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Abstract 

Background:  The study of animal movement and use of space have traditionally focused on horizontal and vertical 
movements separately. However, this may limit the interpretation of results of such behaviours in a three-dimensional 
environment. Here we use passive acoustic telemetry to visualise and define the three-dimensional use of space by 
two species of sea snake [Hydrophis (Lapemis) curtus; and Hydrophis elegans] within a coastal embayment and identify 
changes in how they use space over a diel cycle.

Results:  Monitored snakes exhibited a clear diel pattern in their use of space, with individuals displaying restricted 
movements at greater depths during the day, and larger movements on the surface at night. Hydrophis curtus gener-
ally occupied space in deep water within the bay, while H. elegans were restricted to mud flats in inundated inter-tidal 
habitats. The overlap in space used between day and night showed that individuals used different core areas; how-
ever, the extent of areas used was similar.

Conclusions:  This study demonstrates that by incorporating the capacity to dive in analyses of space use by sea 
snakes, changes over a diel cycle can be identified. Three-dimensional use of space by sea snakes can identify spatial 
or temporal overlaps with anthropogenic threats (e.g. trawling, dredging) and help develop targeted management 
policies that mitigate any adverse effects to ensure healthy populations of sea snakes.
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Background
The identification of patterns in the movements of indi-
viduals, and their relationship to ecological phenomena, 
have been a critical aspect in studies of terrestrial, avian, 
and marine organisms [1]. Traditionally, studies on the 
movement and use of space by animals have been rep-
resented in two dimensions (e.g. Latitude–Longitude 
or Easting–Northing); this, however, may not fully rep-
resent the reality of the environment that most animals 
occupy. Recent advances in technology and analytical 
techniques have allowed integration of the vertical axis 
into studies examining the use of space to a high degree 
of spatial resolution. These advances have improved our 

understanding of the spatial ecology of a range of terres-
trial, avian, and marine organisms [2–5].

Since aquatic animals live in a three-dimensional envi-
ronment and have the ability to move in all three dimen-
sions, their use of space is most accurately represented in 
the same number of dimensions. Sea snakes are a group 
of marine elapid snakes that spend their entire lifecycle 
in the marine environment and are found in a range of 
habitats, including coral reefs, open oceans, and coastal 
embayments [6]. Past studies have used mark-recapture 
and genetic studies to infer broad-scale movements and 
population connectivity between patchy reef environ-
ments over large temporal scales [7, 8].

A few attempts to understand movement and use of 
space by reef-associated olive sea snakes [Aipysurus lae-
vis;  9, 10] and pelagic yellow-bellied  sea snakes [Hydro-
phis  (Pelamis)  platura; 11, 12] have contributed the 
majority of what is currently known about these taxa. 
Rubinoff and colleagues [11, 12] studied the short-term 
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movements (3.8–31.2 h monitored) of fifteen H. platura 
tagged with depth-sensing ultrasonic tags and examined 
vertical and horizontal patterns of movement separately, 
publishing their results in two articles. The first, exam-
ined the movements of tagged snakes in the vertical axis, 
looking at the depths and durations of dives [11] followed 
by the second that focused on the horizontal move-
ments of tagged individuals [12]. They found that despite 
H. platura being considered a surface-dwelling pelagic 
sea snake, tagged individuals spent the majority of the 
monitoring period (87%) underwater and dove as deep 
as 50  m. Burns and Heatwole [9] found that A. laevis 
displayed restricted movements around their home reef 
with small home ranges (1,500–1,800 m2) and that home 
ranges of all snakes (n = 11) overlapped with two or more 
individuals. Estimates of space used and overlap between 
monitored individuals, however, did not consider their 
use of depth. Studies of eel movements by Simpfendorfer 
et al. [2] revealed that failure to consider vertical move-
ment can result in an overestimation of home range over-
lap if individuals are using the same two-dimensional 
location but different depths.

