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Abstract 

Background:  Spontaneous magnetic alignment (SMA), in which animals position their body axis in fixed alignments 
relative to magnetic field lines, has been shown in several classes of vertebrates and invertebrates. Although these 
responses appear to be widespread, the functional significance and sensory mechanism(s) underlying SMA remain 
unclear. An intriguing example comes from observations of wild red foxes (Vulpes vulpes) that show a ~fourfold 
increase in hunting success when predatory ‘mousing’ attacks are directed toward magnetic north-northeast. This 
form of SMA is proposed to receive input from a photoreceptor-based magnetoreception mechanism perceived as a 
‘visual pattern’ and used as a targeting system to increase the accuracy of mousing attempts targeting hidden prey. 
However, similar to previous observational studies of magnetic orientation in vertebrates, direct evidence for the use 
of magnetic cues, and field-based experiments designed to characterize the biophysical mechanisms of SMA are lack-
ing. Here, we develop a new approach for studies of SMA using triaxial accelerometer and magnetometer bio-loggers 
attached to semidomesticated red foxes.

Results:  Accelerometer data were recorded from 415 ground-truth events of three behaviors exhibited by an adult 
red fox. A 5-nearest neighbor classifier was developed for behavioral analysis and performed with an accuracy of 
95.7% across all three behaviors. To evaluate the generalizability of the classifier, data from a second fox were tested 
yielding an accuracy of 66.7%, suggesting the classifier can extract behaviors across multiple foxes. A similar classifica-
tion approach was used to identify the fox’s magnetic alignment using two 8-way classifiers with differing underlying 
assumptions to distinguish magnetic headings in eight equally spaced 45° sectors. The magnetic heading classifiers 
performed with 90.0 and 74.2% accuracy, suggesting a realistic performance range for a classifier based on an inde-
pendent set of training events equal in size to our sample.

Conclusions:  We report the development of ‘magnetic ethograms’ in which the behavior and magnetic alignment 
of foxes can be accurately extracted from raw sensor data. These techniques provide the basis for future studies of 
SMA where direct observation is not necessary and may allow for more sophisticated experimental designs aimed to 
characterize the sensory mechanisms mediating SMA behavior.

Keywords:  Accelerometer, Magnetometer, Magnetoreception, Spontaneous magnetic alignment, Light-dependent, 
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Background
Recent advances in bio-logging technology and its 
increasing deployment in studies of animal behavior and 
physiology are providing new approaches to investigat-
ing both large-scale and fine-scale properties of spatial 
behavior in domestic and free-roaming animals [1–3]. 
Among the many sensor options, triaxial accelerometers 
can yield a wealth of valuable information about move-
ments in three-dimensional space, but need sophisticated 
analysis techniques to be properly interpreted [4]. There 
is no consensus on the statistical techniques to use in 
extracting behavioral data from accelerometer signatures; 
the available methods have been shown to have varying 
degrees of success in identifying differences in behavior 
and posture across a range of diverse kinematic patterns 
[5, 6]. In addition to accelerometers, bio-logging devices 
equipped with triaxial magnetometers are now avail-
able, providing researchers with a continuous record of 
the alignment of the sensor with respect to magnetic 
north. Therefore, if the alignment of the sensor is in a 
known and fixed alignment with respect to the animal, 
the magnetic heading of the individual can be identified. 
However, transforming raw magnetometer data into reli-
able directional headings of free-roaming subjects poses 
several challenges [4, and see “Methods”]. Yet despite the 
technical obstacles, developing behavioral classifiers that 
can reliably identify behaviors of interest from acceler-
ometer signatures time-synched with magnetometer data 
has the potential to provide investigators with a record 
of spatiotemporal behavior in animals inhabiting diverse 
environments where direct observation may not be pos-
sible, or in animals where direct observation may influ-
ence behavior (i.e., observer bias).

In particular, ‘magnetic bio-loggers’ used in studies of 
animal navigation and orientation could provide impor-
tant new evidence for behavioral responses dependent 
on the geomagnetic field [7–14]. For example, several 
studies have reported evidence of spontaneous magnetic 
alignment (SMA) behavior across a range of vertebrates 
that show a strong tendency to align the anteroposte-
rior axis bimodally along the north–south magnetic axis 
[for reviews see 15, 16, and recently 17]. Although SMA 
appears to be widespread, exhibited by a wide range of 
taxa including both vertebrate [15, 16, 17, 18] and inver-
tebrate groups [19–22], the functional significance and 
biophysical mechanism mediating this behavior remains 
poorly understood. Possibilities of the functional signifi-
cance underlying SMA include that the magnetic field 
could provide a stable reference frame for coordinating 
movement in open landscapes [23], or help to coordi-
nate group responses in social animals [24]. Furthermore, 
magnetic alignment has been proposed to be involved in 
retinotopic matching in honeybees, helping to recognize 

familiar environments [25], and may simplify encod-
ing the spatial relationships between landmarks and/or 
help to place local maps of space into register [26]. Given 
the utility of magnetic cues underlying diverse spatial 
behaviors, it is clear that the magnetic field is not used 
only as source of ‘simple’ directional information, but 
rather may play a more general role in organizing and 
structuring spatial behavior and cognition. Therefore, 
SMA may reflect a basic form of spatial positioning to 
optimize the use of magnetic input for more complex 
spatial behaviors. However, the majority of vertebrate 
SMA studies have relied on field observations, which 
are difficult to conduct following double-blind proto-
cols, are subject to observer bias, and are not well suited 
for experimental manipulations needed to confirm that 
alignment responses are directly mediated by magnetic 
cues. Furthermore, field studies have not implemented 
experimental designs aimed to characterize the sensory 
mechanisms underlying SMA that will be critical for 
helping to determine the functional significance of this 
widespread behavior.

An intriguing example providing the only clear evi-
dence for a fitness advantage of SMA in mammals comes 
from predatory behavior in red foxes (Vulpes vulpes). 
Visual observations of ‘mousing’ red foxes, in which a fox 
is attracted to the sounds produced by small rodents and 
then performs an arching leap (‘mousing’) to land on the 
prey from above, showed a strong tendency for mousing 
attacks to be directed toward magnetic north-northeast 
[27]. The north-northeast alignment of mousing behavior 
is consistent with SMA responses exhibited by a variety 
of terrestrial vertebrates [16]. Interestingly, when a direct 
view of the prey was obstructed by high vegetation or 
snow cover, foxes more accurately aligned their attacks to 
the north-northeast and were approximately 3–4 times 
more successful at capturing prey than when aligned in 
other magnetic directions [27]. The authors proposed 
that the alignment behavior observed in foxes could be 
mediated by a light-dependent magnetoreception mech-
anism, similar to that used by migratory birds, newts, and 
insects [7, 14, 28–33] where specialized photopigments 
undergo a photo-induced chemical reaction that is sen-
sitive to the alignment of the magnetic field. In animals 
where these photopigments are located in the retina, the 
magnetic field may be perceived as a three-dimensional 
pattern of light intensity or color superimposed on the 
animal’s visual surrounding and fixed in alignment with 
respect to magnetic north [26, 34]. Such a pattern could 
appear like a visual ‘after image’ that moves with the ani-
mal yet, remains fixed with respect to magnetic north 
[26]. Similar to the light-dependent magnetic compasses 
of migratory birds [35], newts [36], and sea turtles [37], 
that are sensitive to the inclination, not polarity, of the 
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magnetic field lines, the inclination of the pattern of 
‘visual’ input generated by a light-dependent magnetic 
mechanism could be used to estimate distance. Specifi-
cally, in the northern hemisphere, the magnetic field lines 
re-enter the Earth at increasing angles with increasing 
latitude, and therefore, some components of the three-
dimensional visual pattern would be superimposed on 
the substrate below the level of the retina [for additional 
details and proposed three-dimensional patterns see 26, 
34, 38–40]. The inclination of the magnetic field would 
not vary substantially (e.g., ~0.1°) over a fox’s home range 
[41], and therefore, the fox could approach the prey along 
a fixed compass heading until some component of the 
visual pattern generated by the light-dependent magnetic 
mechanism was superimposed on the sound source gen-
erated by a prey hidden beneath the substrate (analogous 
to centering the ‘cross-hairs’ of a gun sight), enabling 
the fox to initiate mousing attacks from a fixed dis-
tance. Given the indirect (‘ballistic’) trajectory of mous-
ing attacks, the accuracy of such attacks may be greater 
if they are initiated from a fixed distance and performed 
using a stereotyped set of mousing mechanics. Interest-
ingly, the small clustering of successful mousing attacks 
directed toward magnetic south [27] suggests that the 
opposite end of the magnetic axis may also guide mous-
ing behavior, and is consistent with an axially symmetri-
cal pattern of magnetic input as proposed by [26, 34, 40]. 
Therefore, SMA in red foxes is thought to result from the 
fox aligning components of the visual pattern, providing 
a targeting system helping to estimate the distance of the 
unseen prey, increasing the likelihood of successful prey 
capture [27].

