Table 3 Description of predictor variables

Name Formula Description
sba $$sba_{i} = \frac{1}{7}*\sum\nolimits_{j = i - 3}^{i + 3} {acc_{j} }$$ Static body acceleration
sba_x_c $$sba\_x\_c_{i} = sba\_x_{i} - correction\_value_{tag}$$ Corrected static body acceleration of x axis
dba $$dba_{i} = {\left| acc_{i} - {sba_{i} } \right|}$$ Dynamic body acceleration
mdba $$mdba_{i} = \frac{1}{w}\sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} { {dba_{i} }}$$ Mean dynamic body acceleration
mdba_xyz $$mdba\_xyz_{i} = \sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} {\left( {dba\_x_{j} + dba\_y_{j} + dba\_z_{j} } \right)}$$ Overall mean dynamic body acceleration of the x-, y- and z-axis
meandl $$meandl_{i} = \frac{1}{w}\sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} {\left| {acc_{j + 1} - acc_{j} } \right|}$$ Mean absolute difference between adjacent data points
vardl $$vardl_{i} = \frac{1}{w - 1}\sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} {\left( {\left| {acc_{j + 1} - acc_{j} } \right| - meandl_{i} } \right)^{2} }$$ Variance of the absolute difference between adjacent data points
varsba $$varsba_{i} \frac{1}{w - 1}\sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} {\left( {sba_{j} - \overline{sba} } \right)^{2} }$$ Variance of the static body acceleration
vardba $$vardba_{i} = \frac{1}{w - 1}\sum\nolimits_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} {\left( {dba_{j} - \overline{dba} } \right)^{2} }$$ Variance of the dynamic body acceleration
maxdba $${ \hbox{max} }dba_{i} = MAX_{{j = i - \frac{w}{2}}}^{{i + \frac{w}{2}}} \left( {dba_{j} } \right)$$ Maximum of the dynamic body acceleration
dps See R-Script (Additional file 8). Dominant power spectrum
fdps See R-Script (Additional file 8). Frequency of the dominant power spectrum
1. (i = data point within the burst, w = window width). Each predictor variable is calculated for each acceleration axis (except odba_xyz) and for different window widths (except sba). These are indicated by specific suffixes (e.g., meandl_x_w2 stands for the meandl that is calculated over the acceleration data from the x axis with a window width of 2 s)