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Abstract 

Background:  Biologging and tracking instruments provide valuable, remote surveillance on otherwise unobservable 
marine animals. Instruments can be consumed (ingested) by predators while collecting data, and if not identified, the 
retrieved dataset could be assigned to the incorrect individual and/or species. Consumption events of instruments, 
such as pop-up satellite archival tags and data loggers that record ambient light, are typically identified by negligible 
light levels and visual assessment of data records. However, when light-level data are not available (e.g., environments 
below the euphotic zone, instrument model), instrument consumption is not easily discernible. Instruments that 
record concurrent, time-series temperature and depth data provide detailed information on the ambient temperature 
in the water column. However, if the instrument is consumed, the temperature profile may dissociate from the depth 
profile, providing evidence and a means for detecting consumption.

Results:  To quantify the dissociation between time-series depth and temperature profiles, we applied the cross-
correlation function to evaluate the time delay and uncoupling between time-series depth and temperature profiles, 
suggestive of instrument consumption. Given that instruments may be consumed midway through the deployment 
duration, we extended the cross-correlation function to systematically slide across time-series profiles, sequentially 
considering subsets of data, to infer time of consumption. This method was applied to datasets from both deep-water 
(disphotic and aphotic) and epipelagic (euphotic) environments to evaluate instrument consumption. Results were 
dependent on ambient environment, data sampling rate, predator physiology, and function parameters.

Conclusions:  Utilization of the cross-correlation function objectively indicates potential instrument consumption 
events without the bias induced by subjective methods such as visual assessment of tag-recorded data, and does not 
require the simultaneous collection of light-level data. This methodology aids in the appropriate biological interpreta-
tion of tag-recorded data, ensures that data are not attributed to the incorrect species, and can be used to authenti-
cate data during the validation process. Additionally, it is particularly useful for contrasting datasets from comparable 
studies (i.e., same location and species) and is applicable across taxa and electronic biologging instrument variations.
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Background
Biologging instruments are proven tools used to inves-
tigate migration, temperature selection, vertical habitat 

use, and post-release survivorship of marine fishes [1–4]. 
A variety of biologging instruments (hereafter referred 
to as BIs), such as data loggers, pop-up satellite archival 
tags (PSATs), and tri-axial accelerometers, are commonly 
employed to study marine animal behavior across all 
marine biomes [5–8]. Gathering time-series records on 
variables, such as ambient temperature, depth, accelera-
tion, and swim speed, provides insight into the dynamics 
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of animal behavior, allowing for inference of the func-
tionality of behavioral patterns [9–14]. Additionally, 
instruments that record concurrent, time-series depth 
and temperature records enable the fine-scale assessment 
of vertical behavior in relation to ambient temperature 
[15, 16]. These approaches can therefore provide highly 
complex insight into three-dimensional animal behav-
iors, which is paramount in driving innovative manage-
ment of marine resources.

Animals fitted with BIs are subject to multiple stressors 
during capture, handling, and release [3, 17–19], which 
can cause either direct mortality [17] or increase sus-
ceptibility to post-release predation [20, 21]. Therefore, 
the ability to detect incidences of predation in tracked 
animals has implications for accurate post-release survi-
vorship estimates and is of direct conservation interest 
to resource managers [20]. Moreover, predation events 
are not necessarily associated with capture effects, and 
thus identifying instances of consumption helps deline-
ate potential predator–prey interactions [22–28]. Con-
sequently, identification of BI consumption, potentially 
indicating animal predation, is important to both the effi-
cacy of ecological studies and development of contempo-
rary management approaches.