Here, we report the development of magnetic bio-
logging techniques for future studies of SMA in free-
roaming red foxes that will likely provide new approaches 
to studying other forms of magnetic behaviors across 
a range of terrestrial animals. Semi-tamed red foxes 
trained to exhibit ‘mousing-like’ leaps in outdoor enclo-
sures were used to develop ‘magnetic ethograms’ to pro-
vide templates for data collection from free-roaming 
animals in the wild. Three predetermined behaviors per-
formed in varying magnetic directions were videotaped 
to serve as ground-truth data. Raw accelerometer data 
were then used to establish classifiers ‘trained’ to identify 
these behaviors in unseen data sets recorded from the 
same individual and from a different individual exhibit-
ing similar behavior. Using a similar machine learning 
algorithm approach, magnetic classifiers were developed 
using ground-truth video records and ‘trained’ to distin-
guish between eight magnetic directions corresponding 
to the cardinal (i.e., N, S, E, W) and anti-cardinal (i.e., NE, 
SE, SW, NW) magnetic axes. Taken together, the time-
synched accelerometer and magnetometer data provide 

magnetic directional headings for events identified by the 
behavioral classifier, demonstrating the potential for bio-
logging applications in studies of SMA in free-roaming 
foxes that can be adapted for use in studies of magnetic 
responses in other mammals.

This work provides the basis for future SMA research 
in foxes and other free-living mammals equipped with 
miniaturized triaxial accelerometer and magnetometer 
devices and, more generally, makes it possible to improve 
the accuracy of directional observations for magnetic 
alignment studies of semidomesticated and wild ani-
mals and avoid potential biases inherent to observational 
studies. Such studies have been difficult to conduct fol-
lowing double-blind protocols, are not well suited for 
experimental manipulations, and have been criticized for 
failing to provide direct evidence for the involvement of 
magnetic cues underlying SMA responses. We discuss 
the potential use of magnetic bio-loggers in field-based 
studies of magnetic behavior in free-roaming animals 
and propose specific experiments to test for the involve-
ment of light-dependent and magnetite-based magnetic 
mechanisms underlying magnetic targeting behavior of 
wild red foxes that would be possible using bio-logging 
technologies.

Methods
Two adult male red foxes (Vulpes vulpes) were used 
to develop magnetic ethograms, and all methods were 
approved by the Expert Commission of the Czech Uni-
versity of Life Sciences (SP506051228). Both foxes were 
rescued from the Bohemian Forest in the Czech Republic 
as pups and raised in captivity in separate cages. All data 
were collected within a 20-m-diameter circular outdoor 
enclosure located in Prášily, Czech Republic (49.1033°N 
13.3819° E), between February 15, 2014, and May 15, 
2014. Both foxes were in good health verified by a vet-
erinarian before the study and were fed commercial dog 
food supplemented with wild mice. An initial three-week 
period was required to acclimate both foxes to a modi-
fied adjustable domestic dog harness (Kong® Comfort 
Dog Harness). The subject used to collect the majority of 
behavioral and magnetic alignment data (Fox1) was fitted 
with a simplified version of the harness in which only the 
collar portion of the harness was used, securely fastened 
around the neck (Fig.  1a). The second fox (Fox2) wore 
the complete harness system in which the collar and 
torso portion of the harness was snugly secured around 
the fox’s neck and torso (Fig.  1b). After the acclimation 
period, the collar was equipped with a bio-logging unit 
(Gulf Coast Data Concepts, Waveland, MS, USA http://
www.gcdataconcepts.com/contact.html, model: X8M-3 
USB), designed to record simultaneous triaxial acceler-
ometer and magnetometer data. On Fox1, the device was 

http://www.gcdataconcepts.com/contact.html
http://www.gcdataconcepts.com/contact.html
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secured with two plastic zip ties to the ventral side of the 
collar (Fig. 1a). The device was secured to the dorsal side 
of the harness on Fox2 (Fig.  1b). Two identical devices 
were used to collect behavioral and magnetometer data 
from each of the foxes and were switched every ~5 days 
to recharge the internal battery. The units recorded con-
tinuously until the battery was depleted or the device 
was removed from the animal. On average, two 30-min 
behavioral sessions were recorded each day taking place 
at various times between 7:00 and 19:00 local time.

Bio‑logging Recording Specifications
The X8M-3 USB accelerometer devices provided a con-
tinuous stream of time-stamped accelerometer and mag-
netometer data saved to a 2-GB internal flash memory 
drive. The devices included a ±8  g accelerometer with 
a 14-bit analog-to-digital converter yielding 0.001  g 
measurement resolution on each axis. The magnetom-
eter was programmed to operate over a ±400 µT range 
with measurements approximated to within ±111  nT 
on the x- and y-axes and ±125 nT on the z-axis. For all 
data collected, triaxial accelerometer data were recorded 
at a sampling rate of 6  Hz and the magnetometer data 
were recorded at 3  Hz. An internal lithium-ion poly-
mer battery powered the device and when fully charged 

would run continuously for ~130 h in these sample rate 
configurations.

Behavioral recording sessions
During the 30-min recording sessions, all behaviors 
were videotaped using a digital camera (Nikon Coolpix 
AW110) mounted on a tripod located approximately 1 m 
outside the observation arena. During each recording 
session, the fox was released from its home cage directly 
into a circular open field arena (~25 m diameter) where 
it was allowed to roam freely. At no point were the two 
foxes in the arena at the same time. The perimeter of 
the arena was secured using 1.5-m-tall aluminum mesh 
fencing, and the top of the arena was covered with plas-
tic mesh to ensure the fox did not escape during trials. 
Additional structures were constructed inside the obser-
vational arena and used for behavioral and magnetic data 
collection (described immediately below).

 Behavioral data were collected from Fox2 inside a 
10 m × 10 m square enclosure with walls 1-m-tall con-
structed of wooden boards located in the center of the 
observation arena (Fig. 2a and see Additional file 2: Video 
file S1, Additional file 3: Video file S2). The fox was placed 
inside the enclosure and allowed to forage for food pel-
lets and live wood mice hidden under small brush piles 

Fig. 1  Photographs of the two adult red foxes (Vulpes vulpes) used to develop magnetic ethograms equipped with triaxial accelerometer and 
magnetometer bio-logging devices. a Fox1—modified Kong Comfort Dog Harness (collar portion only) equipped with Gulf Coast Data Concept 
bio-logging device attached to the ventral side of collar beneath the neck. The long axis of the device is aligned perpendicular to the spine. b 
Fox2—Kong Comfort Dog Harness including torso section and bio-logging device attached to dorsal side of fox aligned, so the long axis of the 
device is parallel to the spine. Insets in the upper and lower corners of each photograph show the device orientation for each fox used to collect 
accelerometer data. The schematic showing the orientation of each device matches the approximate orientation of the device in the photograph. 
Note that in the photograph of Fox1 (a), the head (and therefore, the bio-logging device) is tilted slightly downward; however, the schematic of the 
device is shown as leveled with respect to the horizontal for ease of interpretation. Furthermore, there was a total of three different device orienta-
tions used to collect data from Fox1 throughout the behavioral recording sessions. The scheme shown above is the orientation used to collect the 
majority, but not all, of the behavioral data. See Additional file 1: Table S1 for the number of each behavior recorded from each orientation of the 
device from Fox1. The device orientation remained unchanged throughout the study for Fox2 and the schematic is an accurate representation of 
the device orientation during all behaviors as the device was attached to a harness on the fox’s back, and therefore did not experience rotations 
when the fox moved its head laterally or vertically
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composed of straw and pine branches. After a foraging 
bout, typically less than 3 min, the fox would jump out of 
the square enclosure and return to the home cage. Unfor-
tunately, Fox2 was stolen from its home cage shortly after 
beginning the behavioral recording sessions. Therefore, 
only a limited amount of behavioral data was obtained 
from this subject. As a result of the limited number 
of recording sessions and relatively primitive square 
enclosure used to collect behavioral data, the behaviors 
recorded from Fox2 were more variable and erratic rela-
tive to those of Fox1.

