selected 
dive. Thresholds and blanking times were chosen 
based on those from Allen et al. [16], but modified 
to be more conservative due to the lack of addi-
tional information provided by a hydrophone in the 
high-resolution archival tags used in Allen et al. and 
the lower sampling rate of RDW tags (4  Hz versus 
50–500 Hz). Further description of the lunge detec-
tion methodology is presented in Irvine et al. [24].

(c) Data transmission via Argos:

 The RDW tag makes use of a highly compressed 
data transmission protocol to increase throughput 
of summarized dive data via Argos. Dive summa-
ries are collected into “dive summary messages,” 
consisting of a variable number of consecutive 
(typically four to ten) selected dives, depending on 
the number of reported summary parameters and 

other data compression factors such as the similar-
ity of data values being reported. The tag maintains 
a buffer that held up to ten dive summary messages 
in the tag’s microprocessor random-access mem-
ory. When enough dive summaries are recorded 
to create a new dive summary message, it is added 
to the buffer. If there are already ten messages in 
the buffer, the oldest message is discarded to make 
space for the new message.

 Tag transmissions can contain either one dive sum-
mary message (randomly selected from the buffer) 
or a utility message consisting of the tag’s current 
internal temperature and voltage for diagnos-
tic purposes. The update to version 2 of the event 
detection algorithm also added the current jerk 
mean and sd values into utility messages to monitor 
trends in those criteria over time.

Validation approach
In principle, field validation of data collected by the RDW 
tag would involve a quantitative comparison of the dive 
summaries obtained through Argos with equivalent sum-
maries generated from data recorded onboard the tag 
after a deployment. However, consolidated tags are not 
designed for recovery [3, 7], so this was not an option. 
Instead, in addition to verifying sensor functionality in 
the laboratory, we implemented a validation by proxy of 
our event-detection algorithm by running the tag soft-
ware on a continuous data record obtained by an archi-
val tag under field conditions. In addition, we evaluated 
the impact of transmission regimes on data recovery 
via Argos using simulations compared to empirical data 
obtained from field deployments of the RDW tag.

Sensor functionality
During development, we tested prototype tags in the 
laboratory to evaluate sensor functionality and ability to 
report dive summaries through the Argos system. We 
replicated dives of varying depths, duration, and com-
plexity by closing the salt-water switch and placing the 
tags in a pressurized chamber to replicate water depth. 
Enough dives were replicated to fill multiple dive sum-
mary messages, which were then transmitted during 
an Argos satellite pass and used to confirm agreement 
between the maximum dive depths and durations of rep-
licated dives and the corresponding tag-summarized val-
ues. In addition, diagnostic software in the tag allowed 
direct download of a short-duration segment of the con-
tinuous accelerometer record, which we used to confirm 
the sensor’s ability to record rapid changes in orientation 
and acceleration resulting from a person manipulating 
the tag to simulate abrupt motion changes.
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Dive summary and event detection algorithms
We implemented a proxy validation of the tag’s dive sum-
mary and event detection algorithms. For this purpose, 
we used a continuous data record from a Wildlife Com-
puters TDR10-F medium-duration archival tag (hereafter 
“TDR10 archival data”) deployed on a blue whale (Bal-
aenoptera musculus) for 17.8 d, while it was foraging off 
southern California in summer 2017 [26, 31]. We exam-
ined the performance of the RDW tag dive summary and 
event detection algorithms by running the TDR10 archi-
val data record through the RDW tag’s algorithms and 
comparing this output to the corresponding dive sum-
maries calculated from the TDR10 archival data using 
standard analytical workflows for dive data. Analyses 
were implemented in the R software for statistical com-
puting, v. 4.0.2 [49]. We note that, while the high resolu-
tion and precision of archival data are commonly used to 
investigate cetacean behavior, they are not guaranteed to 
fully represent the true behavior of a tagged whale. Thus, 
“known” events in the proxy validation analysis will refer 
to events known from the TDR10 archival data, rather 
than the true behavior of the whale.

As the TDR10 archival tag continuously recorded pres-
sure (depth) and tri-axial accelerometer data at 32 Hz, we 
decimated the sensor data to 4 Hz to match the sampling 
rate of the RDW tag. In addition, the TDR10 archival 
accelerometer data were recorded with a native preci-
sion of 1 mG, so we subsequently reduced it to 1/64 G 
to match the precision of the RDW tag observations. We 
identified “TDR10 dives” as those > 10 m depth using the 
find_dives() function from the R package tagtools [17, 50]. 
We then calculated the maximum depth and duration for 
each dive, as well as their start and end times using cus-
tom R scripts. Feeding lunges were identified manually 
using stereotypical kinematic signatures from the 32-Hz 
accelerometer data (i.e., the animal’s depth, pitch, roll, 
and speed, [51]).