Instances of BI consumption are commonly deter-
mined by a qualitative examination of instrument-
recorded data and, depending on the BI, evidenced by 
changes in behavioral patterns or tailbeat frequencies, 
elevated temperatures, temperature delays with respect 
to the depth profile, and negligible light levels [1, 22, 
24–32]. Tag consumption may be obvious in some cases, 
such as when zero-valued light levels in epipelagic waters 
concurrent with elevated temperatures clearly indicate BI 
consumption by an endotherm [22]. However, depend-
ing on the BI model, its consumption may not be obvi-
ous, such as when a BI lacks a light-level sensor (or is 
too deep to record light levels) and the consumer is an 
ectotherm [21]. In these cases, BI-recorded data could 
represent the instrument consumer rather than the tar-
get species, resulting in the inaccurate interpretation. 
Despite the prevalence of BI consumption events identi-
fied in the literature [1, 22, 24–30], a standardized, quan-
titative approach for the assessment of consumption has 
not been presented. Therefore, a tractable mathemati-
cal approach to identify BI consumption across multiple 
habitats and a suite of predators (consumers) is war-
ranted as a means of validating data prior to biological 
interpretation.

In environments exhibiting well-defined temperature 
gradients, BI-recorded depth and ambient temperature 
variables are inherently coupled. However, if a BI is con-
sumed, the time-series temperature profile may consist-
ently lag behind the depth profile or arbitrarily dissociate 

based on the thermal inertia of the BI consumer [1, 33, 
34]. As a critical step in the data validation process, we 
present a novel approach using the well-established 
cross-correlation function [35, 36] to detect BI consump-
tion of marine tracking instruments by quantifying the 
temporal dissociation between BI-recorded, time-series 
depth, and temperature profiles. Since this approach does 
not require ambient light data, it is applicable across taxa, 
including elusive deep-water species that may partly or 
fully reside below the euphotic zone where BIs consist-
ently record inappreciable light levels.

Methods
Mathematical analysis
All analyses were performed in R (v. 2.15.3) [37]. To 
assess possible BI consumption, the temporal alignment 
between time-paired depth and temperature time-series 
profiles can be evaluated with the cross-correlation func-
tion (CCF) [35, 38]. The CCF measures the correlation 
between two time-series profiles for different lags (or 
shifts) of the time-series profiles relative to each other 
[36, 37] and is easily implemented with the built-in R 
“ccf” function [37] (Additional files 1, 2). Specifically, the 
CCF returns multiple correlation values, one for each 
integer-valued shift of the time series [36], and in order 
to summarize these results and obtain a coarse lag esti-
mate, we identified the single lag associated with the 
largest correlation [35]. For example, if two profiles align 
exactly, then the maximum correlation would be 1, cor-
responding to a lag of 0. To ensure consistency, we rou-
tinely specify the depth profile as the “x” variable and 
the temperature profile as the “y” variable in the R “ccf” 
function [37]. In general, negative lag indicates that the 
temperature profile temporally lags behind the depth 
profile, and correspondingly, a positive lag indicates tem-
perature is leading the depth profile. Additionally, the R 
“ccf” function requires specification of maximum lag to 
consider when evaluating the CCF [37].

The relationship between depth and temperature pro-
files may vary through time, especially if a BI is con-
sumed midway through deployment, in which case, the 
section of tag-recorded data corresponding to the active 
fish may have different lag and correlation values relative 
to the section of data recorded while the tag was ingested 
by a predator. To account for this possible temporal 
dependence, we constructed a sliding CCF function that 
sequentially considers a sliding (or moving) set of records 
from the two time-series profiles [37] (Additional file 3). 
Specifically, the CCF is applied repeatedly to a sliding 
set of depth and temperature records (hereafter referred 
to as a window) with a step of one record between each 
application. The depth record at the center of each slid-
ing window is assigned the CCF’s maximum correlation 
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value and associated lag. The size of the sliding window 
(denoted as the window width and indicating the num-
ber of records) is arbitrary, and consequently, the sliding 
CCF should be evaluated for multiple window widths 
to ensure results are not an artifact of this variable. The 
sliding CCF does not begin on the first record, but rather 
starts at the record corresponding to half the width of the 
specified window width variable (Additional files 1, 2, 3).

Data description
In order to validate the CCF for detecting BI con-
sumption, pop-up satellite archival tag (PSAT) data 
were collated from four independent datasets [19, 21, 
39, 40] pertaining to five species of elasmobranchs: 
bluntnose sixgill shark (Hexanchus griseus), oceanic 
whitetip shark (Carcharhinus longimanus), Carib-
bean reef shark (Carcharhinus perezi), Cuban dogfish 
(Squalus cubensis), and gulper shark (Centrophorus 
spp.). All studies were conducted in The Bahamas, 
specifically, near Eleuthera and Cat Island, where 
temperature-at-depth records indicate monotonically 
varying temperature-versus-depth profiles in the water 
column [19, 41].

