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TELEMETRY CASE REPORT

Joining the dots: reconstructing 3D 
environments and movement paths using 
animal‑borne devices
David W. McClune* 

Abstract 

Background:  Animal-attached sensors are increasingly used to provide insights on behaviour and physiology. How-
ever, such tags usually lack information on the structure of the surrounding environment from the perspective of a 
study animal and thus may be unable to identify potentially important drivers of behaviour. Recent advances in robot-
ics and computer vision have led to the availability of integrated depth-sensing and motion-tracking mobile devices. 
These enable the construction of detailed 3D models of an environment within which motion can be tracked without 
reliance on GPS. The potential of such techniques has yet to be explored in the field of animal biotelemetry. This 
report trials an animal-attached structured light depth-sensing and visual–inertial odometry motion-tracking device 
in an outdoor environment (coniferous forest) using the domestic dog (Canis familiaris) as a compliant test species.

Results:  A 3D model of the forest environment surrounding the subject animal was successfully constructed using 
point clouds. The forest floor was labelled using a progressive morphological filter. Trees trunks were modelled as cyl-
inders and identified by random sample consensus. The predicted and actual presence of trees matched closely, with 
an object-level accuracy of 93.3%. Individual points were labelled as belonging to tree trunks with a precision, recall, 
and Fβ score of 1.00, 0.88, and 0.93, respectively. In addition, ground-truth tree trunk radius measurements were not 
significantly different from random sample consensus model coefficient-derived values. A first-person view of the 3D 
model was created, illustrating the coupling of both animal movement and environment reconstruction.

Conclusions:  Using data collected from an animal-borne device, the present study demonstrates how terrain and 
objects (in this case, tree trunks) surrounding a subject can be identified by model segmentation. The device pose 
(position and orientation) also enabled recreation of the animal’s movement path within the 3D model. Although 
some challenges such as device form factor, validation in a wider range of environments, and direct sunlight interfer-
ence remain before routine field deployment can take place, animal-borne depth sensing and visual–inertial odom-
etry have great potential as visual biologging techniques to provide new insights on how terrestrial animals interact 
with their environments.

Keywords:  Animal behaviour, Energy landscapes, Point clouds, Depth sensing, Motion tracking, Visual–inertial 
odometry, Computer vision, Visual biologging
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Background
Animal-attached sensors are increasingly used to study 
the movement, behaviour, and physiology of both 
wild and domestic species. Such devices have pro-
vided valuable insights into areas such as bioenergetics, 

animal welfare, and conservation [1–4]. Data from 
animal-attached sensors are often overlaid on satellite 
imagery and maps to provide spatial and environmental 
context [5–7]. Current attempts to obtain more detailed 
visual information from a study animal’s perspective 
have typically involved attaching standard RGB cam-
eras [8–10] (but see [11, 12]). Information is then often 
extracted from images or footage by manual inspection. 
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Few attempts have been made to apply computer vision 
techniques to non-human biologging studies. Two nota-
ble examples include the use of object tracking on the 
prey of falcons and template matching to determine the 
head position of sea turtles, though in both cases using 
2D images [13, 14].

In other fields, light-based depth sensors have been 
used for the reconstruction of 3D scenes, with numerous 
applications in areas such as robotics, mapping, naviga-
tion, and interactive media [15–18]. Active depth sensing 
encompasses a range of techniques based on examining 
the properties of projected light and enables the con-
struction of 3D point clouds from points within a coordi-
nate system. In a detection system known as LiDAR (light 
detection and ranging), this may involve measuring either 
the length of time or phase shifts that occur when light 
is projected from a source to an environment of interest 
and travels back to a receiver [19]. Alternatively, a defined 
pattern (e.g. stripes or dots) can be projected, provid-
ing information on depth and the surface of objects, in a 
technique known as structured light (SL) [20, 21].

Airborne LiDAR sensors have been used in a number 
of ecological studies, generating 3D models from point 
clouds that are typically used to investigate relationships 
between animal diversity and quantifiable attributes of 
vegetation and topography [22]. Although not obtained 
directly from animal-attached sensors, previous studies 
have integrated airborne LiDAR data with information 
from GPS-equipped collars to examine factors underly-
ing animal movement patterns including habitat struc-
ture, social interactions, and thermoregulation [23–25]. 
In addition, aerial-derived point cloud models have been 
used to quantify the visible area or ‘viewshed’ of lions at 
kill sites, leading to insights on predator–prey relation-
ships [11, 12]. Various other biological applications of 
active depth sensing include terrestrial and aerial veg-
etation surveys in forestry research and the automated 
identification of plant species [26–29]. Structured light 
sensors have also successfully been used to scan animals 
(e.g. cattle) from a fixed position and in milking robots 
[30, 31]. Perhaps similar to how demand in consumer 
electronics helped drive the availability of low-cost port-
able sensors such as accelerometers [32], active depth 
sensors are now beginning to appear in relatively small 
mobile devices which may further aid their adoption in 
research.