Currently, very little is known about how sea snake spe-
cies that occupy coastal and inshore waters use space, 
with the majority of past studies in these habitats often 
focusing on abundance and diversity based on incidental 
capture in trawl fisheries [13, 14]. To provide information 

on the movement patterns of sea snakes in a coastal 
system, we tracked two species of sea snake in Cleve-
land Bay, Queensland Australia (Fig. 1, Additional file 1, 
https://dl.dropboxusercontent.com/u/31456301/3DSS/
SM1/index.html) to define three-dimensional movement 
patterns. The aims of this study were to: (a) use passive 
telemetry to understand and visualise how sea snakes use 
space within the water column, and (b) examine any diel 
patterns in the use of three-dimensional space by tagged 
sea snakes. Patterns in the three-dimensional use of space 
were also considered in the context of their potential to 
inform on the susceptibility of sea snakes to anthropo-
genic threats (e.g. trawling, dredging).

Results
Twenty-five individuals from two species of sea snake, 
spine-bellied sea snake (Hydrophis curtus previously 
Lapemis curtus: n =  19) and elegant sea snake (Hydro-
phis elegans: n =  6), were tagged within the study site 
and monitored between January and November 2013. 
The majority of monitored individuals were juvenile, 
which were difficult to sex using external morphologi-
cal feature. Only two adult female H. curtus and a sin-
gle adult male H. elegans were monitored; therefore, to 
avoid inaccurate conclusions related to the small sample 
size of reproductively mature individuals in this study, 
sex was excluded as a covariate in further analyses. 

Fig. 1  Study site in Cleveland Bay. Points represent locations of acoustic receivers deployed at the study site. Broken grey lines indicate bathymetry. 
An interactive, three-dimensional model of the study site is available in the additional files (Additional file 1)

https://dl.dropboxusercontent.com/u/31456301/3DSS/SM1/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM1/index.html
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Data from depth sensors showed that individuals from 
both species displayed a strong diel pattern in use of the 
water column (Fig. 2). Snakes were found at significantly 
greater depths during the day (06:00–18:00 h) and were 
active on the surface at night (t test, H. curtus: t = 26.37, 
p < 0.05, H. elegans: t = 9.51, p < 0.05). Hydrophis curtus 
displayed a more varied dive profile, diving to an average 
depth of 3.2 m (SE: ±0.03 m; max depth =  7.5 m) dur-
ing the day and 2.1 m (SE: ±0.03 m; max depth = 7.4 m) 
at night. While, H. elegans generally used comparatively 
shallower water and dived to an average of 2.5  m (SE: 
±0.05 m; max depth = 5.7 m) during the day and 1.8 m 
(SE: ±0.04 m; max depth = 6.2 m) at night. Individuals 
of H. curtus were generally present in deep water on the 
eastern side of Cleveland Bay (Fig.  3a, Additional file  2, 
https://dl.dropboxusercontent.com/u/31456301/3DSS/
SM2/index.html), whereas H. elegans were restricted to 
shallow water directly adjacent to the southern shore 
(Fig. 3c, Additional file 3, https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM4/index.html). 

The integration of depth data into analysis of space use 
showed a difference in the three-dimensional kernel utili-
sation distributions (3DKUD) for individuals of both spe-
cies during day and night (Fig. 3b, d; Additional files 4, 5; 
https://dl.dropboxusercontent.com/u/31456301/3DSS/
SM3/index.html, https://dl.dropboxusercontent.com/
u/31456301/3DSS/SM5/index.html). Sufficient data from 
12 of the 19 tagged H. curtus, and 5 of the 6 H. elegans 
were available to calculate reliable 3DKUDs to compare 
diurnal and nocturnal use of space. Despite the differ-
ence in depths occupied by individuals, generalised lin-
ear mixed models (GLMM) showed that volumes of core 
(50%-3DKUD) and extent (95%-3DKUD) of space used 
by H. curtus were not significantly different between 
day and night (50%-3DKUD: F1,11 = 0.44, p = 0.52; 95%-
3DKUD: F1,11  =  0.20, p  =  0.66; Fig.  4a). Similarly, the 
volume of 50%-3DKUD used by H. elegans was not sig-
nificantly different between day and night (F1,4 =  5.58, 
p  =  0.07); however, H. elegans displayed significantly 

