Skip to main content

Table 9 A list of terms and their meaning

From: BIOTAS: BIOTelemetry Analysis Software, for the semi-automated removal of false positives from radio telemetry data

Variable Meaning
NB Naïve Bayes Classifier
\(RSS\) Received signal strength or detection power, model parameter
\(HR\) Hit ratio, model parameter
\(CRL\) Consecutive record length, model parameter
\(NR\) Noise ratio, model parameter
\({\delta }^{2}L\) Difference in time-lab between detections, model parameter
\(PDH\) Proximate detection history
\(P\left({C}_{i}|{F}_{1},\dots ,{F}_{n}\right)\) Posterior probability of a detection belonging to detection class \({C}_{i}\) given the observed predictor variables \({F}_{1},\dots ,{F}_{n}.\)
\(P({C}_{i})\) Prior probability of the ith detection class occurring where (\(C\in \left\{\mathrm{Valid},\mathrm{False Positive}\right\}\))
\(P({F}_{j}|{C}_{i})\) Likelihood (conditional probability) of the jth observed predictor (\({F}_{j}\)) value given the ith detection class (\({C}_{i}\))
\({t}_{p}\) True positive
\({f}_{p}\) False positive
\({f}_{n}\) False negative
\({t}_{n}\) True negative
\(sen\) Sensitivity, model metric, \(sen={t}_{p}/({t}_{p}+{f}_{n})\)
\(spc\) Specificity, model metric,\(spc={t}_{n}/({f}_{p}+{t}_{n})\)
\(npv\) Negative predictive value, model metric,\(npv={t}_{n}/({f}_{n}+{t}_{n})\)
\(ppv\) Positive predictive value, model metric,\(ppv={t}_{p}/({t}_{p}+{f}_{p})\)
\(fpr\) False positive rate, model metric,\(fpr={f}_{p}/({f}_{p}+{t}_{n})\)
PRC Precision-recall curve
AUC Area under the curve statistic, integral of the PRC
\(\kappa\) Cohen’s Kappa measure of concordance