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Abstract 

Background:  An animal-borne video recording system has recently been developed to study the behavior of free-
ranging animals. In contrast to other types of sensor data (i.e., acceleration), video images offer the advantage of directly 
acquiring information without analysis. However, most previous findings have only been obtained through visual obser-
vation of image data. Here, we demonstrate a new method of data analysis for animal-borne videos using a computer 
vision technique referred to as template matching. As a case study, we tracked the horizontal head movements of green 
turtles (Chelonia mydas) to investigate how they move their heads to look around the underwater environment.

Results:  Template matching allowed tracking of head movements with high accuracy (0.34 ± 0.12 % and 
0.52 ± 0.29 % of the root-mean-square error on the x- and y-coordinates, respectively), high true (86.2 ± 8.1 %), and 
low false extraction rates (6.6 ± 8.4 %). However the program sometimes failed because the turtle’s head would move 
out of range of the video. During cruising swimming, green turtles did not significantly move their heads to one 
side, moving with a ratio of 50.5:49.5 (left: right). Green turtles moved their heads from side to side more widely and 
more slowly before (12.0 ± 4.6 point and 0.25 ± 0.03 Hz, respectively) and after taking a breath (27.5 ± 2.9 point and 
0.27 ± 0.03 Hz) compared to during cruising swimming (8.4 ± 3.8 point and 0.32 ± 0.01 Hz). Before feeding, turtles 
moved their heads slowly (0.23 ± 0.03 Hz) and narrowly (9.3 ± 3.6 point). Our combined approach using video and 
gyro loggers revealed that when making a turn, turtles always turned their heads to the side 1.38 ± 0.77 s before turn-
ing their body.

Conclusions:  Our method enables researchers to quantitatively extract information regarding vision cognition and 
behavioral responses in green turtles in the wild that could not otherwise be obtained from other sensors used in pre-
vious studies. This new method using a combination of computer vision and bio-logging (e.g., gyroscope) can serve 
as a powerful tool in animal behavior and ecological studies.
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Background
In field studies, it has been difficult to measure how 
free-ranging animals recognize environmental stimuli 

and respond to them due to the difficulty of measur-
ing responses using devices in the wild. Therefore, most 
previous studies on cognition processes and behavior of 
animals have been conducted using well-trained animals 
within a restricted space, such as an arena or tank [1]. 
However, biotelemetry and bio-logging techniques have 
enabled researchers to understand behavioral responses 
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to environmental stimuli such as temperature (e.g., [2, 
3]) by investigating the relationship between movement 
and temperature data. However, it has been yet diffi-
cult to investigate directed behavioral responses to the 
surrounding environment, which were impossible to 
measure by conventional sensors (e.g., accelerometer). 
Therefore, only a few studies using novel sensors such as 
EEG [4] have attempted to determine how free-ranging 
animals respond to the environment in the wild.

In recent years, an animal-borne video and still-record-
ing system has been developed to study the behavior of 
free-ranging animals [5]. In contrast to other types of 
sensor data (i.e., acceleration), video and still images 
have the advantage of allowing for the collection of a 
large amount of directional information without analy-
sis. This advantage allows researchers to obtain detailed 
information regarding wild animals, such as social behav-
ior [6–8], prey items [9, 10], tool use [11], gas exchange 
[12], and habitat environment [13, 14]). However, most 
of these previous findings were obtained solely through 
visual observations of image data, although a few stud-
ies quantitatively analyzed image data through image 
processing [15, 16]. If the behavioral response of animals 
to the objects/environment on the video footage can be 
determined using animal-borne video data, we may be 
able to more deeply understand the cognition and deci-
sions driving behaviors of animals in the wild. Such an 
analysis could be used in tandem with computer pro-
grams designed for motion detection or object recogni-
tion/tracking on the video footage, then quantitatively 
track the objects concerning the animals or environment.

Various methods for motion detection or object track-
ing in video data (e.g., optical flow) have been developed 
in the field of computer vision [17, 18]. These techniques 
have been used to understand human cognition and 
behavior. One example is the use of these techniques 
in ‘life-log’ analyses; i.e., capturing personal behavior 
and experiences using a wearable video/camera sys-
tem equipped with other sensors and computers on the 
human body [19, 20]. For example, camera and object 
motions in footage taken from a head-mounted video 
camera have been analyzed to investigate how humans 
pay attention to objects [19].