We used the RDW dive summary and event detection 
algorithms to generate dive summaries from the TDR10 
archival data (hereafter “RDW dives”) as they would be 
received through Argos during an in-situ deployment 
(i.e., dive start date-time, maximum dive depth, dive 
duration, and number of lunge-feeding events) based on 
the decimated 4-Hz pressure and 1/64-G accelerometer 
data. To validate the RDW dive summary algorithm, we 
matched known dive summaries from the TDR10 dives 
to corresponding RDW dives using the dive start date-
times and used linear regression to quantify the cor-
respondence between maximum dive depth and dive 
duration values. For the number of lunge-feeding events 
per dive, we used polychoric correlation to assess the 
relationship between the number of RDW-detected 
lunge-feeding events and the number of known feeding 

lunges identified in the TDR10 archival data summary. 
This analysis provided an approximation of a Pearson’s 
correlation coefficient for two ordinal variables and was 
conducted using the R package polycor v. 0.7-10 [52].

The ordinal nature of the number of lunge-feeding 
events per dive limited the utility of typical classifica-
tion analyses, such as confusion matrices. Instead, we 
grouped known dives from the TDR10 archival data for 
each ordinal level of feeding lunges per dive, and calcu-
lated a false negative rate as the number of false negatives 
in the RDW-detected lunge-feeding events divided by the 
number of dives in the TDR10 archival data summary 
for that level. A similar procedure was conducted to cal-
culate the false positive rate. These values represent the 
mean number of lunge-feeding events missed per dive 
and the mean number of incorrectly identified lunges per 
dive, respectively, for each ordinal level.

As indicated above, the precision of the accelerometer 
sensor of the RDW tags was limited to 1/64 G, while the 
TDR10 accelerometer data were natively recorded at 1 
mG. This allowed us to repeat the proxy validation pro-
cess at the higher precision to determine if sensor preci-
sion influenced the accuracy of the RDW event detection 
algorithm, offering the opportunity to improve future 
versions of the tag.

Synthetic metrics of feeding behavior
Ecological studies often require data to be considered 
at different grain sizes to investigate emergent patterns 
at different domains of scale [53–55]. The RDW tag 
was developed to monitor large whale feeding behavior 
across ecologically relevant spatio-temporal scales (i.e., 
10s to 1000s of km and days to months), such that further 
synthesis of event data into coarser-grained metrics of 
feeding behavior may offer insights at broader scales [35, 
54, 55]. We evaluated the ability of RDW data to describe 
patterns of feeding at the per-dive level (i.e., feeding ver-
sus non-feeding dives) and at the per-feeding-bout level 
(i.e., sequences of feeding dives) relative to the TDR10 
archival data.

The classification of RDW-derived feeding dives was 
validated by comparison to known feeding dives iden-
tified from the TDR10 archival data using a confusion 
matrix calculated with the function confusionMatrix() 
in R package caret v. 6.0-86 [56]. For this classification, 
we report the true positive detection rate as the num-
ber of correctly classified feeding dives divided by all 
known feeding dives, the false positive detection rate as 
the number of incorrectly classified feeding dives divided 
by all known non-feeding dives, and the accuracy as the 
sum of correctly classified feeding and non-feeding dives 
divided by the total number of dives.
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To assess temporal trends in feeding intensity through 
feeding bouts obtained from the RDW and TDR10 dive 
summaries, we graphically examined the probability 
density distribution of the period of time between feed-
ing dives to identify a behavioral change point criterion, 
where the right tail of the distribution stabilized at a 
low value. Feeding bouts were identified as sequences of 
dives, where feeding dives were separated by a period no 
longer than the criterion. A period longer than the crite-
rion was interpreted as the whale changing its behavior, 
or possibly leaving a feeding patch. We tested the RDW-
derived probability density distribution for consistency 
with the distribution of values from TDR10 data using 
Bhattacharyya’s similarity coefficient [57, 58], where 
values < 0.05 and > 0.95 indicate that the distributions 
are significantly different, or similar, respectively, and 
intermediate values indicate the probability of overlap 
between the two distributions [57]. The number of RDW-
derived bouts was then compared to the number of 
known TDR10-derived bouts. As described above for the 
dive summary and event detection algorithms, the syn-
thetic metrics described in this section were generated at 
the 1/64-G precision of the RDW accelerometer sensor 
as well as at the 1-mG precision of the TDR10 sensor.