Most of the behavioral data were collected from Fox1. 
This fox was trained using two different obstacles built 
inside the observational arena, both designed to encour-
age the fox to perform ‘mousing-like’ leaps. One obsta-
cle made of wooden boards and plastic netting stretched 
across the entire arena at a height of ~1 m. An observer 
inside the arena trained the fox to jump over the obstacle 
by tossing a food reward (one piece of dog food) on the 

opposite side of the obstacle. In an attempt to make the 
jumps mimic natural mousing behavior, in which the fox 
performs a high vertical jump followed by a rapid decel-
eration as it lands on top of its prey, a second barrier was 
placed ~1  m beyond the first obstacle so that when the 
fox jumped over the first obstacle it had to stop immedi-
ately after landing to prevent a collision with the second 
wooden barrier (Fig. 2b and see Additional file 4: Video 
file S3).

A separate structure was introduced consisting of a 
1-m central square area (the ‘food reward area’) enclosed 
with plastic fencing 1 m tall. Four corridors were attached 
to the four sides of the food reward area providing access 
to one wall of the enclosure from each of the four car-
dinal compass directions (i.e., north, south, east, west). 
Fox1 was trained to walk down one of the four corridors 
toward the food reward area and jump over the 1-m-tall 
fence barrier to receive a food reward (Fig. 2c, d and see 
Additional file  5: Video file S4, Additional file  6: Video 

Fig. 2  Three types of obstacles used to collect accelerometer (behavioral) and magnetometer (compass) data designed to encourage ‘mousing-like’ 
leaps. a Square enclosure (10 × 10 × 1 m) made of cut pine planks used to collect foraging and ‘mousing-like’ leap behavior with Fox2. b Vertical 
wall obstacle (~1 m tall) made of pine boards and plastic mesh that stretched across the entire outdoor arena used to collect ‘mousing-like’ leap 
behavior with Fox1. The smaller wooden barrier placed ~1 m beyond the large vertical wall forced the fox to rapidly decelerate after jumping over 
the initial wall, similar to natural mousing jumps when a fox will leap through the air and land on top of its prey. c Four-corridor obstacle with 
~1-m-square ‘food reward area.’ A food reward was placed in the center of the obstacle and the fox would walk down one of the four corridors then 
leap over a ~1-m-tall mesh gate to obtain the food reward. Each corridor was aligned along the cardinal compass directions (magnetic N, E, S, and 
W). d Overhead schematic of four-corridor obstacle. Solid line leading into the East corridor represents the fox’s path toward the food reward area, 
and dotted line represents the fox’s leap, in this case heading magnetic west, over the mesh gate to obtain the reward
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file S5). ‘Mousing-like’ leap data for Fox1 were collected 
using both of the obstacles described above. Magnetom-
eter data were analyzed from Fox1 only using the arena 
with the attached corridors aligned along the cardinal 
compass directions to obtain more precise ground-truth 
magnetic data from time points when Fox1 was in car-
dinal (i.e., 0°, 90°, 180°, 270°) and anti-cardinal (i.e., 45°, 
135°, 225°, 315°) magnetic alignments.

When the bio-logging unit was removed every ~5 days, 
the accelerometer and magnetometer data were down-
loaded. Each of the 30-min video recording sessions was 
partitioned into separate data files. The video was then 
replayed and manually analyzed for three discrete behav-
iors: trotting, foraging, and ‘mousing-like’ leaps over the 
barriers described above. These behaviors were chosen 
a priori with no knowledge about the acceleration signa-
tures underlying each behavior. Mousing, trotting, and 
foraging behaviors are performed with distinct patterns 
of movement and have been observed in wild foxes (pers. 
observ.) and therefore were used to develop a behavioral 
classifier that would satisfy the focus of the current study 
(i.e., mousing behavior) and identify other functionally 
relevant behaviors for future bio-logging studies in red 
foxes. Trotting was defined as moving through the arena 
at a pace where two of the four paws were not in contact 
with the ground, but without the rapid horizontal accel-
erations and high rate of speed associated with sprinting 
behaviors (see Additional file  7: Video file S6) [6]. For-
aging was defined as the fox slowly moving through the 
arena (slower pace than a walk) with its head and snout 
toward the ground searching for food using olfactory 
and visual cues (see Additional file  8: Video file S7). A 
‘mousing-like’ leap was defined for Fox1 as jumping over 
the vertical barrier in either of the obstacles described 
above (Additional file  4: Video file S3, Additional file  5: 
Video file S4), or in the case of Fox2, out of the sides of 
the square enclosure (see Additional file 2: Video file S1, 
Additional file  3: Video file S2). Based on preliminary 
visual observations, a typical jump lasted ~2 s (~0.5 Hz) 
and the predominant oscillations in trotting and forag-
ing behaviors did not exceed 3 Hz. Therefore, in order to 
fulfill the Nyquist sampling criterion which requires the 
sampling rate  to be greater than twice the highest fre-
quency of the signal components used to characterize the 
events of interest, the accelerometer sampling rate was 
programmed to record at 6 Hz after low-pass filtering to 
minimize aliasing [42].

Statistical analysis
Accelerometer data analysis
All accelerometer and magnetometer data were analyzed 
in MATLAB (MathWorks, Natick, MA). Cross-validation 
was used to estimate how the classifier would perform on 

new, unseen accelerometer data. Prior to analysis, indi-
vidual behaviors (i.e., ‘mousing-like’ leap, foraging, and 
trotting) were identified using raw video records. For 
each behavioral event, 15-sample segments, correspond-
ing to 2.5  s of data given the accelerometer’s sampling 
rate of 6  Hz, were extracted and used for analysis. The 
2.5-s window duration was chosen under the hypothesis 
that it would be long enough to characterize and distin-
guish, leaping, foraging, and trotting activity while short 
enough to minimize errors due to overlapping events and 
to maintain the practicability of real-time processing. In 
order to determine whether the preselected behaviors 
could be distinguished based on the acceleration signa-
tures, a 5-nearest neighbor classifier was used, in which 
unknown (i.e., ‘test’) behaviors are classified by a ‘major-
ity vote’ of their 5 nearest known (training) neighbors in 
a feature space. Expanded details of the behavioral clas-
sification method are provided in “Accelerometer Feature 
Extraction” and “Behavioral Classification” sections.

Accelerometer feature extraction
Each 15-sample data segment was zero-meaned prior 
to extracting the following four time-domain features: 
(1) the magnitude of the largest z-axis peak; (2) the 
time delay between the two largest z-axis peaks; (3) the 
energy in the output of a matched filter run on the z-axis; 
and (4) the energy in the output of a 2-Hz high-pass fil-
ter, averaged over the x- and y-axes. The matched filter 
used for feature 3 was a simple four-sample rectangular 
pulse with height 1 g. For feature 4, the data on both the 
x- and y-axes were first normalized to have unit energy; 
a third-order Butterworth high-pass filter [43] with a 
−3 dB point of 2 Hz, chosen for its maximally flat pass-
band response, was then applied to each axis. Features 
1 and 2 were designed to be selective for leaping events, 
which were expected to have large-magnitude verti-
cal acceleration components; feature 3 was designed to 
be selective for foraging events, which were expected to 
have a relatively stable vertical axis acceleration profile; 
and feature 4 was designed to be selective for relatively 
high-frequency rhythmic trotting activity. The features 
were deliberately chosen to have some robustness to dif-
ferences in accelerometer orientation, which can arise 
due to both movement and differences in mounting of 
the triaxial accelerometer, requiring only that one axis 
was known to be at least nominally aligned (at either 0° 
or 180°) with respect to vertical.