Here, we present a new method of data analysis for 
animal-borne video using template matching, one type of 
computer vision technique. As a case study, we tracked 
the horizontal head movements of green turtles (Che-
lonia mydas) to investigate how they move their heads 
to look around in the underwater environment. We 
assumed that turtles move their heads horizontally when 
looking to the right or left, particularly when they want 
to look at an object with binocular vision. This assump-
tion is supported by the fact that green turtles have 

relatively clear horizontal vision among sea turtle species 
[21]. From the perspective of behavioral studies, vision 
is presumably of great importance for sea turtles when 
feeding, avoiding predators, and finding mates [8, 22, 23], 
although they also use hearing and chemoreception [24].

Methods
Animal‑borne video data
The present study used animal-borne video data of six 
green sea turtles described as part of previously pub-
lished studies [10, 12]. Video data were recorded in the 
waters of Iriomote Island, Okinawa, Japan (24°20′N, 
123°50′E). The turtles were hand-captured by local fish-
erman with permission from the Fisheries Adjustment 
Commission of Okinawa Prefecture (Permission No. 23-2 
and 24-4).

For the purposes of this study, animal-borne video 
data were recorded using video data loggers (GoPro 
HD®, image resolution: 1280  ×  720 pixels, frame rate: 
30 frames per second, Woodman Labs, CA, USA) with 
a custom-made waterproof case (Logical Product, 
Fukuoka, Japan). The video loggers were equipped with 
a Fast-loc GPS, depth tags (Mk10-F, Wildlife Comput-
ers, WA, USA), a VHF transmitter, and a time-scheduled 
release system. Two turtles, CM5 and CM6, were also 
equipped with a multi-sensor data logger incorporat-
ing depth, temperature, a three-axis accelerometer, a 
three-axis magnetometer, and three-axis gyroscope sen-
sors (LP-KUBL1101, Logical Product, Fukuoka, Japan). 
Accelerometers measure the dynamic acceleration and 
tilt angle of the carapace. Magnetometer and gyroscope 
sensors measure the strength of geomagnetic field and 
angular velocity, respectively. These logger units were 
deployed on turtles’ second vertebral scute (Additional 
file 1). Turtles equipped with logger units were released 
at their capture point. The time-scheduled release mech-
anisms were programmed to activate 36–168  h after 
release, at which time an electric charge would incise the 
plastic cable. The logger units then detached from the 
turtles and floated to the sea surface. The video loggers 
were retrieved using radio telemetry. A detailed descrip-
tion of the experimental protocol is provided in Okuyama 
et al. [10]. In the present study, a total of 22.5 h (CM1-6: 
5.0, 2.0, 5.0, 2.5, 4.0, and 4.0 h, respectively) of video data 
were used.

Template matching
The template matching technique was used to track and 
quantify the head movements of green turtles. Tem-
plate matching is a digital image processing technique 
to identify small parts of an image that match a tem-
plate image [17]. Here, the scale pattern on the top of 
a turtle’s head was chosen as the template, which is the 
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most characteristic part of the head (Fig. 1). Fourteen to 
nineteen templates, including images of the turtle facing 
various directions and at various depths, were manually 
prepared for each individual to track the head under any 
situation (Fig.  1). The number of templates was empiri-
cally determined to maximize accuracy of template 
matching for each turtle. The templates were defocused 
using Gaussian blur (GIMP software, The GIMP Devel-
opment Team) to expand its versatility. The image stacks 
were then converted to grayscale. Similarity or dissimi-
larity between a part of an image and a template was 
evaluated using the zero-mean normalized cross-corre-
lation (ZNCC). The ZNCC was calculated using the for-
mula below:

where i and j are the x- and y-coordinates of the image, 
respectively. T(i, j) and I(i, j) are the brightness values of 
the template and the image, respectively. M and N rep-
resent the pixel count of the width and height of the 
template, respectively. ZNCC values run from −1 to 1, 
with values close to 1 indicating that the image is very 
similar to the template. The ZNCC value of a given tem-
plate to a given part of the image was calculated, and the 
calculation area was then adjusted pixel by pixel. These 
calculations were applied for all templates, and the tem-
plate with the highest ZNCC value was chosen as a head 
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position in the image. The intersection of the ‘Y-shaped’ 
scale pattern of the template was determined as a head 
position in the image.