Assessment of data recovery via Argos
Recovery of RDW dive summary data via Argos during 
field deployments is dependent on the coincident occur-
rence of the whale at the surface, with the tag scheduled 
to transmit, while a satellite is overhead to receive the 
transmission. If a dive summary message is replaced by 
a new message in the transmission buffer without having 
been received by a satellite, its data are lost. Thus, data 
recovery (i.e., the number of summarized dives received) 
will depend on the number of messages received by a 
satellite over a given time period. Whales making short-
duration dives will generate more dive summary mes-
sages per day than whales making long-duration dives, 
filling the transmission buffer more quickly and poten-
tially replacing messages before they are received by a 
satellite. Furthermore, longer time periods spent at the 
surface will allow more messages to be transmitted com-
pared to shorter surface periods, increasing the likeli-
hood of a satellite being overhead when a message is 
transmitted.

To characterize the expected data recovery dur-
ing an RDW tag deployment we conducted simulation 
experiments, where time series of dives for a hypotheti-
cal whale were generated under a range of behavioral 
and tag programming regimes, to test their effect on 
data recovery. The results of these simulations were 
then compared to empirical values collected from 
field deployments conducted on blue and humpback 

(Megaptera noveaeangliae) whales off California during 
summer of 2017. A dive time series was composed of 
sequences of dives followed by post-dive intervals (PDI) 
during which a whale is near the surface for a cycle of 
respirations before the next dive. We generated two 
representative time series of dives (n = 4000), matched 
in time to real satellite pass intervals, by sequentially 
drawing a dive duration from log-normal distribution, 
then calculating a corresponding PDI based on predic-
tions from a linear model fit to dive duration and PDI 
values gleaned from Dolphin [59] and Acevedo-Gutié-
rrez et  al. [60] (PDI = 0.07944 + 0.29333 × duration). 
A “short-dive” time series simulated a whale making 
short-duration dives (mean = 3  min, sd = 1.5  min), 
while a “long-dive” time series consisted of longer dura-
tion dives (mean = 9  min, sd = 1.3  min). These values 
were intended to broadly reflect the dive behavior of 
humpback [59] and blue whales [60, 61], respectively, 
although the species designation is ultimately unim-
portant, as we expect similar results from other spe-
cies with similar dive behavior. The 4000-dive length of 
the time series was chosen so the time series would last 
multiple weeks, allowing for a range of daily satellite 
pass durations to be incorporated.

For each simulated dive time series, different tag pro-
gramming regimes were implemented to determine their 
effect on data recovery. Sequential groups of seven dives 
from a time series were identified to replicate RDW tag 
dive summary messages and added to (and later removed 
from) a simulated transmission buffer holding ten mes-
sages. Daily simulated transmissions occurred either 
during six, 1-h periods (“6-h schedule”) scheduled to 
coincide with the most likely time a satellite would be 
overhead, or during alternating hours of the day (“12-h 
schedule”) to replicate the range of compromises that 
Argos users often have to make between continuously 
transmitting and conserving battery power by reducing 
the number of transmissions. Satellite pass predictions 
were obtained with the satellite pass prediction tool avail-
able to users of the Argos system via their website [62] for 
the area off Newport, OR, USA (45° N, 124° W).

During each PDI when simulated transmissions were 
scheduled to occur, a dive summary message was ran-
domly selected with replacement from the transmit 
buffer every 30, 60, or 120  s (transmit interval) and 
assumed to have been transmitted. The different trans-
mit intervals are meant to reflect individual and inter-
specific differences in a whale’s respiration cycle, while 
at the surface, which controls when tags can transmit. 
Data from a transmitted dive summary message were 
considered “received” if the transmission time coin-
cided with a predicted satellite pass and it was retained 
after accounting for an empirically determined message 
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corruption rate of 44% (detailed in the next section). 
We ran simulations for both short- and long-dive time 
series with all combinations of tag programming condi-
tions and calculated the proportion of all dive summa-
ries received (after excluding duplicates) compared to 
the true number of dives in the simulated time series. 
Hourly plots of the number of received dives were also 
made to examine temporal trends in data recovery that 
might be related to patterns of satellite coverage and/or 
transmit schedule.

Field deployments
To provide an empirical comparison to proxy validation 
results and simulated predictions, we obtained the event-
detection threshold values and characterized data recov-
ery and message corruption for 28 RDW tags deployed 
on blue (n = 14) and humpback whales (n = 14) off south-
ern and central California during July–August 2017 [63, 
64]. Seven humpback whale tags were RDW-660 (which 
only reported dive start time and duration), while the 
other seven tags were RDW-665 (which recorded dive 
start time, duration, maximum dive depth, and num-
ber of lunge-feeding events). All blue whale tags were 
RDW-665. To conserve battery power and maximize 
operational tag life, RDW-660 tags were programmed 
to transmit when at the surface for five 1-h periods each 
day, while RDW-665 tags were programmed to transmit 
for six 1-h periods. Both RDW tag models were pro-
grammed with a 10-s transmit repetition rate when at the 
surface. These transmission periods were selected based 
on satellite pass predictions for the time and location of 
tag deployment, available to users of the Argos system via 
their website [62].