Although this method is applicable to data from any 
electronic BI providing concurrent, time-series depth 
and temperature records, all data analyzed in this study 
were recorded by X-Tags (Microwave Telemetry, Inc., 
Columbia, MD, USA; Additional file  4), and consisted 
of time-paired, time-series depth, temperature, and 

light-level data at constant sampling rates (<5 min inter-
vals). However, some datasets had temporal gaps (con-
current in both depth and temperature datasets), which 
were linearly interpolated for application of the CCF 
(Additional file 4).

Results
Example 1: CCF applied across species
We applied the cross-correlation function to a 5-day 
subset of time-paired depth and temperature data from 
multiple species tracked in The Bahamas (Table 1; Addi-
tional files 4 and 5). All active fish (n = 5) exhibited a lag 
of either 0 or −1 (Table 1). The lag of −1 indicated that 
the temperature profile lags slightly behind the depth 
profile, presumably resulting from the conduction of heat 
through the tag to the temperature sensor. This inherent 
temperature delay would likely vary among BI models.

X-Tags attached to the oceanic whitetip shark (107797) 
and Caribbean reef shark (107800) registered light levels 
indicative of full light saturation during the deployment 
period, confirming that these tags were not consumed. 
The correlation (0.41) for the Caribbean reef shark 
(107800) dataset was considerably lower than the other 
active fish and is likely attributed to vertical habitat use 
in the mixed layer (Additional file 5), indicating that the 
CCF maximum correlation relates to the environment 
(i.e., temperature gradients) traversed by the fish. The 
remaining active tags (35545, 150491, and 154727) were 
deployed on deep-water species that use habitats below 

Table 1  CCF results for both active fish and consumed tags

Fate ID Species Deep-water (D) or 
epipelagic (E) species

Start of 5-day 
sequence

CCF maximum 
correlation

CCF lag Sampling 
rate (s)

Active fish 35545 Bluntnose sixgill shark
(Hexanchus griseus)

D 9/20/2010 0.99 0 286

107797 Oceanic whitetip shark
(Carcharhinus longimanus)

E 5/22/2011 0.95 −1 120

107800 Caribbean reef shark
(Carcharhinus perezi)

E 1/5/2012 0.41 −1 120

150491 Cuban dogfish
(Squalus cubensis)

D 10/8/2015 0.95 −1 133

154727 Cuban dogfish
(Squalus cubensis)

D 3/6/2016 0.96 −1 132

Consumed 65821 Bluntnose sixgill shark
(Hexanchus griseus)

D 9/20/2010 0.85 −48 120

103791 Gulper shark
(Centrophorus spp.)

D 11/15/2010 0.45 −4 286

103794 Gulper shark
(Centrophorus spp.)

D 1/5/2011 0.64 −17 120

115972 Caribbean reef shark
(Carcharhinus perezi)

E 7/10/2013 0.79 −82 120

150489 Cuban dogfish
(Squalus cubensis)

D 11/13/2015 0.95 −14 133
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the euphotic zone where X-Tags register zero-valued light 
levels regardless of tag consumption. These tags surfaced 
immediately after initiation of the tag pop-off release 
mechanism (which causes the tag to detach from the fish 
and float to the surface; Additional file 4), providing addi-
tional evidence that the tags were not ingested (Table 1).

Next, we considered the results from the consumed 
datasets (n  =  5). In the datasets collated from tagged 
gulper sharks (103791 and 103794), no light was reg-
istered, even though the predator spent the majority 
of time in the epipelagic zone (<200  m) where X-Tags 
typically record nonzero light levels, indicating tag con-
sumption. The consumed Caribbean reef shark data-
set (115972) demonstrated vertical habitat use in deep 
waters (400–1300  m) disjoint from other tracked Car-
ibbean reef sharks [40], implying that this tag was con-
sumed by a deep-water predator. Additionally, tags 
115972 and 65821 did not surface when their release 
mechanisms were initiated, further suggesting these 
tags were ingested and consequently unable to surface. 
For Cuban dogfish (150489), a deep-water species occu-
pying regions of the water column where an X-Tag only 
measures zero-valued light levels regardless of tag con-
sumption, no further evidence suggests tag consumption 
besides the lag and correlation values (Table 1).