A separate and potentially complementary technique 
known as visual odometry (VO) can be used to esti-
mate motion by tracking visual features over time [33]. 
The fusion of inertial data from accelerometers and 
gyroscopes (visual–inertial odometry, VIO) to further 
improve estimates of position and orientation (pose) has 
gained popularity in the field of robotics as a method to 

perform localisation in areas where GPS is intermittent 
or not available [34–36]. In addition to indoor environ-
ments, VIO could be of use in areas with dense vegeta-
tion or challenging terrain [37, 38].

This report trials the application of an animal-attached 
active depth-sensing (SL-based) and motion-tracking 
(VIO) device to record fine-scale movement within a 
reconstructed 3D model of the surrounding environ-
ment, without reliance on GPS. A segmentation pipeline 
is also demonstrated for the identification of neighbour-
ing objects, testing the feasibility of such technology to 
investigate factors that influence animal behaviour and 
movement in an outdoor environment.

Methods
A one year-old female Labrador–golden retriever (Canis 
familiaris, body mass 32 kg) was used as the subject dur-
ing the trial. The study took place in Northern Ireland, 
during late August in a section of mature coniferous for-
est (primarily Sitka spruce, Picea sitchensis) under the 
canopy. Trees had few remaining lower branches, and the 
forest floor was relatively flat with a blanket of dry pine 
needle litter. This environment was selected as the seg-
mentation and identification of trees from point clouds 
had previously proven successful in forestry research. 
In addition, potential interference from direct sunlight 
could be avoided. The initial trial area measured 30 m in 
length and approximately 4.5 m in width, the outer edges 
of which were marked by placing large (0.76× 1.02m) 
sheets of cardboard. The circumference/girth of each tree 
was measured at a consistent height of 1.0 m (or the nar-
rowest point below a split trunk) using a fibreglass tape 
measure to ensure clearance of root flare.

The recording device was a Project Tango Development 
Kit tablet (‘Yellowstone’, NX-74751; Google Inc., CA, 
USA) running Android version  4.4.2 and Project Tango 
Core version  1.34 [39]. The Tango device projects SL 
onto surrounding objects and surfaces using an infrared 
(IR) laser (see Fig.  1a). This light is then detected using 
an RGB-IR camera (Fig.  1b) to measure depth which 
can be represented in point cloud form (Fig. 1c). Visual 
information is obtained from a fisheye camera (Fig.  1d) 
in which image features are tracked between frames dur-
ing motion (Fig. 1e). This is fused with data from inertial 
sensors (tri-axial accelerometer and gyroscope, Fig.  1f ) 
to track pose with reference to an initial starting point 
or origin by VIO (e.g. [34, 36]; Fig. 1g). Combining depth 
sensing with motion tracking allows point clouds to be 
accumulated over time and enables the reconstruction of 
an environment in three dimensions. Data were recorded 
on the device using ParaView Tango Recorder [40] (with 
a minor modification to record every frame of the point 
cloud data, rather than every third) in ‘Auto Mode’, which 
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records both point cloud and pose data to internal stor-
age. Depth was recorded at a frame rate of approximately 
5 Hz (mostly between 0.5 and 4.0 m), and pose estimates 
were returned at 100 Hz.

The device was mounted on to the dorsal area of the dog 
using a harness (Readyaction™ Dog Harness plus a ‘Sport 
2’ attachment) with the depth-sensing and motion-track-
ing cameras facing forward. The combined weight of the 
recording device and harness was 652 g, corresponding to 
2.0% of body mass. The animal was first held motionless 
for several seconds while the device initialised. The dog 
was then guided in a straight line across the initial study 
area at a steady walking pace on a lead (Fig. 2). Following 

this, a second stage of the trial was performed by guiding 
the animal through the forested area in a non-predeter-
mined path over more challenging terrain for an extended 
period of time. Both stages of the trial were carried out 
between late afternoon and early evening.