For each tag deployment, we used the received data 
to extract the event-detection threshold values (mean 
and sd jerk) from utility messages and summarized 
them based on their minimum, maximum and last val-
ues reported. We also identified and removed corrupted 
messages of all types using the Cyclic Redundancy Check 
(CRC) code, and determined the proportion of corrupted 
messages relative to the total number of received mes-
sages. We then calculated the number of unique daily 
dive summary messages received and plotted the number 
of received dives by hour for comparison to simulated 
results. We also calculated the percent of both the sim-
ulated and empirical time series data that was summa-
rized by received transmissions as the sum of all received 
dive durations and PDIs divided by the total duration 
of the time series. During field deployments, dive end 
times were calculated as the sum of the dive start time 
and duration, while PDI was calculated as the differ-
ence between a dive start time and the end time of the 

previous dive. As the PDI value for the last dive in a dive 
summary message cannot be calculated, the complete 
dive time series cannot be recovered. For this reason, we 
removed the last PDI value from each received dive sum-
mary message in our simulation study to better match 
the empirical data when calculating the percent of the 
tracking period summarized.

Results
Proxy validation of dive summary data
1/64‑G precision data
The RDW dive summary algorithm identified 
2462 selected dives and 1302 lunge-feeding events 
(range = 0–11 per dive; Additional file  1: Fig. S1) when 
implemented on TDR10 archival data at the reduced pre-
cision of the accelerometer sensor of the RDW tags used 
in field deployments (1/64 G). Of these, 753 dives con-
tained at least one feeding lunge, and were consequently 
classified as feeding dives. A total of 6317 feeding lunges 
(range = 0–12 per dive) were manually identified in 1345 
feeding dives when generating known dive summaries 
from the TDR10 archival data. There was a near-perfect 
correlation between the two sets of dive summaries for 
both maximum dive depth and duration (Spearman’s 
rank correlation, ρ = 1; Additional file 1: Figs. S2 and S3).

The threshold values (mean and sd of jerk) of the RDW 
event detection algorithm stabilized quickly and had 
no variation after about 80 dives over the initial 13  h 
of the 17.8-d tracking period (mean jerk = 2/64 G/s, 
sd jerk = 4/64 G/s; Additional file  1: Fig. S4). The num-
ber of detected RDW lunge-feeding events per dive was 
positively correlated with the number of feeding lunges 
detected in the TDR10 archival data (polychoric correla-
tion r = 0.63; Fig. 2). The false negative rate by lunges per 
dive ranged from 0.56 to 5.6 (excluding a single 12-lunge 
dive that the event-detection algorithm missed by 1 
lunge), while the false positive rate ranged from 0 to 0.02 
(Additional file 1: Table S1).

The accuracy of the RDW event detection algorithm 
when classifying feeding/non-feeding dives at 1/64-G 
precision was 0.74 when compared to known feeding 
dives from the TDR10 archival data (Table 1). The true-
positive detection rate was 0.55, indicating many feed-
ing dives were not correctly identified by the RDW event 
detection algorithm. However, the false-positive detec-
tion rate was 0.018, indicating that, when a feeding dive 
was identified, it was almost always correctly classified.

The probability density distribution of time between 
feeding dives showed a high degree of overlap between 
RDW and TDR10 data (Bhattacharyya’s similarity coeffi-
cient = 0.82). Most times between feeding dives occurred 
at ≤ 60 min (Additional file 1: Fig. S5), indicating 60 min 
as a good criterion to identify the end of a feeding bout. 
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Using this criterion, the RDW data generated 70 feeding 
bouts, 21 of which were single-dive bouts. Since our goal 
for identifying feeding bouts was to illustrate how coarse-
grained metrics of feeding activity could be generated 
from RDW tag data, single-dive bouts were removed, 

resulting in a total of 49 feeding bouts, compared to 20 
known feeding bouts recorded by TDR10 data (none of 
which were single-dive bouts).