Fig. 2  Patterns in diel use of different depths by tagged a Hydrophis curtus (n = 19) and b Hydrophis elegans (n = 6) over the monitoring period. 
Mean depths recorded by day (red) and night (blue) are represented as ticks on the y-axis

https://dl.dropboxusercontent.com/u/31456301/3DSS/SM2/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM2/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM4/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM4/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM3/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM3/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM5/index.html
https://dl.dropboxusercontent.com/u/31456301/3DSS/SM5/index.html
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larger 95%-3DKUD volumes at night compared to the 
day (F1,4 = 18.79, p = 0.01; Fig. 4b).

The overlap between areas used by individuals dur-
ing the day and at night showed that 50%-3DKUDs of 
both species had a low proportion of overlap (Fig.  4c), 
suggesting that despite similar volumes, there was little 
overlap in the core areas used. The mean proportion of 
overlap in 50%-3DKUDs between day and night was sig-
nificantly lower than that of a random pattern for both 
species (t test, H. curtus: t = −2.47, p = 0.02; H. elegans: 
t = −3.93, p = 0.02). In contrast, 95%-3DKUDs showed 
a high degree of overlap between day and night (Fig. 4d). 
The mean proportion of overlap in 95%-3DKUD between 
day and night for both species was not significantly dif-
ferent from random (t test, H. curtus: t = 1.52, p = 0.15; 
H. elegans: t = 0.07, p = 0.94).

Discussion
The representation of space used by sea snakes in their 
natural environment requires the integration of their 
diving capabilities. Here we show that the use of new 
techniques in three-dimensional spatial analyses is 
appropriate when considering how sea snakes use space 
and facilitate detection of diel changes in movement. 
Previous attempts at understanding sea snake move-
ments and their use of space by Rubinoff et  al. [11, 12] 
and Burns and Heatwole [9] utilised ultrasonic trans-
mitters to reveal short-term movements of the pelagic 
yellow-bellied sea snake, Hydrophis (Pelamis) platura, 
and the reef-associated olive sea snake, Aipysurus lae-
vis, respectively. These studies were very useful in defin-
ing movement; however, as the vertical and horizontal 

Fig. 3  Three-dimensional space use by a representative Hydrophis curtus (a) within the study site and b in closer detail, and by a representative 
Hydrophis elegans (c, d). Screenshots showing day-time core (50%-3DKUD; dark red) and extent (95%-3DKUD; light red) 3DKUD as well as night-time 
core (50%-3DKUD; dark blue) and extent (95%-3DKUD; light blue) 3DKUD. Surrounding bathymetry and sea surface are also rendered to provide con-
text. Black points in a, c represent the locations of acoustic receivers within the study site. Interactive, three-dimensional versions of these 3DKUD 
models are available in the additional files (Additional files 2, 3, 4 and 5)
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patterns of movement were examined separately [e.g. 11, 
12], the interpretation of the movements and use of space 
of these species was limited. The present study demon-
strates that with the current advances in statistical anal-
yses, the integration of vertical and horizontal axes will 
allow for a more accurate interpretation of the patterns of 
movement and of the use of space in sea snakes.

The results in the present study indicate a clear diel 
change in diving patterns, use of space and habitat by 
both species of sea snakes within Cleveland Bay. The 
drivers of change are potentially numerous, but one fac-
tor that most likely has an important influence on diurnal 
and nocturnal behaviour is the abundance and activity of 
prey. Hydrophis elegans almost exclusively prey on snake 
eels (Family Ophichthidae) [15, 16], which are abundant 
within the shallow mud-flat benthos of Cleveland Bay. 
This may not only restrict the use of space by H. elegans 
to mud flats close to the mouths of creeks within Cleve-
land Bay, but might also drive some of their movements 
at night. The movements and activity patterns of eels 
within coastal habitats are closely related to diel patterns, 
with greater activity and movement at night [17, 18]. 