Example 2: application of the sliding CCF
We validated the sliding CCF based on data from tag 
103794, which was originally deployed on a gulper shark 
(Table  1). Throughout deployment, this tag recorded 
zero-valued light levels, even though present in euphotic 
waters (<200  m). Coupled with the unusually shallow 
habitat use for a deep-water species, these observations 
indicated this tag was consumed. In this example, we 
only considered the lag determined by the sliding CCF. 
The sliding CCF was evaluated twice for window widths 
of 100 and 500 records (corresponding to approximately 
3.3 and 16.7  h, respectively), and the depth profile was 
colored by the resulting sliding CCF-determined lag val-
ues (Fig. 1). For the smaller window width (100 records), 
there was more variability in the lag throughout deploy-
ment (demonstrated by variable colors; Fig. 1a). However, 
for the larger window width (500 records), the lag values 
were more uniform across the time series (demonstrated 
by consistently blue points; Fig.  1b). Consequently, the 
sliding CCF suggested tag consumption.

Example 3: sliding CCF for comparing datasets and effect 
of sampling rate
Two X-Tags (35545 and 65821) were deployed on blunt-
nose sixgill sharks on the same day and at the same loca-
tion (Additional file 4). The sampling rates of these two 
datasets differed (4.75 and 2 min), and consequently, we 

subsampled the 2-min profile to create a 4-min profile, 
for a more comparable dataset. Based on visual com-
parison, the depth and temperature profiles from 35545 
(4.75 min sampling rate) closely aligned (Fig. 2a), but pro-
files from tag 65821 (4-min sampling rate) appeared to be 
misaligned, such that the temperature profile is shifted to 
the right relative to the depth profile (Fig. 2b).

Considering the first 10  days of data obtained from 
each tag, the sliding CCF results (Fig. 3) indicated con-
siderable lags in 65821 (represented by blue points; 
Fig.  3a) not observed in 35545 (represented by green 
points; Fig. 3a). Additionally, the dataset from tag 35545 
exhibited high correlation (dark red points; Fig.  3b) 
unlike 65821 which demonstrated lower and more vari-
able correlation values (yellow, orange, and red points; 

a

b
Record Number

Record Number

60
0

60
0

0

0

500

500

1000

1000

1500

1500

2000

2000

2500

2500

3000

3000

3500

3500

40
0

40
0

D
ep

th
 (m

)
D

ep
th

 (m
)

20
0

20
0

0
0
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of a 100 records (3.3 h) and b 500 records (16.7 h)
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Fig. 3b). This comparison between datasets suggests that 
tag 65821 was consumed while tag 35545 collected data 
from an active fish.

In addition, we assessed how the maximum correla-
tion and corresponding lag in the (non-sliding) CCF were 
dependent on sampling rate by sequentially doubling the 
sampling interval. For tag 65821, we considered CCF 
results for sampling rates between 1 and 60 min on 1-min 
intervals (Additional file 4), while for tag 35545, we con-
sidered CCF results for sampling rates incremented by 
4.75 up to 62  min. The correlation remained consistent 
across sampling rates (Fig. 4a). As expected, lag followed 
a logarithmic curve for the consumed tag; specifically, 
data records collected on 1-min intervals indicated a 
maximum lag of −165, while data records collected 
on 60-min intervals indicated a maximum lag of −3 
(Fig. 4b). Comparatively, the lag from the active fish was 0 
despite the varying sampling rate.