Behavioral classification
The four features described above were used as inputs to 
a 5-nearest neighbor classifier with the L1 norm as the 
distance metric (i.e., the distance between any two obser-
vations was the sum of the magnitudes of the differences 
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between corresponding feature values). K-nearest neigh-
bor (k-NN) is a standard nonparametric technique for 
performing supervised learning tasks such as classifica-
tion. It can be viewed as an approximation to the optimal 
but practically unrealizable Bayes classifier, which assigns 
an observation to the most likely of a predetermined set 
of classes given its feature measurements. In k-NN, the 
probability that an unknown observation belongs to a 
particular class is estimated by the fraction of its k closest 
training set neighbors belonging to that class. The pre-
dicted class label is then the class with the highest prob-
ability. Tenfold cross-validation was used to estimate test 
set error. That is, the entire data set was partitioned into 
ten randomly chosen disjoint subsets of approximately 
equal size, nine of which were used for training the clas-
sifier and the other for testing on each of ten iterations. 
Each subset served as the testing data exactly once. The 
overall estimate of test set error was obtained as an aver-
age of the test set errors achieved on each of the ten 
iterations.

Magnetometer data analysis
We defined the animal’s magnetic heading (hereafter 
referred to as heading) as the angle between the posterior 
to anterior alignment of the spine, assumed to be rigid, 
and the direction of the Earth’s magnetic field when both 
of these lines are projected onto the plane perpendicular 
to the gravity vector. A number of uncertainties associ-
ated with the free-roaming animal paradigm make it chal-
lenging to infer the animal’s heading based upon triaxial 
magnetometer and accelerometer data. For example, due 
to the animal’s normal movements, all of the following 
alignments are known only imprecisely: (1) alignment 
of the sensor relative to the fox’s collar; (2) alignment of 
the collar relative to the fox’s neck; and (3) alignment of 
the fox’s neck relative to the rest of its spine. Additionally, 
it is reasonable to assume that a fox may slightly alter its 
heading on the timescale of a single magnetometer sam-
ple (0.33 s), leading to the potential measurement of sen-
sor transient responses that add further noise to the data. 
Traditional tilt-compensation algorithms [e.g., 44] that 
attempt to use triaxial accelerometer data to sense device 
orientation and apply the appropriate trigonometric cor-
rections to heading estimates are not reliable under these 
conditions because they assume an unchanging reference 
mounting orientation; in other words, they assume that 
the mapping (rotation matrix) between the coordinate 
frame of the sensor and the coordinate frame of the fox’s 
body remains constant.

To deal with the uncertainties outlined above, we 
framed the heading estimation problem as a super-
vised learning task, and in particular, as a classification 
task. While in principle we could have treated this as a 

regression, our video-labeling method of ground-truth-
ing had limited resolution, and therefore, we used an 
8-way classification task with the four cardinal and four 
anti-cardinal directions comprising the complete set of 
eight possible headings. This amounts to binning con-
tinuous headings using eight 45° sectors. Specifically, 
we sought to estimate the fox’s heading with this degree 
of resolution given the acceleration and magnetic field 
strength measurements along the three orthogonal (x, y, 
z) axes of the sensor. Inputs to the classifier were thus the 
six-element vectors formed by concatenating the three 
accelerometer and three magnetometer measurements. 
We hypothesized that the optimal boundaries between 
each of the classes in this six-dimensional input space 
would be highly nonlinear due to the aforementioned 
sources of noise and therefore used random forest clas-
sification [45], which is capable of learning nonlinear 
boundaries while simultaneously mitigating overfitting.

Random forests offer improved predictive accuracy 
over single decision tree classifiers by smoothing pre-
dictions over an ensemble of related trees. Detailed 
reviews of tree-based classification, and random for-
ests in particular, can be found in [46]. In brief, decision 
tree classifiers seek to optimally partition input space 
into a series of non-overlapping hyper-rectangles using 
labeled training data. Once the partitioning is learned, 
new observations are classified according to the region 
(hyper-rectangle) of input space into which they fall. Spe-
cifically, they are assigned the class label most frequently 
occurring among the training data points falling into the 
same region.

Because exhaustively searching over all possible unique 
partitionings of input space is generally computation-
ally intractable, it is standard to use a greedy, top-down 
approach known as recursive binary splitting. At the start 
of the procedure (i.e., at the top (root) node of the tree), 
each training observation belongs to the same region. 
On each successive iteration, the algorithm chooses the 
single input feature and cut point (feature value), across 
all current regions, that leads to the greatest reduction in 
some objective function. It then forms two new regions 
by dividing the selected region in accordance with the 
chosen feature–cut point combination and continues the 
splitting procedure until a stopping criterion is met. In 
this work, we use the Gini index [47] in region m, Gm:

 as the basis for the objective function, where K, the num-
ber of classes (headings), is 8 in our case, and p̂mk is an 
estimate of the probability that an observation in the mth 
hyper-rectangular region belongs to the kth class. The 

Gm =

K∑

k=1

p̂mk(1− p̂mk)
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latter is computed as the fraction of training observa-
tions within the mth region having the class label k. Gm 
can be interpreted as an estimate of what the misclassi-
fication rate for observations falling into region m would 
be if observations were randomly classified according to 
the distribution of classes in that region. It measures the 
class impurity of region m, being smallest (zero) when all 
observations in the region fall into a single class and larg-
est when the distribution of observations across classes is 
constant.

The objective at each stage of the binary recursive split-
ting procedure is to find the region and split that leads to 
the smallest weighted sum of Gini indices across regions 
(where the weights are equal to the number of observa-
tions in each region). We stop the binary recursive split-
ting procedure when no split can be found that decreases 
the objective. Since this procedure is prone to growing 
deep trees that overfit the training data and therefore 
have poor generalization performance, it is typically aug-
mented using some type of statistical method to reduce 
the variance of the learned model.

Random forests accomplish this variance reduction 
by learning separate trees on B (here B =  1000) boot-
strapped data sets [48] of size equal to that of the origi-
nal training data, formed by randomly sampling with 
replacement from the original training data. Further-
more, when considering each split for particular tree, 
only a random subset of j input features (here j = 2) are 
considered as potential candidates for the split. This has 
the effect of producing B trees that are less correlated 
than those that would be learned if the full set of input 
features were considered on each iteration, and hence a 
final classifier with lower variance and better generaliza-
tion performance. Specifically, the final random forest 
classifier, Crf, assigns its class labels according to:

where −→x  is the input vector and the right side of the 
equation denotes a plurality vote among the class predic-
tions made for −→x  by each of the B single-tree classifiers 
learned on a separate bootstrap sample.

Magnetometer classifier training
To form a ground-truth data set for training the random 
forest classifier, a total of 381  samples recorded during 
66 distinct heading events were assigned one of eight 
magnetic heading labels (N, NE, E, SE, S, SW, W, NW) 
by consensus between two human reviewers. Assign-
ments were made based on reviewing video recordings 
of Fox1 behaving in the vicinity of the four-arm maze 
(Fig. 2c) aligned along the cardinal compass axes. There-
fore, ground-truth heading classifications in the cardi-
nal and anti-cardinal directions could be identified by 

Crf(
−→
x ) = mode{Cb(

−→
x )}Bb=1

using the maze as a reference. Distinct heading events 
were identified as time-separated occasions on which 
the fox appeared to maintain a consistent heading for at 
least 0.5 s. The duration of the consistent-heading period 
determined how many samples were collected for each 
heading event.