1‑mG precision data
Implementing the RDW event detection algorithm at 
the native (1-mG) resolution of the TDR10 archive data 
resulted in the detection of 4452 lunge-feeding events 
(range = 0–10 per dive; Additional file  1: Fig. S1) and 
1372 feeding dives, compared to 6317 known lunge-feed-
ing events and 1345 feeding dives in the TDR10 archive. 
The threshold values (mean and sd of jerk) of the RDW 
event detection algorithm converged on initial ranges of 
± 5 mG/s for both parameters after about 110 dives over 
the initial 19 h of the 17.8-d TDR10 tag deployment, and 
eventually stabilized to consistent values after approxi-
mately 1  week (mean jerk = 49.9 mG/s, sd jerk = 67.5 
mG/s; Additional file  1: Fig. S4). The number of RDW 
lunge-feeding events per dive detected from 1-mG data 
was closely positively correlated with the number of 
known feeding lunges from the TDR10 archive data 

Fig. 2 Boxplots of the results of the proxy validation of the RDW tag’s event detection algorithm showing the number of detected lunge-feeding 
events per dive as a function of the known number of feeding lunges per dive determined from a 17.8-d TDR10 archival record of a blue whale. Top 
panel shows results for 1/64-G data, while the bottom panel shows results for 1-mG data. Width of boxes is proportional to the sample size for that 
category and the numbers at the top of the plot represent the number of dives in that category. Data points are jittered on both axes for better 
visibility

Table 1 Confusion matrix showing the classification of feeding 
and non-feeding dives by version 2 of the RDW-665 event 
detection algorithm compared to dives summarized from 
continuous Wildlife Computers TDR10-F archive data

True positive (TP) and false positive (FP) detection rates are presented in the 
right margin

TDR10 archive dives

Feeding Non-feeding

1/64-G RDW dives

 Feeding 733 20 TP rate = 0.55

 Non-feeding 612 1097 FP rate = 0.018

1-mG RDW dives

 Feeding 1297 75 TP rate = 0.96

 Non-feeding 48 1042 FP rate = 0.067
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(polychoric correlation r = 0.88; Fig.  2). The mean false 
negative rate by lunges per dive ranged from 0.29 to 1.83 
(excluding two single-dive ordinal levels with one and 
two false negatives), while the false positive rate ranged 
from 0 to 0.22 (Additional file 1: Table S1).

The accuracy of the RDW event detection algorithm 
when classifying a feeding dive at the native (1-mG) res-
olution of the TDR10 archive data was 0.95 when com-
pared to known feeding dives identified from the TDR10 
archive data (Table  1). The true-positive detection rate 
was 0.96, while the false-positive detection rate was 
0.067, indicating that the vast majority of feeding dives 
were correctly classified by 1-mG RDW dives.

The probability density distribution of time between 
feeding dives showed a high degree of overlap between 
RDW and TDR10 dives (Bhattacharyya’s similarity coeffi-
cient = 0.83). Most times between feeding dives occurred 
at ≤ 60 min (Additional file 1: Fig. S5), indicating a good 
criterion to identify the end of a feeding bout. Using this 
threshold, the RDW data generated 31 feeding bouts, 11 
of which were single-dive bouts. When single-dive bouts 
were removed, RDW data reported 20 feeding bouts, 
which was the same as recorded by TDR10 data.

Data recovery via Argos
As expected, simulated data recovery increased with 
decreasing transmit intervals (i.e., more received dive 
summary messages), while longer mean dive duration 
and PDI increased the proportion of simulated dive sum-
maries that were recovered (Table  2). The 6-h transmit 
schedule resulted in the recovery of 80.8–97.5% of long-
dive summaries across all transmit intervals compared 
to 53.2–74.6% for short-dive summaries. This represents 
a relative increase in data recovery of 20.6% and 40.2%, 

respectively, for a quadrupling of the dive summary 
messages transmitted between the shortest and longest 
transmit intervals. More than 84% of the simulated dive 
summaries were recovered across both short- and long-
dives when the 12-h schedule was used (Table 2), with a 
relative increase in data recovery of 14.3% for short-dive 
summaries and only 1.2% for long-dive summaries across 
the range of transmit intervals. For the short-dive time 
series, gaps were present in the daily pattern of recovered 
dives when using the 6-h transmit schedule and were cen-
tered on gaps in transmit times, related to satellite cover-
age (Fig. 3, Additional file 1: Fig. S6). In these instances, 
most dives were recovered for the period 3–4 h before a 
scheduled transmission hour. No data gaps were present 
in the daily pattern of recovered dives for the long-dive 
time series, although for longer transmit intervals (60 s, 
120 s), fewer dives were recovered during hours near the 
start of long gaps in satellite coverage (Table  2, Fig.  3, 
Additional file 1: Fig. S6).