Discussion
The application of the CCF and sliding CCF is a simple, 
systematic method for comparing time-series depth and 
temperature profiles and provides a novel approach to 

infer biologging infer BI consumption. When a BI is con-
sumed by a predator, recorded temperature records dis-
sociate from the concurrently recorded depth records. 
For example, internal stomach temperatures of endo-
thermic species, such as Atlantic bluefin tunas (Thunnus 
thynnus) and mako sharks (Isurus oxyrinchus), remain 
elevated and relatively invariable despite fluctuating 
depth and ambient temperatures [33, 42]. In contrast, 
internal temperatures from ectotherms such as blue 
sharks (Prionace glauca) and dusky sharks (Carcharhi-
nus obscurus) change, although not instantaneously or 
linearly, in response to ambient temperature [33, 43]. The 
CCF provides a means of assessing the degree of uncou-
pling through a systematic shift (considerable lag) and/or 
arbitrary disassociation (low correlation) between depth 
and temperature profiles, over a wide range of BI con-
sumer taxa. The sliding CCF extends this result to con-
sider how the depth-temperature association changes 
through time, which is particularly useful if a BI is con-
sumed midway through a deployment mission.

Application of this technique is also useful for assess-
ing BI consumption in deep-water (>200  m) species 
that reside where inappreciable light levels disguise BI 
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consumption by ectothermic predators. The prevalence 
of tagging studies on deep-water taxa remains low, how-
ever has increased in recent years due to the technologi-
cal development of sampling gears [19]. For these species, 
the exacerbation of capture, handling, and tagging effects 
through photic, thermal, and barometric stress increase 
their at-vessel and post-release mortality [19]. Therefore, 
as scientists extend study efforts into habitats where BI 
consumption is not easily identified, the CCF could serve 
as a useful and routine tool to identify previously unre-
alized BI consumption events [21]. Beyond applicability 

to deep-water habitats, this method is also suitable for 
depth and temperature data loggers that do not record 
light levels. For example, research using accelerom-
eter data loggers, which also record time-series depth 
and temperature records, obtain high-resolution data 
to assess short-term recovery periods and post-release 
mortality [44, 45]. Application of the CCF or sliding CCF 
could reveal post-release tag consumption events, poten-
tially unrealized without available light levels.

The CCF and sliding CCF results were dependent 
on data sampling rate, ambient temperature gradients, 
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consumer physiology, and, in the case of the sliding 
CCF, the window width variable. Correspondingly, we 
did not identify a universal lag or correlation threshold 
indicative of BI consumption, and therefore, it is criti-
cal that CCF results are interpreted in the context of 
the environment and study species. This method is only 
applicable across vertical habitats exhibiting a tem-
perature profile that monotonically and continuously 
varies with depth, and is not appropriate in locations 
without considerable temperature gradients, such as 
the nearly constant depth-versus-temperature profile 
of the Mediterranean Sea in the winter [28, 46]. Fur-
thermore, this technique is applicable to animals that 
traverse through the temperature gradients of the water 
column and, therefore, may not be suitable for benthic 
or vertically stationary species [47], or species that may 
follow isotherms (e.g., great hammerhead sharks, Sphy-
rna mokarran) [48]. We recommend using the CCF to 
compare similar datasets, such as data from multiple 
conspecifics at the same study site. Comparison of CCF 
outputs could indicate a typical lag or correlation for 
that environment or species, and further, a dissimilar 
result (i.e., a considerable lag or low correlation) might 
highlight possible BI consumption [21]. Additionally, 
we recommend evaluating the sliding CCF for multiple 
window widths (as completed in Example 2) and stand-
ardizing the sampling rate between datasets when mak-
ing comparisons (as completed in Example 3). Lastly, 
the CCF requires time-series records, and thus, this 
method cannot be applied to static binned or summa-
rized data.

Conclusions
The CCF and sliding CCF are simple and effective tools 
for inferring tag consumption, and we suggest evaluating 
all concurrent time-series depth and temperature data-
sets for which light levels are unavailable with the CCF 
and/or sliding CCF to assess for tag consumption during 
the data validation process. Furthermore, this method 
is especially effective for contrasting datasets from the 
comparable studies (i.e., same location and species) and 
is broadly applicable across varying taxa, BI models, and 
study locations. While this method does not indicate that 
a tracked animal was consumed, but rather the tag itself 
was consumed, its implementation is valuable to the cor-
rect biological interpretation of tag-recorded data.
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