Results
Behavioral classification
A total of 415 events from Fox1 trained to the two obsta-
cles were manually identified using video records and 
input into the classifier. Of the 415 events, 265 (64%) 
were ‘mousing-like’ leaps, 100 (24%) were foraging, and 
50 (12%) were trotting. Overall classification accuracy 
was 95.7% (chance performance with a null model of 
equiprobable classes is 33.3%; chance performance with 
a null model obtained by assigning each observation to 
the most frequent class is 63.9%; Table 1). The error rates 
for each class, leaping, foraging, and trotting, respec-
tively, were 0.015, 0.00, and 0.28. Unsurprisingly, given 
its relative infrequency, trotting behavior was the most 
difficult to classify, with 11/50 trotting events misclas-
sified as leaping and 3/50 as foraging (Table  1 and see 
“Discussion”). Accelerometer data showed stereotypi-
cal acceleration signatures recorded on each axis of the 
three behaviors used in the classifier (Fig.  3). Figure  4 
shows the data plotted in the three-dimensional space 
given by the first three principal components projections 
after z scoring (i.e., subtracting the mean and dividing by 
the standard deviation of each feature), as well as in the 
two-dimensional spaces defined by all possible pairs of 
the first three principal components. Z scoring and PCA 
were employed only to facilitate viewing the four-dimen-
sional feature data in three dimensions and were not used 
as processing steps prior to classification.

Table 1  Confusion matrix showing tenfold cross-valida-
tion performance of  the 5-nearest neighbor classification 
algorithm run on Fox1

The results displayed in this matrix can be viewed as estimates of how well the 
classifier, trained on data from Fox1, would perform on new, unseen data from 
this same fox

Italicized values indicate cases where ground-truth behaviors (i.e. ’true class’) 
match classifier prediction (i.e. ’predicted class’)

Accuracy 
(%)

95.7 True class Precision 
(%)

Cohen’s 
kappa:

0.92 Leaping Foraging Trotting

Predicted 
class

Leaping 261 0 11 96.0

Foraging 0 100 3 97.1

Trotting 4 0 36 90.0

Recall (%) 98.5 100.0 72.0
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Generalizability of the classifier to new foxes
To the extent that foxes perform mousing-like leaps, for-
aging, and trotting in a stereotyped way, one would expect 
our classifier to accurately distinguish these behaviors in 
new, free-living foxes. A small amount of data (33 events) 
from Fox2 were recorded prior to its removal from the 
study and used to test the classifier’s ability to generalize 
across foxes not used to train the classifier. It should be 
noted that this fox had much less experience perform-
ing the behaviors of interest and was trained using a dif-
ferent type of obstacle compared to Fox1 (see “Methods”, 
“Behavioral recording sessions” and Additional file  2: 
Video file S1, Additional file  3: Video file S2, Additional 
file 4: Video file S3, Additional file 5: Video file S4, Addi-
tional file 6: Video file S5), and therefore, its ‘mousing-like’ 
leaps differed from Fox1 used to collect the majority of 

behavioral data. However, even with the high degree of 
behavioral variability between Fox1 and Fox2, the accu-
racy of identifying the three types of behavior was 66.7% 
(Table 2). The error rates for mousing-like leaps, foraging, 
and trotting, respectively, were 0.3, 0.286, and 0.625. This 
accuracy is significantly better than chance (α  =  0.05) 
using a null model that assigns each observation to the 
most frequently occurring class in this fox’s data set 
(binomial test, p =  0.027). We also note again that the 
sensor mounting scheme was different for Fox1 and Fox2. 
While the features we used were approximately invariant 
with respect to the 90° rotational difference, we did not 
have a way of quantifying other potential differences in 
accelerometer orientation between the two device mount-
ings. Any such differences would most certainly nega-
tively impact classification performance in Fox2, though 

Fig. 3  Acceleration signatures on each of the three axes (x, y, and z) for stereotypical leaping (a), foraging (b), and trotting (c) behaviors in Fox1. 
Note that amplitude scales across both axes and behaviors are made different to facilitate visualization of waveform features. Leaping is in general 
characterized by two large, positive-going peaks on the z-axis separated by a consistent time delay; foraging by signals of similar magnitude and 
irregular morphology on all three axes; and trotting by signals with strong oscillatory components on all three axes
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the severity of the impact is difficult to estimate without 
a quantitative understanding of other orientation differ-
ences. No changes were made to the data processing chain 
to customize the classifier for Fox2 before testing; Fox2 
was simply tested using a classifier trained exclusively on 

data from Fox1. Results were particularly encouraging 
in light of the different mounting schemes and will likely 
improve if mounting can be standardized in future work. 
See “Discussion” for other factors that could contribute to 
decreased classifier performance across individuals and 
possible solutions to mitigate these sources of error for 
more accurate and reliable behavioral data in future stud-
ies involving wild foxes.

Magnetometer data
Classification results
As previously mentioned, the duration of the consistent-
heading period determined how many samples were col-
lected for each heading event. The number of samples 
per event ranged from 2 to 29 with a mean of 5.77 ± 5.16 
(mean  ±  1 SD). Table  3 shows a detailed breakdown 
of events and samples for each of the eight heading 
directions.

We performed two separate classification analyses. 
The first implicitly assumed that all samples collected 
from a given heading were independent draws from the 
same unknown class-conditional probability density 

Fig. 4  a Scatter plot of data collected from Fox1 in the three-dimensional space given by the first three principal component projections after 
z scoring (i.e., subtracting the mean and dividing by the standard deviation of each feature). Note that z-scoring and PCA were done strictly to 
facilitate viewing the four-dimensional feature data in three dimensions; they were not employed as processing steps prior to classification. b–d 
Two-dimensional projections onto all possible pairs of the first three principle components. Blue = leaping; red = foraging; green = trotting

Table 2  Confusion matrix showing performance of  the 
5-nearest neighbor classification algorithm trained 
on data from Fox1 and tested on data from Fox2

The results displayed in this matrix can be viewed as estimates of how well the 
classifier, trained on Fox1, would perform on new, unseen data from a different 
fox

Italicized values indicate cases where ground-truth behaviors (i.e. ’true class’) 
match classifier prediction (i.e. ’predicted class’)

Accuracy 
(%):

66.7 True class Precision 
(%)

Cohen’s 
kappa:

0.50 Leaping Foraging Trotting

Predicted 
class

Leaping 7 0 0 100.0

Foraging 3 5 6 35.7

Trotting 0 2 10 83.3

Recall (%) 70.0 71.4 62.5
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function. Each sample was therefore treated as an indi-
vidual observation (i.e., object for which a heading esti-
mate is desired), giving a total number of observations of 
381. Using tenfold cross-validation to estimate the gen-
eralization performance of the random forest classifier, 
the accuracy achieved was 90.0%. Table 4 lists the com-
plete confusion matrix for the first classifier, which shows 
performance on a per-heading basis. A Rayleigh test was 
used to test for non-random clustering of magnetic head-
ings, as predicted by the classifier, relative to ground-
truth classifications determined by a human observer 
[49]. Therefore, data were pooled with respect to ground-
truth predictions in each of the eight magnetic direc-
tions and plotted as the degree of error for each sample, 
regardless of the ‘true’ or absolute bearing for a given 
sample (Fig.  5). All circular statistics were performed 
using Oriana 4.0, Kovach Computing Services, and for 
each analysis, the data were treated as eight equal width 
groups, each width equal to 45°. Treating each sample as 
an independent point from the overall data set resulted 
in the following: sample size, n = 381, mean vector of the 
distribution, µ = 359°, r value = 0.95, where r represents 
the mean vector length of a circle with radius =  1, and 
p < 1 × 10−12 (Fig. 5a). 

The second analysis replaced the assumption that all 
samples from a given heading were class-conditionally 
independent with the less-stringent assumption that only 
events within a given heading represented independ-
ent draws. This accounts for potential time correlations 

among the samples within an event that might optimis-
tically bias the measure of generalization performance. 
Individual observations in this second analysis were 
therefore heading events rather than samples and were 
computed by averaging the samples collected during each 
event. Collapsing the data set in this way yielded a train-
ing set with 66 observations, one for each of the head-
ing events identified by the human reviewers. The tenfold 
cross-validated accuracy for the random forest classifier 
learned in this setting was 74.2%, and the complete con-
fusion matrix is given in Table 5. Testing for non-random 
clustering of classifier predictions relative to ground-
truth classifications when each event was treated as an 
independent point from the overall data set resulted in 
the following: sample size, n =  66, mean vector of the 
distribution, µ =  2°, r value =  0.87, where r represents 
the mean vector length of a circle with radius =  1, and 
p < 1 × 10−12 (Fig. 5b).