Coordinates of the head positions were calculated for 
all consecutive images, and head movement was deter-
mined by tracking head positions in consecutive images. 
In the present study, if the head was detected at a given 
frame, the search area for the next frame was confined 
to a 250 ×  160-pixel area of the head position detected 
in the previous frame. This prevented any false detec-
tion, and shortened the computing time. However, if the 
ZNCC value was lower than 0.63 or if a >20-pixel differ-
ence in the distance of head movement along the x-coor-
dinate in the previous frame occurred continuously for 
eight frames, the search area was extended to the entire 
frame. Then, if a matching area with a ZNCC value 
greater than 0.63 could not be detected, the head posi-
tion was considered to be a missing value in that frame. 
The threshold value of 0.63 was empirically determined 
to give the best accuracy for template matching. This 
computer vision analysis procedure was implemented 
using the OpenCV 2.3 software written by authors in 
Microsoft Visual C++ 2010 Express.

Accuracy evaluation of template matching
The extraction accuracy of head position by template 
matching was evaluated using the root-mean-square 
error (RMSE). The true positions of the head position 
along x- and y-coordinates were determined via visual 
observations of image data. We evaluated the extrac-
tion accuracy using 10 min of video data for each turtle. 
Also, we calculated the true and false extraction rates of 
head positions in template matching,. The true extrac-
tion rate was defined as the ratio of the number of head 
positions that were extracted by both template matching 

Template

Examples of template

Fig. 1  The concept of template matching. The intersection of the ‘Y-shaped’ scale pattern on the turtle head was used as a template and was deter-
mined as a head position. Several templates were manually prepared for each individual to track the head in any situation
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and visual observation to the number of head positions 
that were detected by visual observation alone. The false 
extraction rate was defined as the ratio of the number of 
false extractions of head positions detected by template 
matching to the total number of head positions extracted 
by that method.

Horizontal head movement when exhibiting particular 
behaviors
Although we tracked both vertical and horizontal move-
ments (on both x- and y-coordinates), in this study, we 
focused only on turtles’ horizontal head movement 
because downward head movements often went out of 
the field of view. In addition, the vertical field of view, i.e., 
the position of the head on y-coordinate, fluctuated while 
the turtle was swimming because the longitudinal tilt 
angle of the carapace on which the video was deployed 
changed with the sea turtles’ power stroke [25].

The size and angle of the field of view differed slightly 
among individuals due to differences in the size of turtles 
and the deployment position on their back. Therefore, we 
calibrated the head position along the x-coordinate for 
each turtle. Based on the assumption that turtles gener-
ally face forward with respect to the body axis when they 
are in the typical state, the mode value of the x-coordi-
nate was defined as the head position when the turtles 
faced forward, which was converted to 0 point for the 
head position. In addition, to calibrate the difference in 
amplitude of head movements between the left and right 
sides, the maximum value along the x-coordinate, which 
indicates that the turtle turned their head to the right 
side, was converted to 100 point, while the minimum 
value was converted to −100 point. Thus, horizontal 
head movement was represented as values ranging from 
−100 point (left side) to 100 point (right side).

To determine horizontal head movement, the domi-
nant frequencies and amplitude of horizontal head move-
ment were used, which were calculated by continuous 
wavelet transformation with a minimum frequency of 
0.1 Hz and a maximum frequency of 10 Hz using IGOR 
Pro ver. 6.2 (WaveMetrics, Inc., Lake Oswego, OR, USA) 
and Ethographer ver. 2.00 software [26]. In addition, the 
relationship between the carapace tilt angle on the sway 
(lateral) axis and the head position in the video field of 
view was investigated. For this analysis, we used only data 
at the local maxima and minima of time-series variation 
in the tilt angle, because the amount of data in the full 
profile was excessive. The tilt angle was calculated from 
static acceleration, which was extracted using a low-pass 
filter (see [10, 12]).