Field deployments
Event-detection threshold values received from RDW tag 
utility messages were generally higher than those calcu-
lated by the proxy validation using the TDR10 archival 
data, with mean jerk thresholds for blue whales ranging 
from 5/64 to 16/64 G/s (sd jerk range: 9/64–19/64 G/s) 
and from 9/64 to 19/64 G/s (sd jerk range: 6/64–18/64 
G/s) for humpback whales (Additional file  1: Table  S2). 
The median percentage of corrupted messages for blue 
whales was 44% (range: 28–58%) for blue whales and 18% 
(range: 10–32%) for humpback whales (Additional file 1: 
Table  S3). Fewer dive summaries were recovered from 
RDW tags deployed on blue and humpback whales than 
would be expected from the simulation of data recovery 

Table 2 Summary results for a simulation exercise investigating the effect of different dive behaviors and Argos transmission regimes 
on data recovery

Daily transmission 
schedule

Transmit 
interval (s)

Mean (sd) unique daily 
received transmissions

% of time series 
summarized

Mean (sd) unique daily 
received transmissions

% of time series 
summarized

Short-dive time series Long-dive time series

6 h 30 34.1 (8.4) 74.60% 16.9 (2.8) 97.0%

60 28.5 (7.4) 62.80% 16.3 (2.9) 93.30%

120 24.5 (6.9) 53.20% 14.2 (2.9) 80.80%

12 h 30 44.5 (9.6) 96.10% 17.1 (2.3) 97.0%

60 43.1 (9.6) 92.90% 17.0 (2.5) 96.30%

120 38.3 (8.9) 84.10% 16.8 (2.6) 95.80%

Field deployments Humpback Blue

RDW-665 (6 h) 11.1 (4.6) 71.1% (18.3) 8.8 (5.2) 45.8% (15.0)

RDW-660 (5 h) 5.6 (3.3) 33.9% (15.0)
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rates. A mean of 8.8 (sd = 5.2) unique dive summary 
messages were received per day from tags attached to 
blue whales, summarizing a mean of 45.8% (sd = 15.0%) 
of the tracking duration (Table  2, Fig.  4). Fewer unique 
daily dive summary messages were received from hump-
back whales tagged with RDW-660 tags (mean = 5.6, 
sd = 3.3; transmit schedule: five 1-h periods) compared to 
those tagged with RDW-665 tags (mean = 11.1, sd = 4.6; 
transmit schedule: six 1-h periods), which resulted in a 
smaller percentage of the tracking period being sum-
marized (mean = 33.9% versus 71.1%, sd = 15.0% ver-
sus 8.3%, respectively). However, by reporting one less 
parameter (maximum dive depth), RDW-660 tags were 
able to transmit over 40% more dives per dive summary 

message compared to RDW-665 tags (mean = 10.1 versus 
7.0 dives per transmission, respectively; Fig. 4C).

Discussion
Proxy validation of dive summary data
The RDW dive summary and event detection algorithms 
were able to capture with varying success the observed 
dive and feeding behavior of a blue whale tracked for 
17.8 d with a TDR10 tag, whose archival record was used 
for validation. Maximum dive depth and duration were 
reported with high accuracy, while accuracy was low for 
the 1/64-G precision accelerometer data when reporting 
the number of lunge-feeding events made during a dive. 
However, the higher accuracy and very low false-positive 

Fig. 3 Simulation results to test the effect of RDW tag dive summary and transmission regimes on data recovery. Dives were simulated for an 
animal making relatively short-duration dives (e.g., humpback whales; A) and long-duration dives (e.g., blue whales; B). Dive summary messages 
were assumed to have been transmitted every 60 s during six 1-h periods (purple horizontal bars) scheduled to coincide with the greatest chance 
of a predicted satellite pass (C). Dive summaries were assumed to have been received if a satellite was predicted to be overhead when the message 
was transmitted



Page 12 of 17Palacios et al. Animal Biotelemetry           (2022) 10:26 

detection rate when classifying dives as feeding or non-
feeding, as well as the similarity of feeding bout metrics 
derived from RDW and TDR10 data, indicate that these 
data are useful for coarser-grained characterizations of 
feeding behavior. Furthermore, the performance of the 
event detection algorithm was significantly improved in 
all aspects by increasing the precision of accelerometer 
readings from 1/64 G to 1 mG.

The small mean jerk values calculated from the TDR10 
archival data (~ 2/64 G/s; Additional file 1: Fig. S4), and 
used as thresholds to trigger an event detection, meant 
that the minimum jerk criteria (less than half the mean 
jerk) could not be resolved well at 1/64-G resolution. The 
added precision of the 1-mG data better resolved these 
small values, allowing for a greater number of possible 
values that met the minimum jerk criteria, resulting in 
improved detection performance. All new versions of the 
RDW tag now support 1-mG precision accelerometer 

data. (Parenthetically, the RDW event detection algo-
rithm at the 1/64-G precision may have performed bet-
ter during field deployments than our validation results 
indicated, as empirical mean and sd jerk threshold val-
ues were larger than those reported for the TDR10 data, 
allowing a greater ability to resolve values below the min-
imum jerk criteria).