Discussion
The use of bio-logging technologies to help characterize 
spatial behavior and the underlying sensory mechanisms 
mediating magnetic alignment is a promising technique 
for future studies of free-roaming animals. In particular, 
the development of the behavioral ethogram coupled 
with time-synched recordings of magnetic headings pro-
vides a powerful tool to collect unbiased and noninva-
sive behavioral and magnetic data from wild foxes in the 
absence of direct observation. These techniques can also 

Table 3  Summary of the data set used to train the random forest classifier

An event corresponds to a time interval during which the fox was judged by human reviewers to be maintaining a consistent heading. Samples are six-element 
vectors of concatenated x, y, z accelerometer and magnetometer measurements, collected with a 3-Hz sampling rate during each event

N NE E SE S SW W NW

Num. events 8 12 9 7 11 4 7 8

Samples/event (mean ± 1 s.d.) 3.50 ± 1.60 8.17 ± 6.46 4.20 ± 1.56 3.10 ± 0.378 5.90 ± 2.91 8.50 ± 10.4 4.10 ± 2.12 8.40 ± 8.60

Total num. samples 28 98 38 22 65 34 29 67

Table 4  Confusion matrix for the random forest classifier treating each sample as an observation

Italicized values indicate cases where ground-truth headings (i.e. ’true class’) match classifier prediction (i.e. ’predicted class’)

Accuracy (%): 90.0 True class

N NE E SE S SW W NW

Predicted class N 20 0 0 0 0 0 0 2

NE 2 97 1 2 0 0 0 0

E 0 1 30 4 1 0 0 0

SE 0 0 4 15 3 0 0 0

S 0 0 2 1 58 3 0 0

SW 0 0 0 0 2 30 1 0

W 0 0 0 0 0 1 28 0

NW 6 0 1 0 1 0 0 65
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be adapted for deployment in magnetic studies of a vari-
ety of terrestrial vertebrates, an exciting potential given 
the growing evidence for SMA responses across diverse 
taxa [15–17, 24]. Although similar devices (i.e., acceler-
ometer and magnetometer bio-loggers) have been used 
to characterize spatial behavior in free-roaming ani-
mals, extracting magnetic compass headings from ani-
mals moving in three-dimensional space is much more 
challenging and is rarely reported in behavioral stud-
ies. The first attempt to use magnetic sensors to record 
directional behavior in free-living animals monitored 

changes in magnetic measurements over time using a 
fluid-filled ship’s compass equipped with Hall sensors to 
determine activity patterns in sea turtles [50]. A more 
recent study of flight paths in Andean condors equipped 
with bio-loggers was able to identify when birds were cir-
culating within thermals using the sine wave signatures 
of compass measurement readouts, indicating the bird 
was rotating through 360° in the horizontal plane [51]. 
However, magnetic compass headings were not reported 
and only circular vs straight flight path trajectory could 
be derived from the information provided. Magnetic 

Fig. 5  Radial circular plots showing magnetic classifier prediction relative to ground-truth classification made by a human observer. Classifier predi-
cations are pooled relative to ground-truth classification (black triangle at top of circle, i.e., 0°), and the seven other possible classifications headings 
are shown on the periphery of the circle indicating the degree of error in classifier prediction (positive values indicate clockwise error; negative 
values indicate counter-clockwise error). The length of each gray bar extending from the center of the circle represents the number of classifications 
that fall within the 45° bin for that particular direction. The numbers on each dashed circle inside the plot indicate the number of observations (i.e., 
classification predictions) needed to reach that radius, and note that these are shown on a logarithmic scale. a Distribution of classifier predictions 
relative to ground-truth observations when treating each sample as an independent data point (n = 381, µ = 359°, r = 0.95, p < 1 × 10−12). b 
Distribution of classifier predictions relative to ground-truth observations when treating each event as an independent data point (n = 66, µ = 2°, 
r = 0.87, p < 1 × 10−12)

Table 5  Confusion matrix for the random forest classifier treating each event as an observation

Italicized values indicate cases where ground-truth headings (i.e. ’true class’) match classifier prediction (i.e. ’predicted class’)

Accuracy (%): 74.2 True class

N NE E SE S SW W NW

Predicted class N 7 0 0 0 0 1 0 2

NE 0 9 1 1 0 0 0 1

E 0 2 8 0 1 0 0 0

SE 0 0 0 5 1 0 0 0

S 0 0 0 1 9 1 0 0

SW 0 0 0 0 0 0 0 0

W 0 0 0 0 0 1 6 0

NW 1 1 0 0 0 1 1 5
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heading data were reported in studies of pinnipeds that 
deployed triaxial sensors to measure changes in mag-
netic field intensity helping to reconstruct dive paths 
[52, 53]. However, the accuracy of the heading estimates 
was not reported or verified by ground-truth data, and 
it is unclear whether the devices were calibrated prior 
to deployment, as the magnetic output of each axis var-
ies with device orientation and could lead to large errors 
when calculating magnetic headings [4].

Using a k-NN technique for behavioral classification, 
we have shown that three distinct behaviors can be iden-
tified with a 95.7% rate of accuracy when tested against 
unseen data from the same individual (Fox1) that was not 
used to train the classifier. As given in Table  1, trotting 
behavior was by far the most difficult to classify. How-
ever, the trots misclassified as leaping represented a false 
positive rate for leaping of only 4.0%. The rates of mis-
classification of the three behaviors in the current study 
are sensitive to relative sample sizes of each behavior and 
may not be representative of the relative occurrence of 
behaviors in wild foxes. Therefore, in future studies of 
free-living foxes, the percentages of misclassifications will 
be subject to the relative occurrence of each behavior. 
The low percentage of misclassifications of leaping events 
may be overly optimistic, and the algorithm’s assignment 
of trotting events might be problematic depending upon 
the cost a particular researcher assigns to a missed trot in 
other types of studies. However, the precision for declar-
ing a trot (i.e., the likelihood that a trot, as identified by 
the classifier, was indeed a trot) was 90.0%, and the recall 
for trotting (i.e., the percentage of total trots identified by 
the classifier) was 72%, much better than chance perfor-
mance. Increasing the sample size for trots used to train 
the classifier would likely increase trotting precision and 
recall. In addition, implementing automated filters within 
the feature extraction process (e.g., z-axis max accelera-
tion or peak-to-peak time interval thresholds) could be 
used to limit the influence of outlying training observa-
tions and further ‘tune’ the classifier for any behavior of 
interest, e.g., ‘mousing’. Additional features that capture 
pre-mousing behavior (e.g., stalking and slow approach 
toward prey often accompanied by a brief pause prior 
to the mousing jump) could help to distinguish between 
mousing jumps and other non-predatory movements 
that may resemble mousing behavior. However, the foxes 
used in the current study did not display this type of pre-
mousing behavior, and therefore, we were not able to 
incorporate such techniques into the algorithms.

Importantly, in the context of this study, the classifier 
was successful at identifying behaviors from data col-
lected from a separate fox (Fox2) not used to train the 
classifier with an accuracy of 66.7%. These results are 
encouraging given the small sample size, the difference 

in device mounting scheme on Fox2 (see “Methods”), 
and much higher behavioral variability relative to Fox1. 
This variability was due to differences in the design of the 
enclosure used to elicit mousing-like behavior, resulting 
in observable differences in jump approach, jump trajec-
tory, and landing mechanics (see Additional file 2: Video 
file S1, Additional file  3: Video file S2, Additional file 4: 
Video file S3, Additional file 5: Video file S4, Additional 
file 6: Video file S5). However, even with the differences 
in sample size, device mounting orientations, and the 
behavior of Fox2, there were no false positives in identi-
fication by the classifier of ‘mousing-like’ leaps (Table 2), 
i.e., all mousing-like leaps identified in Fox2 were indeed 
mousing-like leaps.