To investigate the head movement during a particu-
lar behavior, we divided the time duration into four 

categories: cruising swimming, breathing, feeding, and 
resting, by visual observation of image data. The breath-
ing phase was further divided into two additional phases: 
pre- and post-breathing, which were defined as the 10-s 
duration before taking a first breath and after taking a 
last breath at the surface, respectively. The feeding phase 
was defined as the 10-s duration before feeding on, cap-
turing, and handling prey. Although we also observed 
numerous feeding events on seagrass meadow (see [10]), 
these feeding events were excluded from the analysis 
because the turtles’ heads were out of the field of view. 
Thus, we investigated horizontal head movement dur-
ing feeding only on floating prey. The resting phase was 
defined as the time during which the turtles rested on or 
under coral reefs. The resting phase was omitted from 
data analysis, as the turtles bent their heads down during 
most resting time, such that the head moved out of the 
field of view. The cruising swimming phase was defined 
as the remaining time that was not used for breathing 
or resting phases. During the cruising swimming phase, 
we investigated how turtles usually moved their heads. 
In addition, to determine whether turtles scan the envi-
ronment toward which they are heading before making 
a turn, we extracted the time and turn velocity when tur-
tles made a turn using the angular velocity of the turtles 
on the yaw (vertical) axis obtained from two turtles, CM5 
and CM6, which had been deployed with a gyroscope 
sensor. We then examined the relationship between the 
maximum rotating velocity and the maximum amplitude 
of horizontal head movement before turning. To clearly 
extract the time at which the turtle made a turn, we only 
used data for when turtles made a turn with >25 ° of max-
imum angular velocity.

Results
Evaluation of template matching
The RMSE values of the x- and y-coordinates were 
4.32 ± 1.55 and 3.72 ± 2.12 pixels for all 6 turtles, respec-
tively. Video was recorded at 1280  ×  720 pixels; thus, 
RMSEs were only 0.34 ±  0.12  % and 0.52 ±  0.29  % for 
the x- and y-coordinates, respectively. The true extrac-
tion rate of the head positions was 86.2 ± 8.1 %, while the 
false extraction rate was 6.6 ± 8.4 %. These values indi-
cate that the template matching technique is adequate for 
tracking the head position of a sea turtle. However, the 
technique could not be implemented for 14.8 ± 5.2 % of 
the time in the cruising swimming and breathing phases, 
because the turtles’ heads moved out of the range of the 
video.

There was a significant relationship between the cara-
pace tilt angle on the sway (lateral) axis and horizontal 
head position, demonstrating that turtles tended to move 
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their heads in the same direction toward which they were 
tilted (Additional file 2). This fact indicates that the tur-
tles usually did not keep their head straight, because in 
that case the horizontal head position would be on the 
side opposite the direction of the tilt.

Head movement during cruising swimming
The turtles moved their head to the left for 50.5 ± 8.4 % 
of the time during cruising swimming and to the right for 
the remaining time. Thus, the time spent moving their 
head to the left and right did not differ significantly (Wil-
coxon signed-rank test, N =  6, P =  0.92); however, the 
variance differed among individuals (Fig.  2, Additional 
file 3).

Change in head movement before and after breathing
The time-series profiles of head and body movements are 
shown in Fig.  3. The dominant frequencies of horizon-
tal head movement before and after breathing and dur-
ing cruising swimming were 0.25 ±  0.03  Hz (N =  50), 
0.27 ± 0.03 Hz (N = 53) and 0.32 ± 0.01 Hz (N = 57), 
respectively (Fig. 4a, Additional file 4); all pairwise com-
parisons were significantly different (ANOVA and post 
hoc Tukey test, P < 0.05). The mean amplitudes of hori-
zontal head movement before/after breathing and dur-
ing cruising swimming were 12.0 ±  4.6 point (N =  50), 
27.5 ± 2.9 point (N = 53) and 8.4 ± 3.8 point (N = 57), 
respectively (Fig. 4b, Additional file 4); all pairwise com-
parisons were significantly different (ANOVA and post 
hoc Tukey test, P < 0.05).