Probability density curves for time between feeding 
dives were generally similar in shape for both 1/64- and 
1-mG data, although when the behavioral change point 
criterion was applied, 1/64-G data produced more bouts, 
including numerous single-dive bouts. This result was 
likely due to the high number of false-negative feeding 
dives identified by the RDW event detection algorithm 
at 1/64 G, which divided feeding bouts observed in the 
TDR10 archival data into multiple shorter bouts. An 
implementation of this feeding bout analysis is not cur-
rently feasible for field deployments of RDW tags, as 

Fig. 4 Percent of tracking period summarized (A), number of unique dive summary messages received per day (B), and number of received dive 
summaries per transmission (C) from RDW tags deployed on humpback and blue whales off California during summer 2017



Page 13 of 17Palacios et al. Animal Biotelemetry           (2022) 10:26  

limitations of satellite coverage, whale surfacing behav-
ior, and other factors affecting tag transmission can result 
in often incomplete time series of dive summaries (see 
results from the data recovery rate simulation; Fig.  3). 
However, planned improvements to the Argos satellite 
constellation, as well as other recent developments to 
improve reception of satellite transmissions [65, 66] raise 
the possibility of better data recovery in the future, lead-
ing to an improved ability to characterize feeding behav-
ior at varying spatial and temporal scales.

Data recovery via Argos
The simulation exercise suggested that very high data 
recovery rates should be possible, and, although the 
empirical results did not perform as well, these results, 
and the relative differences in data recovery, provided 
insights for how users can plan deployments and maxi-
mize the amount of data collected. The rate of trans-
missions received by the satellite (reception rate) is the 
primary constraint on data recovery, so increasing the 
daily transmit hours will boost data recovery, as dem-
onstrated by the difference in percent of the time series 
summarized between 6-h and 12-h daily transmission 
schedules (Table  2). However, the gain in received 
transmissions from increased transmit hours will come 
with a trade-off of higher battery consumption rate, 
and further depend on species-specific variation in 
behaviors, such as surfacing rates, which might limit 
opportunities for a tag to transmit, as well as potential 
differences in message corruption rate as suggested by 
our empirical estimates [67].

The time period summarized by each transmission 
is an additional constraint on the data recovery rate. 
Assuming reception rates are equivalent, a greater 
proportion of the tracking period will be summa-
rized from animals making long-duration dives com-
pared to shorter dives (as observed with the long-dive 
time series). Each dive summary message will report a 
longer portion of the tracking period, and fewer mes-
sages need to be received to summarize the entire 
track. If a target species makes short-duration dives, 
the time period recorded by a dive summary message 
can be expanded to boost data recovery by selecting 
only longer duration dives to summarize, provided it 
fits with the research goals. Similarly, the time period 
summarized by a transmission is dependent on the 
number of dives it reports, with more dives represent-
ing a longer summary time period. By reporting one 
less parameter, the RDW-660 tags reported a mean 
of ten dives per transmission, compared to seven by 
RDW-665 tags. In this case, the gain in data recovery 
was likely offset by the reduction of transmission hours 

from 6 to 5 but it offers an additional way to increase 
data recovery depending on the needs of the study.

Argos satellite coverage is not ubiquitous, and the effect 
of coverage gaps was observed in the temporal pattern of 
reduced hourly data recovery (Fig. 3). During longer gaps 
in satellite coverage, dive summary messages can pass 
through the transmission buffer without a satellite ever 
having been overhead, especially if new messages are 
generated quickly, as was the case for the short-dive time 
series. Shorter satellite-coverage-related data gaps can be 
expected for animals making longer-duration dives (as 
shown by the long-dive time series), as each dive sum-
mary message will report a longer portion of the tracking 
period, bridging more of the gap in satellite coverage.

Our empirical assessment of data recovery from field 
deployments of the RDW tag was lower than the expec-
tation from our simulation exercise. This is not entirely 
surprising, as satellite tracking data, especially in the 
marine realm, are oftentimes affected by poorly under-
stood or undetermined extrinsic factors that result in 
data gaps and that reduce the amount of data reported 
(see next section). The transmission schedule for these 
tags was set as a compromise between data recovery and 
battery longevity, and future deployments will use differ-
ent protocols to meet the needs of each specific project.