The observed performance decline for Fox2 reflects not 
only differences in training and natural behavior between 
the experimental foxes but also potentially differences in 
device orientation, as mentioned above, as well as other 
sensor-related factors, such as temporal drift and cali-
bration parameter differences between devices. All of 
these sources of error can be mitigated to some degree in 
future work by protocol standardization (e.g., of behav-
ioral training and device mounting) and enlargement of 
the sample size of foxes and sensors used to build the 
training set. But classifier generalization performance 
will ultimately be governed by how representative any 
training data are of fox behavior in the wild. Since any 
wild fox experiment will necessarily involve first captur-
ing subjects in order to instrument them, one possibil-
ity would be to use a protocol involving a brief classifier 
training period during which captive foxes are video-
monitored under freely behaving conditions, perhaps in 
an enclosure similar to the one used in this study. Though 
it is unlikely that each fox would exhibit the full set of 
desired behaviors in this captive setting, data recorded 
from these sessions could be used to impart some degree 
of individualized tuning to the classifiers used for each 
fox, which would in turn result in improved performance 
for wild fox classifiers. Furthermore, this approach would 
help to confirm the generalizability of the current clas-
sifier by comparing ground-truth data from the semido-
mesticated foxes and wild foxes.

More generally, given the accuracy of the classifier 
within an individual and its above chance performance 
on a separate individual not used to train the classifier 
that exhibited a different set of kinematics, our methods 
show considerable promise for identifying leaping behav-
iors in wild foxes. To validate that accelerometer signa-
tures recorded from mousing-like leaps are similar to 
those of functional mousing behavior in wild foxes, and 
to confirm the generalizability of the classifier across mul-
tiple individuals, ground-truth data from free-roaming 
foxes equipped with bio-logging devices will be critical 
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for future studies of SMA in red foxes. Moreover, the 
development of more sophisticated classifiers and using 
an expanded feature set could allow even greater preci-
sion of behavioral identification and provide opportuni-
ties to identify more complex behaviors, e.g., predatory 
from non-predatory leaps, and could be augmented with 
additional sensors such as jaw accelerometers or onboard 
video recording devices to identify behavioral outcomes, 
e.g., prey capture success or foraging habitat type.

In addition to the behavioral classification, we used a 
supervised learning task, specifically a classification task, 
to identify the magnetic compass headings of Fox1 dur-
ing behaviors that parallel the behaviors preceding mous-
ing attempts in wild foxes (e.g., slow, stalking approach). 
Due to resolution of ground-truth video records, we used 
an 8-way classification task with the four cardinal and 
four anti-cardinal directions, and therefore, the classifier 
could distinguish among eight magnetic directions with a 
45° resolution.

We performed two separate random forest classifi-
cation analyses, the first assumed each sample was an 
individual observation and therefore contained a total of 
381 observations. Using tenfold cross-validation to esti-
mate the generalization performance of the random for-
est classifier, the accuracy achieved was 90.0% (Table  4; 
Fig.  5a). Of note, all but 7 (1.8% of all observations) of 
the errors made by the classifier were ‘off-by-one’; i.e., 
the classifier predicted either the correct heading or one 
of the headings adjacent to the true heading in 98.2% of 
all cases. However, we recognize that this analysis may 
be overly optimistic since this approach did not account 
for potential time correlations between samples drawn 
from a given heading. Therefore, the second analysis lim-
ited individual observations to heading events, defined 
in this study as periods of time when Fox1 was assigned 
to a consistent direction by a human reviewer. Heading 
events were then computed by averaging samples over 
each such time period. This resulted in a smaller sample 
size (n  =  66 observations), and tenfold cross-validated 
accuracy for the random forest classifier learned in this 
setting was 74.2% (Table 5; Fig. 5b).

While it is tempting to conclude that the second analy-
sis is more appropriate than the first, it should be noted 
that some of the observed performance decline is likely 
attributable to the dramatic reduction in the size of the 
training set used in the second analysis. It is reasonable 
to assume that if a larger number of events were available 
for training, accuracy on unseen data would fall some-
where between the bounds of 74.2 and 90.0% that was 
achieved (Fig. 5). Of course, even a pessimistic estimate 
of 74.2% accuracy far outstrips a chance classifier, which 
would perform at 12.5% on this problem.

Whether a digital compass (i.e., heading classifier) 
with the degree of resolution and accuracy we present 
here would yield conclusive data in a larger field study 
involving multiple wild foxes depends on the strength 
and scale of any effect being measured as well as the 
degree of behavioral similarity across animals. The lat-
ter can potentially be managed by training classifiers on 
individual foxes which participate in field-based studies, 
or across a representative group of wild and/or captive 
foxes. In addition, improvements in the sensor fixation 
and mounting technique, in the resolution of the appa-
ratus and methodology used to collect and label ground-
truth data, and in the size of the training data set would 
all likely yield improvements in the resolution and accu-
racy of the classifier. In future studies designed to char-
acterize the biophysical mechanisms mediating SMA, 
treatment groups (e.g., foxes exposed to radio-frequency 
fields in the low-MHz range, see below) would be pre-
dicted to exhibit magnetic alignment responses indistin-
guishable from random, similar to the behavioral effects 
of radio-frequency exposure on the magnetic compass 
response in migratory birds [54]. The 8-way classi-
fier developed in this study is well suited to distinguish 
between the magnetic headings of oriented and random 
mousing attempts, although the strength of the orienta-
tion in control group would determine the sample size 
needed to confirm any treatment effect. In conclusion, 
we are encouraged by the performance of the 8-way clas-
sifiers in light of the difficulty of the problem and believe 
the framework established here is promising that merits 
further study and development.

The development of these automated behavioral moni-
toring and classification techniques will make it possi-
ble to further investigate magnetic alignment responses 
exhibited by foraging red foxes whose prey capture suc-
cess has been shown to be dependent on their orientation 
with respect to the Earth’s magnetic field [27]. Červený 
et al.’s analysis of prey capture success in habitats where 
visual cues could not be used to guide mousing behav-
ior (i.e., dense vegetation and snow cover) revealed that 
foxes were approximately four times more successful 
when attacks were directed toward magnetic north-
northeast. One possible explanation for this type of align-
ment behavior is the involvement of a light-dependent 
magnetoreceptor mediated by the so-called radical pair 
mechanism that could be perceived as a visual pattern 
superimposed on the animal’s visual surroundings [26, 
34, 55]. As suggested by Červený et  al. (and see “Back-
ground”), this visual pattern, fixed in alignment with 
respect to the magnetic field, could be used as a targeting 
system that may allow foxes to initiate their attacks from 
a fixed distance, increasing the accuracy of the mousing 
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attempt. Consistent with Červený et  al.’s findings, the 
contribution of the proposed magnetic ‘range-finder’ (i.e., 
distance estimator) to the accuracy of predatory attacks 
could be especially pronounced when the fox’s view of 
the prey is obstructed by dense vegetation or snow cover 
[27].

Although the red fox is considered a generalist species, 
several studies of central European red foxes suggest that 
a significant proportion of their diet comes from rodents 
that varies depending on elevation and season. For exam-
ple, one study estimates that 65% of the fox’s diet comes 
from rodents throughout the year [56], whereas more 
recent estimates suggest that >30% of their diet is com-
posed of rodents (and hares), and during the winter 
months, small mammals make up approximately 40% of 
the fox’s diet [57]. Although foxes will use sight to guide 
the majority of predatory behaviors in habitats with low 
vegetation and no snow cover, even just 2  weeks of tall 
grass or snow would require that foxes ‘mouse’ to catch 
prey burrowed under the substrate, and therefore, ‘hard’ 
evolutionary selection is considered to underlie the fox 
mousing phenotype. Given the importance of mousing 
to fox survival, it is not surprising that multiple cues and 
sensory systems are involved, helping to increase the suc-
cess and efficiency of mousing behavior.