Head movement before feeding
Twenty feeding events on Salpa sp., jellyfish, and float-
ing seagrass were observed from all turtles (Additional 
file 5). During the 10 s before feeding on floating prey, the 
dominant frequency of horizontal head movement was 
0.23 ± 0.03 Hz (N = 20, Fig. 4a), while the mean ampli-
tude was 9.3 ±  3.6 point (N =  20, Fig.  4b). These facts 
indicate that the turtles moved their heads significantly 
slower while feeding than during cruising swimming and 
before/after breathing (ANOVA and post hoc Tukey test, 
P  <  0.05). The amplitude was not significantly different 
from that during cruising swimming and before breath-
ing (ANOVA and post hoc Tukey test, P > 0.05), but sig-
nificantly smaller than after breathing (ANOVA and post 
hoc Tukey test, P < 0.05).

Head movement before turning
For the two turtles deployed with both video and gyro 
loggers, 38 turns were recorded over the recording period 
(Additional file  6). When making turns (to the right 
or the left), the turtles always turned their head toward 
the direction in which they were heading 1.38 ±  0.77  s 
before turning. Maximum angular velocity on the yaw 
axis was significantly related to the maximum amplitude 
of horizontal head movement before turning (ANOVA, 
F = 281.9, P < 0.001, Fig. 5).

Discussion
Computer vision techniques have been rapidly develop-
ing in the field of computer image processing and rec-
ognition, primarily because performance cameras have 
become less expensive and computers now have suffi-
cient processing capabilities [17, 18]. These techniques 
have been used in various fields from image sensing to 
artificial intelligence and control robotics [18]. In addi-
tion to these advances in hardware, the miniaturization 
of recording devices for video and still images enables 
biologists to apply these computer vision techniques to 
bio-logging studies. To our knowledge, however, only one 
paper has been published that has applied a computer 
vision technique to bio-logging using animal-borne video 
[16]. Our approach of combining computer vision with 
bio-logging demonstrated the potential for providing a 
novel perspective of data analysis to visual cognition and 
behavior studies in animal science.

Although accurate object tracking in the video image is 
possible visually, this approach requires enormous time 
and effort. Our template matching demands much less 
effort and results in quantitative, rapid tracking of green 
turtles’ head movements with high accuracy (almost 
the same as visual tracking) and high true and low false 
extraction rates. Our findings indicate that template 
matching offers a valuable method for object recognition 
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and tracking on video footage in the field of bio-log-
ging as well as for life-logs. In addition, this automated 
method will be even more useful with forthcoming 
advances in animal-borne video loggers that can achieve 
longer recording times and enhanced miniaturization 
of recording systems. In most cases, template match-
ing generated appropriate head positions, but the tech-
nique was sometimes (13.8 % in this study: 100 % minus 
the true extraction rate) unable to track head position 
because the matching score did not exceed the extraction 

threshold. These incidents occurred intermittently, and 
were mainly observed when turtles turned their necks 
sharply while looking around or extended their neck 
upward while breathing (Fig.  3, Additional file  4). Thus, 
these non-extractions would not seem to be a problem 
for tracking of head movements. False extractions only 
occurred when the turtle’s head moved out of the field of 
view or when coral reefs appeared; some image patterns 
of the coral reefs were incorrectly identified as a head 
position. Not surprisingly, template matching cannot be 
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applied when the turtle’s head moves out of the field of 
view. Thus, the success rate of template matching varied 
in relation to the attachment angle of the video logger 
and the angle of the view (Additional file  1). Therefore, 
researchers should pay attention to these aspects for the 
successful tracking of an object.