Increased activity of prey species at night may explain the 
greater use of space by H. elegans at night and the low 
proportion of overlap between core areas between day 
and night. On the other hand, the diet of H. curtus is var-
ied and includes a wide range of prey species [16] sug-
gesting H. curtus are not restricted to a particular habitat 
within the bay. This may explain the larger volumes and 
increased overlap between spaces used between day 
and night. The results also indicate that different spe-
cies of sea snakes likely display different patterns in diel 
movements and, therefore, susceptibility to natural and 
anthropogenic threats will vary.

One aspect of the present study that needs to be con-
sidered is that the majority of individuals that were moni-
tored were juvenile. The few adults that were monitored 
displayed similar patterns of diel movements to juvenile 
conspecifics; however, previous studies have shown that 
movement patterns in adult sea snakes can vary season-
ally, with increased movements displayed by males dur-
ing breeding season related to mate-searching behaviours 
[6, 19]. This is an additional factor that needs to be con-
sidered when exploring diving and movement patterns 

Fig. 4  Diel differences in the use of volumetric space by tagged sea snakes. Mean diurnal (50%-3DKUD: dark red; 95%-3DKUD: light red) and noctur-
nal (50%-3DKUD: dark blue; 95%-3DKUD: light blue) volumetric space used by a Hydrophis curtus (n = 12) and b H. elegans (n = 5). Overlap between 
c 50%-3DKUD and d 95%-3DKUD diurnal and nocturnal use of space by H. curtus (white bars) and H. elegans (grey bars)
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of sea snakes over multiple seasons. In the present study, 
low numbers of tagged adults and limitations in tag life 
restricted the ability to explore such seasonal changes 
in three-dimensional movement patterns related to 
breeding cycles. Additionally, ontogenic shifts in habi-
tat use and diets in sea snakes during different life stages 
may also alter movement patterns. Presently, very little 
information is available on ontogenic changes in diet or 
habitat use in sea snakes. Further long-term studies are 
required to investigate if dietary preference and use of 
habitat changes with life stages in sea snakes, which can 
potentially influence how individuals move within the 
environment and use space.

Globally, the primary anthropogenic threat to marine 
reptiles is capture in coastal trawl fisheries [20]. Trawl 
fisheries target a range of commercially valuable species 
(e.g. Penaeus esculentus, Penaeus longistylus, Amusium 
ballotti) that are fished during different times of the year 
and at different times of the day [21]. The diel patterns 
observed in the present study, with increased space used 
in the water column at night suggest that these species 
of sea snakes have an elevated susceptibility to nocturnal 
trawling activity; however, this may vary for other spe-
cies and differ among life stages. In Australia, bycatch 
in the trawl fishery is effectively managed by mandatory 
use of bycatch-reduction devices (BRD) as well as spatial 
and temporal restrictions to fishing. The combination 
of BRDs and fishing restrictions has been shown to be 
effective in reducing landings of sea snakes in Australia 
[22]. These management practices, however, may not be 
practical or enforceable in other parts of the world where 
coastal fisheries overlap with sea snake populations. 
Monitoring the movements of sea snakes and under-
standing how they use space within heavily trawled areas 
can help identify areas of spatial or temporal overlap that 
can be more effectively mitigated using targeted manage-
ment policy.

Conclusions
Here we applied three-dimensional kernel utilisation 
distribution analyses to understand how sea snakes 
use space in their natural environment. This study also 
demonstrated that such analyses allow examination of 
changes in how individuals move and behave over a diel 
timescale and identify potential drivers that cause these 
changes. Abundance and activity patterns in preferred 
prey of H. curtus and H. elegans may explain the differ-
ential diurnal and nocturnal use of space by these two 
species. Finally, understanding how sea snakes use space 
within their three-dimensional environment can also 
help identify spatial and temporal overlaps with anthro-
pogenic threats (e.g. trawling, dredging) and allows man-
agers to develop targeted policy designed to mitigate any 

adverse effects to vulnerable populations of sea snakes. 
Inclusion of the vertical axis (i.e. depth, altitude, height) 
in the visualisation and analysis of spatial data clearly 
enhances our understanding of how animals occupy 
space and move, and may ultimately allow for more accu-
rate assessment of their susceptibility to threats. Simi-
lar techniques can greatly benefit future studies on the 
spatial ecology of aquatic, aerial and arboreal animals in 
their natural habitat and refine their susceptibility to nat-
ural and anthropogenic threats that operate in the same 
three-dimensional environment.