Magnetic bio-loggers can provide a valuable tool for 
future studies of magnetic alignment in free-roaming 
animals, and in particular foraging wild red foxes. The 
development of these devices along with well-developed 
behavioral classifiers and magnetic alignment data offers 
a noninvasive technique for collecting robust and unbi-
ased behavioral data sets across multiple individuals. 
However, it must be confirmed that the bio-loggers them-
selves, the harness system, or any additional equipment 
secured to the fox do not introduce unintentional biases 
or effect the performance of functional behaviors in wild 
foxes. One advantage of the miniaturized bio-logger and 
collar use in the current study is that it offers a light-
weight and durable approach for external data tag attach-
ment. The mean body mass of western European adult 
red foxes ranges from roughly 5.5 to 6.5  kg (although 
individual, sexual, and seasonal factors introduce vari-
ation) [58], and therefore, the bio-logging equipment 
used in the current study (total mass = 55.2 g) accounts 
for less than 0.1% of the mean body mass, well below the 
suggested <10% body mass guidelines recommended by 
[59]. Since the collars were snuggly secured around the 
fox’s neck, it is unlikely that it would hamper the move-
ments involved in wild mousing behavior, and indeed, 
no impairment in mousing-like leaps or decrease in fre-
quency of leaps was observed in the semidomesticated 

foxes when the harnesses were attached compared to 
when they were removed. However, this was based on 
general observations of the semidomesticated foxes 
inside the behavioral arena, and field-based observations 
comparing the behavior of free-roaming foxes with and 
without harnesses will be important to confirm that the 
equipment is not influencing the quality or frequency of 
natural behaviors. Furthermore, although the devices did 
contain small amounts of magnetic material causing a 
slight deflection (<5°) of a compass needle when placed in 
contact with the device, this effect was eliminated when 
the device was moved 2  cm from the compass. There-
fore, it is unlikely that the small magnetic component 
inherent to the bio-logger would have an effect on per-
ceiving the magnetic field, as the magnetic field strength 
falls off exponentially with distance, decreasing at a rate 
to the third power with distance (i.e., inverse cube law) 
[60], and therefore would produce a much weaker effect, 
if any, in the eyes and head region (i.e., the proposed site 
of magnetoreceptors [33, 61]). Also, magnetic compass 
responses in migratory birds exposed to field strengths 
differing by ±30% of the natural field strength showed 
no effect on compass orientation, suggesting a functional 
window of magnetic compass responses [62], and if SMA 
in red foxes is mediated by a similar sensory mechanism, 
weak magnetic fields produced by the bio-logging device 
would not be expect to disrupt magnetic alignment 
responses.

An exciting possibility is the use of additional technolo-
gies in combination with magnetic bio-loggers to perform 
field-based manipulative experiments on free-roaming 
animals, which have been difficult to implement in field 
studies of magnetic alignment to date. For instance, 
magnetic responses in a variety of animals (e.g., birds, 
mice, turtles, insects) [18, 54, 63, 64] have been shown 
to be affected by radio-frequency fields in the low-MHz 
range, presumably influencing the quantum spin states 
underlying the light-dependent radical pair mechanism, 
altering or disrupting the pattern of magnetic input. If a 
radical pair mechanism mediates the directional com-
ponent of mousing attacks of red foxes, radio-frequency 
exposure should disrupt the accuracy (and, therefore, 
the success) of these attacks. We have developed radio-
frequency emitting collars tuned to broadcast in the 
low-MHz range that have been shown to disrupt the 
magnetic compass orientation of amphibians and birds 
(sinusoidal frequency sweeps from ~1.0 to 1.8  MHz, at 
the rate of 10.0 kHz) [54, 65]. The collar is composed of 
two major units: the transmitter board and the multi-
turn loop antenna, and the resulting signal is amplified 
using a Class-C power amplifier to provide greater power 



Page 17 of 19Painter et al. Anim Biotelemetry  (2016) 4:20 

efficiency and promote longer battery life for input to 
the multi-turn antenna. Because the physical size of the 
antenna was extremely small relative to the wavelength 
at 1.4  MHz (approximately 215  m), multiple loops of 
wire were stacked vertically to improve the antenna’s 
efficiency and ensure sufficient energy was emitted to 
the fox. The resulting collar produces a radio-frequency 
stimulus with a maximal intensity of 88 nT, beyond inten-
sities shown to disrupt migratory compass orientation 
in birds and SMA responses in hatchling snapping tur-
tles [18, 66]. Integrating the radio-frequency collar with 
the bio-logging device and harness system will provide 
a powerful opportunity to test for the involvement of a 
light-dependent radical pair mechanism underlying mag-
netic alignment responses of mousing red foxes under 
otherwise natural conditions that can be conducted fol-
lowing double-blind protocols. Importantly, this system 
can provide further support for, or against, the impact 
of anthropogenic radio-frequency exposure on wild life 
[67–69]. Although field observations of wild foxes will 
be important to confirm that the radio-frequency col-
lars do not affect natural behaviors, it is unlikely that they 
would impair the use of magnetic cues during mousing 
attempts. As discussed above, magnetic field strengths 
fall off exponentially as a function of distance [60], and 
the radio-frequency collars are only weakly magnetic, 
making it unlikely that the collar would appreciably affect 
the perception of magnetic fields. Furthermore, if foxes 
use a similar magnetoreception mechanism to that used 
by migratory birds, then magnetic field intensities would 
need to change by 30% or more to disrupt behaviors rely-
ing on magnetic cues [62]. Lastly, non-iron containing 
loops of wire, like those used in the current radio-fre-
quency collar design, will not manipulate or distort the 
ambient magnetic field. The radio-frequency intensities 
proposed for use in future studies of red foxes are well 
below the guidelines for human exposure adopted by 
the World Health Organization [70] and are thought to 
only affect biological processes occurring at the quantum 
level. Therefore, we do not anticipate the animal to expe-
rience any discomfort or long-term effects from radio-
frequency exposure.

If, however, mousing success is unaffected by radio-
frequency exposure, alternative manipulations could be 
performed, aimed to test for the involvement of a mag-
netite-based mechanism similar to the one proposed to 
mediate spontaneous magnetic nest building behaviors 
in subterranean mole-rats [71–73]. For example, prior 
to attaching the harness system to wild-caught foxes, 
individuals could be exposed to a brief, high-intensity 
magnetic pulse that re-magnetizes particles of biogenic 

magnetite. Similar to the effects of pulse re-magnetiza-
tion on mole-rats that exhibited a 90° deviation of mag-
netic nest building orientation after pulse treatments 
[73], wild foxes would be predicted to exhibit shifted or 
abolished SMA responses while mousing if this behavior 
is mediated by a magnetite-based mechanism.

Conclusions
We report the development of ‘magnetic ethograms’ 
in which the behavior and magnetic alignment of red 
foxes can be accurately extracted from raw sensor data 
recorded from triaxial accelerometer and magnetometer 
bio-loggers. Three functionally relevant behaviors could 
be identified using a 5-nearest neighbor classifier that 
performed with an overall accuracy of 95.7% across 415 
ground-truth events. To evaluate the generalizability of 
the classifier, similar behavioral data were recorded from 
a second fox and resulted in 66.7% performance accuracy 
when analyzed using identical techniques, suggesting the 
classifier can extract behaviors across multiple foxes. A 
similar classification approach was used to identify the 
fox’s magnetic alignment using two 8-way classifiers with 
differing underlying assumptions to distinguish magnetic 
headings in eight equally spaced 45° sectors. The mag-
netic heading classifiers performed with 90.0 and 74.2% 
accuracy, suggesting a realistic performance range for a 
classifier based on an independent set of training events 
equal in size to our sample.

Given the performance of the behavioral and mag-
netic classifiers, we argue that ‘magnetic bio-loggers’ are 
well-suited for use in future studies of SMA in red foxes 
thought to use the magnetic field as a targeting system, 
increasing the accuracy of mousing attacks targeting 
small prey. The deployment of bio-loggers coupled with 
additional lightweight technologies, e.g., radio-frequency 
collars, provides an exciting opportunity to help char-
acterize the adaptive significance and the biophysical 
mechanisms mediating SMA in free-roaming mammals, 
both of which remain enigmatic. More generally, these 
techniques will provide new opportunities for stud-
ies of SMA in free-roaming mammals and offer several 
advantages including the ability to collect large data sets 
autonomously across multiple individuals, recording 
data in habitats or locations that may otherwise be inac-
cessible by observers, observer biases can be avoided, 
experiments can be conducted following double-blind 
protocols, and these techniques can be adapted for stud-
ies across diverse animals and behaviors. Therefore, we 
hope that the current study inspires a new approach for 
future researcher of magnetic alignment in free-roaming 
animals.
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Abbreviation
SMA: spontaneous magnetic alignment.
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