The compressed files containing the recorded data 
were then downloaded from the device. Data were visu-
alised and analysed in ParaView/PvBatch version  4.1.0 
[41], using point cloud library (PCL) plugin version  1.1 
[42] (with modifications, including additional orienta-
tion constraints on model fitting and options for the seg-
mentation of ground points) built with PCL version 1.7.2 
[43]. Filters distributed with ParaView Tango Recorder 
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Fig. 1  Flow diagram illustrating device operation and point cloud processing. Device operation is shown in grey including depth-sensing and 
motion-tracking sensors. The accumulated point cloud was then processed through a segmentation pipeline (white).
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were used to prepare the imported data as follows: 1) 
depth points were transformed to align with the pose 
data (‘Apply Pose To PointCloud’ filter); 2) point clouds 
were accumulated over time to produce an overall model 
of the study site (‘Accumulate Point Clouds over time’ fil-
ter, see Fig. 1h); 3) orientation of the device was obtained 
by applying the ‘Convert Quaternion to Orientation 
Frame’ filter to the pose data. The bounds of the study 
area were manually identified by visual inspection for 
the cardboard markers in the 3D model, and points that 
fell outside were removed using ParaView Clip filters. 
The PCL Radius Outlier Removal filter was then used to 
label points with less than 10 neighbours within a search 
radius of 0.3 m (see Fig. 1i). Outliers were subsequently 
removed using the Threshold Points passthrough filter. 
In order to reduce processing time and obtain a more 
homogeneous point density, the point cloud was then 
downsampled using the PCL Voxel Grid filter with a leaf 
size of 0.02 m (Fig. 1j). To aid in viewing the structure of 
the point cloud, the Elevation filter was applied to colour 
points by height. To provide a ground truth, each point 
was assigned an identification number and those corre-
sponding to tree trunks were interactively isolated and 
annotated by frustum selection.

Following this, a progressive morphological filter  [44] 
was applied using PCL for the identification and seg-
mentation of ground points (cell size 0.2  m, maximum 
window size 20, slope 1.0, initial distance 0.25 m, maxi-
mum distance 3.0  m; Fig.  1k). The points labelled as 
ground were removed using a Threshold Points filter. The 
PCL Euclidean Cluster filter was then applied to extract 
clusters of points representing potential objects (cluster 
tolerance 0.1 m, minimum cluster size 300, maximum 
cluster size 50, 000; Fig. 1l).

Random sample consensus (RANSAC) is an iterative 
method used to estimate parameters of a model from 
data in the presence of outliers [45]. In the case of point 
clouds, this allows for the fitting of primitive shapes 
and derivation of their dimensions. For each Euclidean 
cluster, an attempt was made to fit a cylindrical model 
(corresponding to a tree trunk) using the PCL SAC Seg-
mentation Cylinder filter (normal estimation search 
radius 0.1  m, normal distance weight 0.1, radius limit 
0.3  m, distance threshold 0.25  m, maximum iterations 
200). This filter was modified to search for cylinders only 
in the vertical axis, allowing for slight deviations (angle 
epsilon threshold 15.0  ◦; Fig.  1m). The precision [(true-
positive points / (true-positive points + false-positive 
points)], recall [(true positives / (true positives + false 
negatives)] and Fβ score of tree trunk segmentation were 
calculated using scikit-learn version 0.17.1 [46] in Python. 
Differences between ground-truth measurements of tree 
trunk girth and the RANSAC model derived values were 
analysed using a Wilcoxon signed-rank test in R ver-
sion  3.3.1  [47]. The device position obtained from the 
pose data was used to plot the trajectory of a first-per-
son view of the study animal moving through the accu-
mulated point cloud. In this animation, the camera focal 
point was fixed on the final pose measurement and the 
up direction set to the vertical axis (Additional file 1).

Results
During the first stage of the trial, a total of 1.1  million 
depth points and 5264 pose estimates were recorded over 
a period of 53 s with a file size of 14.8 MB. After applying 
the Clip filter to the bounds of the study area, the number 
of points was reduced to 869,353. The radius outlier filter 
removed a total of 559 points (0.1% of the clipped point 
cloud). After application of the voxel grid filter, the point 
cloud was further reduced to a total of 324, 074 points. 
The progressive morphological filter labelled 158,574 
points (48.9%) as belonging to the forest floor. A total of 
30 Euclidean clusters were identified with a median of 
4931 (interquartile range 3153–6880) points (1342 points 
were unassigned to a cluster). Overall, 28 of these clus-
ters had a RANSAC vertical cylinder model fit and were 
therefore, at an object level, classed as tree trunks. On 
visual inspection, there were no occurrences of object-
level false positives. With 30 trees present in the study 
area, this corresponded to an accuracy of 93.3%. Individ-
ual points were labelled with a precision, recall, and Fβ 
score of 1.00, 0.88, and 0.93, respectively (see Fig. 3). The 
Wilcoxon signed-rank test revealed that there was no sig-
nificant difference (V = 225, p = 0.63; median difference 
0.01 m, interquartile range − 0.02–0.02 m) between the 
actual tree trunk radii (assuming circularity, mean 0.11, 
± 0.04m) and the RANSAC coefficient-derived estimates 

Fig. 2  The study animal with harness-mounted Tango device. The 
study animal (domestic dog) at the site of the first stage of the trial. 
The device was positioned dorsally using a dog harness with the 
depth-sensing and motion-tracking cameras facing forward
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(median 0.11  m, interquartile range 0.10–0.13  m). Seg-
mented clusters representing tree trunks were found to 
have a mean height (minimum to maximum vertical dis-
tance between inlier points) of 1.95 ± 0.52 m.