Our results highlighted anew that vision serves as an 
important cue in green turtles in their assessment of 
the surrounding environment [8, 22, 23]. However, head 
movements might also function as a behavior related 
to other stimuli, such as odor. For example, leatherback 
turtles (Dermochelys coriacea) exhibit a rhythmic mouth 
opening behavior during specific phases of dives, sug-
gesting that they might rely on gustatory cues to sense 
the immediate environment [27]. If so, head movement 
might appear prior to feeding. Here, we observed sev-
eral feeding behaviors on jellyfish and salpae while tur-
tles were swimming, but turtles did not move their heads 
frequently or widely (Fig. 4, Additional file 5), indicating 
that they may maintain their head toward a particular 
direction to locate and capture prey. These findings indi-
cate that head movement in green turtles is performed to 
assess the environment via visual cues. However, sea tur-
tles are not only distributed in environments with high 
underwater visibility such as in our study area, but also 
in habitats with poor visibility, such as inshore estuaries 
with mangrove forests and deep sea. In such environ-
ments, the role of vision would be much less important, 
and we expect that turtles turn their heads less frequently 

or in a different manner than observed in the present 
study.

We quantitatively described fundamental information 
related to how turtles move their heads while performing 
normal activities (Fig.  2). The carapace tilt angle on the 
sway axis does not seem to have much effect on horizon-
tal head position (Additional file 2). Green turtles did not 
exhibit a significant tendency to turn their head to one 
side or the other during cruising swimming (i.e., the time 
spent turning to the right or left side was roughly equal), 
although turtles sometimes continuously turned their 
head to one side for a short period of time. The differ-
ence in the variances of head position among individuals 
indicates that turtles may change the frequency of head 
movements in relation to the surrounding environment.

Sea turtles are thought to assess subsurface risks, such 
as boat strikes or predator attacks, during ascent, and to 
scan for prospective prey, predators, and resting places 
before starting a dive or during descent [10, 28, 29]. How-
ever, little quantitative evidence exists to support these 
supposed behaviors. Our study demonstrated that green 
turtles moved their heads from side to side more slowly 
and more widely before and after taking a breath than 
during swimming (Figs.  3, 4), which may represent the 
first factual evidence that turtles vigilantly visually assess 
the underwater/subsurface environment before and after 
taking a breath at the surface.

The turtles always turned their head toward the direc-
tion in which they were heading before making a turn 
(Fig. 5). The eyes of sea turtles are located on the side of 
the head and are therefore well placed for taking in infor-
mation from a wide field of view [30]. The binocular field 
of vision of green turtles is assumed to differ 48°–67° from 
those of other turtle species [31]. Thus, the observed sig-
nificant relationship between maximum angular velocity 
on the yaw axis and the maximum amplitude of horizon-
tal head movement before turning may indicate that tur-
tles always scan the environment toward which they are 
heading before a turn to achieve a stereoimage with both 
eyes and to subsequently make a decision as to whether 
to proceed. An alternative interpretation is that turtles 
may move their head to the side toward which they were 
heading to reduce drag by decreasing the cross-sectional 
area of the whole body in the direction of turning.

Conclusions
In this study, we presented an object tracking method 
using a computer vision technique for animal-borne 
video data. Our method enables researchers to automati-
cally extract quantitative behavioral information in the 
wild that could not otherwise be obtained from other 
sensors used in previous studies. Here we used a simple 

Fig. 5  The maximum angular velocity on the yaw axis (degrees per 
second) in two turtles (CM5 and CM6) plotted with respect to the 
maximum amplitude of horizontal head movement before turning. 
Positive and negative values represent the right and left sides, respec-
tively. The black line represents the results of linear regression
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basic template, a grayscale image for template matching. 
However, templates could be matched by other image 
conversion methods such as edge detection, which high-
lights the border between an object and the background 
[17]. Such techniques may enable researchers to extract 
objects that do not have strong contrasts and character-
istic patterns like a green turtle’s head. Thus movements 
of other body parts and surrounding objects such as the 
mouth, nose, wing or prey could be tracked, leading to 
broad potential for application of our method to studies 
in other situations and on other species.

Our combined approach using this new method cou-
pled with other sensors (e.g., gyroscope) will be valu-
able for achieving a more profound understanding of 
the relationship between animal behavior and other 
individual(s)/objects in the surrounding environment. 
Visibility is critical for computer vision; thus, our method 
cannot be applied in environments with poor visibil-
ity, such as turbid or deep waters, at night, or in stormy 
weather. Nevertheless, our new method of combining 
computer vision and bio-logging will serve as a powerful 
tool for animal behavior and ecological studies.
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