Limitations
Recovery of data from instrumented animals is a signifi-
cant hurdle for research, especially when conducted on 
large whales, which can move > 100 km per day and do 
not return to a central place, where a tag can reliably be 
recovered [3, 68]. For RDW tags, data recovery is limited 
by the coincident occurrence of the tagged whale sur-
facing, while an Argos satellite is overhead to receive a 
transmission. As shown by our simulations, the duration 
of recorded dives can also affect data recovery, as longer 
dives will summarize a greater portion of the tracking 
period with each transmission. Collectively, this means 
that dive summary time series from RDW tags are rarely 
complete, and the number of dives reported from each 
tag can vary widely depending on individual behavior 
and transmission schedule. Furthermore, even if recov-
ery of the entire summarized time series is achieved, it 
must be understood that dives not meeting selected dive 
criteria are not recorded by the RDW tag. Extrinsic fac-
tors such as bad weather or biofouling can also affect 
data recovery by limiting or corrupting satellite transmis-
sions. The biases associated with these dive summaries 
are related to the degree of irregularity and the scale of 
the behavior being studied [69, 70], but a more adequate 
characterization will require dedicated research. For 
these reasons, RDW tags should be considered to provide 
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a relative index of dive behavior, rather than a continuous 
and complete record.

We assumed that the received dives were a random 
sample of selected dives that occurred during the track-
ing period. However, the process of grouping consecutive 
dives for transmission may introduce bias through serial 
correlation, while the whales’ surfacing patterns and tag 
duty cycling may further contribute to a lack of inde-
pendence in ways that remain to be characterized. Thus, 
more research is needed to assess how dive summaries 
are received, if animal behavior might affect these trends, 
and how the relevant scales of behavior being studied 
might be affected. For this reason, in-situ validation of 
detected events by means of using concurrently attached 
bio-loggers on whales carrying RDW tags remains a high 
priority.

Conclusions
The correspondence between RDW and TDR10 dive 
summaries and their derived feeding bouts in the proxy 
validation exercise demonstrated that RDW tags can 
link local-scale behavior to broader, regional, or ecosys-
tem-scale processes by monitoring per-dive behavior 
over multi-month timescales of movement. A previous 
study using medium-duration tags [24] showed that the 
number of feeding lunges made per dive is related to the 
duration of feeding bouts in both blue and fin whales, 
suggesting that longer term behavioral monitoring can 
more fully describe the drivers of residence time over the 
course of the feeding season. In addition, these behav-
iorally mediated processes such as sex-based habitat 
partitioning or diel changes in depth related to prey dis-
tribution can lead to variable or differential exposure to 
anthropogenic impacts [24, 26, 71], making this infor-
mation highly useful to management and conservation 
organizations.

Conceptually, the flexible sensor configuration and 
adaptive software capabilities of RDW tags makes them 
generalizable for a variety of applications with cetaceans, 
which may extend to studies of species that use other for-
aging tactics, such as raptorial feeding or ram-filtration 
[72]. Known behavioral cues associated with non-feed-
ing behaviors could also be incorporated into the event 
detection algorithm, for example to investigate patterns 
and trends in male singing [73, 74] or agonistic interac-
tions [75]. The tags could also be used to monitor changes 
in body condition over time based on trends in buoyancy, 
as implemented through hydrodynamic glide models 
[76–78]. Such information could further inform studies 
of the effects of anthropogenic disturbance on individuals 
and how related changes in fitness might scale up to the 
larger population (e.g., [79, 80]).

Advances in microprocessor technology continue 
to reduce component size, operating voltage, and cur-
rent consumption, while at the same time increasing 
the available on-board memory and processing speed. 
Future improvements to the software (e.g., refinement 
of event detection algorithms) and advances in hard-
ware (e.g., addition of other environmental sensors 
and increasing sensor precision) will further expand 
RDW tag applications for ecology, management, and 
conservation. The RDW tag joins a new generation of 
devices with the technological capacity to collect and, 
in some cases, process large volumes of data onboard 
[26, 41, 81]. These advances pave the way for the rou-
tine generation of key metrics of dive behavior for 
marine wildlife onboard non-recoverable smart tags 
across large spatial and temporal scales, while the abil-
ity to dynamically update event detection parameters 
(e.g., to account for differences in tag placement or 
behavioral trends) offers opportunities for improved 
long-term behavioral and physiological monitoring.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 022- 00297-9.

Additional file 1. This file contains two tables and five figures providing 
additional information related to the proxy validation of the RDW tag dive 
summary and event detection algorithms. It also includes one table pro-
viding per-tag information on data corruption from transmission through 
Argos, and one figure with simulation of data recovery through Argos 
using a 12-h transmission schedule.
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