Methods
Field methods
This study was conducted in Cleveland Bay (19.20°S, 
146.92°E), on the northeastern coast of Queensland, 
Australia (Fig.  1). Cleveland Bay is a shallow coastal 
bay (<10  m deep) that covers an area of approximately 
225 km2 with the western and southern margins bounded 
by the mainland and Cape Cleveland, respectively, and a 
large continental island, Magnetic Island, to the north of 
the bay (Fig. 1). The majority of the bay has soft sediment 
substrates with extensive seagrass meadows, with the 
exception of a fringing reef system on the lee of Magnetic 
Island. Multiple tidal creeks with mud-flat and mangrove 
habitats line the southern shore and provide the majority 
of freshwater input.

Spine-bellied sea snakes (Hydrophis curtus; previ-
ously Lapemis curtus) and elegant sea snakes (Hydro-
phis elegans) were located at night and captured from 
the surface of the water using dip nets. Once captured, 
the maturity of each individual was recorded as either 
juvenile or adult, with the sex of adults determined 
using external morphological features (by investigat-
ing hemipenal bulges or exposing the hemipenes). The 
determination of sex in juvenile individuals was unreli-
able using external morphological features; therefore, 
the sex of juveniles was not considered in the present 
study. Snout–vent length (SVL) and mass of each cap-
tured snake were recorded, and each individual was fitted 
with a passive integrated transponder (PIT) tag for future 
identification. Individuals in good condition and exceed-
ing the minimum weight (>300  g) to carry a transmit-
ter were surgically implanted with acoustic transmitters 
with depth sensors (V9P-2H, Vemco Ltd.). Transmitters 
were small (diameter 9 mm, length 29 mm, weight 2.9 g) 
and less than 1% of the body weight of the individuals 
tagged (mean ± SE; 0.91 ± 0.11%) to avoid any deleteri-
ous effects. The methods of implanting tags were similar 
to those of Pratt et al. [23]. In general, a local anaesthetic 
(Xylocaine®; lignocaine) was administered at the site of 
implantation, a small ventro-lateral incision (ca. 2  cm) 
made approximately 4–5  cm anterior to the cloaca and 
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the transmitter inserted into the peritoneal cavity, after 
which the incision was closed using surgical sutures. 
Individuals were allowed 30–40  min to recover from 
the anaesthetic before being released at their location of 
capture. Transmitters were uniquely coded for each indi-
vidual, transmitted measurements of depth at 69  kHz, 
and had a battery life of approximately 215  days. An 
array of 63 VR2W acoustic receivers (Vemco Ltd.) was 
used to passively monitor the movements of tagged sea 
snakes within Cleveland Bay (Fig.  1). Range tests using 
sentinel tags indicated receivers had a maximum detec-
tion range of 525 m (unpublished data, M. Heupel). Data 
from the acoustic receiver array were downloaded every 
3–4 months.

Data analysis
Raw data were first standardised for temporal variation 
in detections through a position-averaging algorithm 
that computed an individual’s centre of activity at 30-min 
intervals [24]. The volume of space used by tagged indi-
viduals was examined by calculating three-dimensional 
kernel utilisation distributions (3DKUD) for both spe-
cies in the R environment [25] using the ‘ks’ package 
[26] and rendered using the ‘rgl’ and ‘misc3d’ packages 
[27, 28]. Calculations of 3DKUD and estimation of vol-
ume of core space (50% contour; 50%-3DKUD) and the 
extent of space (95% contour; 95%-3DKUD) used by 
tagged individuals were conducted using code adapted 
from Simpfendorfer et al. [2] and Cooper et al. [4]. Inter-
active plots of diel patterns in 3DKUD (Fig. 3) were ren-
dered using the ‘brainR’ package in R and code adapted 
from Muschelli et  al. [29]. The proportion of overlap in 
the space used between day and night was also calculated 
for 50%-3DKUD and 95%-3DKUD for both species using 
R code from Simpfendorfer et al. [2].

Estimations of volume of 50%-3DKUD and 95%-
3DKUD were log-transformed prior to statistical analyses. 
The differences in the volume of space used between day 
and night were compared using generalised linear mixed 
models (GLMM) with individuals’ ID treated as a random 
factor within each model (~1|ID) to account for variability 
between individuals and the repeated measures nature of 
the data. Additionally, t tests (α = 0.05) were conducted to 
examine whether the mean proportion of overlap between 
areas used during the day and at night (both 50%-3DKUD 
and 95%-3DKUD) varied from that expected if there were 
no pattern in proportions of overlap (i.e. mean propor-
tion = 0.5). The data for proportional overlap of the occu-
pied space were arcsine-transformed prior to analysis. All 
statistical analyses and plotting were conducted in the R 
statistical environment [25].
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3DKUD: three-dimensional kernel utilisation distribution; 50%-3DKUD: the 
core three-dimensional home range, 50% contour of the three-dimensional 
kernel utilisation distribution; 95%-3DKUD: the extent of the three-dimen-
sional home range, 95% contour of the three-dimensional kernel utilisation 
distribution; GLMM: generalised linear mixed models.
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Additional files

Additional file 1:   Three-dimensional model of study site in Cleveland 
Bay (Fig. 1). Black points represent locations of acoustic receivers. Depth 
has been exaggerated for ease of viewing bathymetry. Sea surface 
represented at highest astronomical tide at Townsville Port. For the 
interactive version of this data please visit https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM1/index.html

Additional file 2:   Three-dimensional space use by a representative 
Hydrophis curtus within the study site (Fig. 3a). Day-time core (50%-
3DKUD; dark red) and extent (95%-3DKUD; light red) 3DKUD as well 
as night-time core (50%-3DKUD; dark blue) and extent (95%-3DKUD; 
light blue) 3DKUD are represented. Surrounding bathymetry and sea 
surface are also rendered to provide context. Black points represent the 
locations of acoustic receivers within the study site. For the interac-
tive version of this data please visit https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM2/index.html. Close up version of this model is 
available in Additional file 4.

Additional file 3:  Three-dimensional space use by a representative 
Hydrophis elegans within the study site (Fig. 3c). Day-time core (50%-
3DKUD; dark red) and extent (95%-3DKUD; light red) 3DKUD as well 
as night-time core (50%-3DKUD; dark blue) and extent (95%-3DKUD; 
light blue) 3DKUD are represented. Surrounding bathymetry and sea 
surface are also rendered to provide context. Black points represent the 
locations of acoustic receivers within the study site. For the interac-
tive version of this data please visit https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM4/index.html. Close up version of this model is 
available in Additional file 5.

Additional file 4:   Close up three-dimensional model of diel pattern 
in space use of a representative Hydrophis curtus within Cleveland Bay 
(Fig. 3b). Day-time core (50%-3DKUD; dark red) and extent (95%-3DKUD; 
light red) 3DKUD as well as night-time core (50%-3DKUD; dark blue) 
and extent (95%-3DKUD; light blue) 3DKUD are represented. Depth 
has been exaggerated for ease of viewing bathymetry. Sea surface 
represented at highest astronomical tide at Townsville Port. For the 
interactive version of this data please visit https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM3/index.html. Overall version of this model is 
available in Additional file 2.

Additional file 5:  Close up three-dimensional model of diel pattern in 
space use of a representative Hydrophis elegans within Cleveland Bay 
(Fig. 3d). Day-time core (50%-3DKUD; dark red) and extent (95%-3DKUD; 
light red) 3DKUD as well as night-time core (50%-3DKUD; dark blue) 
and extent (95%-3DKUD; light blue) 3DKUD are represented. Depth 
has been exaggerated for ease of viewing bathymetry. Sea surface 
represented at highest astronomical tide at Townsville Port. For the 
interactive version of this data please visit https://dl.dropboxusercontent.
com/u/31456301/3DSS/SM5/index.html. Overall version of this model is 
available in Additional file 4.
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