During the extended stage of the trial, a total of 4.17 
million depth points and 12,  761 pose estimates were 
recorded over a 2-min period (file size 55.3  MB). After 
accumulation into a single point cloud, removal of out-
liers and downsampling, a total of 83 tree trunks were 
identified by RANSAC with a median coefficient-derived 
radius of 0.11  m (interquartile range 0.09–0.13  m). The 
device pose indicated a travel distance of 81.92  m, with 
an Euclidean distance of 62.48 m, and a vertical descent 
of 8.70  m. See Additional files 2 and 3 for interactive 
views of the segmented point clouds from both stages of 
the trial.

Discussion
Movement is of fundamental importance to life, impact-
ing key ecological and evolutionary processes [48]. From 
an energetics perspective, the concept of an ‘energy land-
scape’ describes the variation that an animal experiences 
in energy requirements while moving through an envi-
ronment [49, 50]. For terrestrial species, heterogeneity 

in the energy landscape depends on the properties of 
terrain, with animals predicted to select movement paths 
that allow them to minimise costs and maximise energy 
gain. At an individual level, an animal may also show 
deviations from landscape model predictions as it under-
goes fitness related trade-offs seeking short-term opti-
mality (e.g. for predator avoidance) [51]. In a previous 
accelerometer and GPS biologging study on the energy 
landscapes of a small forest-dwelling mammal (Peka-
nia pennanti) [52], energy expenditure was found to be 
related to habitat suitability. However, it was not possible 
to identify the environmental characteristics that influ-
enced individual energy expenditure, thus highlighting a 
need for methods that can record environmental infor-
mation from the perspective of a study animal at both 
higher temporal and spatial resolutions.

In the present study, an animal-attached depth-sensing 
and motion-tracking device was used to construct 3D 
models, segment, and identify specific objects within an 
animal’s surroundings. Animal-scale 3D environmen-
tal models collected from free-ranging individuals have 
great potential to be used in the measurement of ground 
inclination, obstacle detection, and derivation of various 
surface roughness or traversability indexes (e.g. [53–55]). 

Fig. 3  Accumulated point cloud and pose from an animal-attached device in a forest environment. Trimmed point cloud from the first stage of the 
trial. Ground points were labelled using a progressive morphological filter and coloured by height using an elevation filter. Tree trunks labelled by 
RANSAC are highlighted in green (28 of 30). The position of the device over time, and orientation are represented by the white line and superim-
posed arrows, respectively. The corner axes represent the orientation of the point cloud. Panels (b) and (c) represent side and top-down views
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Such variables could then be examined in relation to 
accelerometer-derived proxies of energy expenditure to 
further our understanding of the ‘energetic envelope’ [51] 
within which an animal may optimise its behavioural pat-
terns. Furthermore, VIO-based motion-tracking could be 
used to test widely debated random walk models of ani-
mal foraging and search processes [56–59].

The segmentation of point clouds and fitting of cylindrical 
models by RANSAC enabled the labelling and characteri-
sation of tree trunks surrounding the study animal. While 
such an approach proved suitable for the environment in 
which the current study took place, more varied scenes 
would require the testing of alternative features and classi-
fication algorithms in order to distinguish between a wider 
range of objects (e.g. [60–64]). The ability to accurately 
model and identify specific objects from the perspective of 
an animal, while simultaneously tracking motion could have 
wide ranging biotelemetry applications such as studying the 
movement ecology of elusive or endangered species, and 
investigating potential routes of disease transmission.

Susceptibility to interference from direct sunlight pre-
sents a significant challenge to the SL depth-sensing 
method used in the current study. While this did not 
greatly influence the results of the present trial, as it was 
conducted under the canopy in a coniferous forest, future 
outdoor applications of animal-attached depth sensing may 
need to explore the use of passive solutions. For example, 
previous work has produced promising results on outdoor 
model reconstruction using mobile devices to perform 
motion stereo, which is insensitive to sunlight and also 
notably improved the range of depth perception [65, 66]. 
A hybrid approach, using both SL and stereo reconstruc-
tion, may provide advantages, particularly when measur-
ing inclined surfaces [67]. In addition, the motion-tracking 
camera of the device used in the current study requires suf-
ficient levels of visible light for pose estimation. This could 
impede deployments of a similar device on nocturnal spe-
cies or those that inhabit areas with poor lighting condi-
tions. One solution may be to utilise IR (or multi-spectral) 
imaging, which has previously been demonstrated for both 
VO [68–70] and stereo reconstruction [71].

Over time, pose estimates obtained by VIO alone can 
be prone to drift, potentially leading to misalignment of 
point clouds. Therefore, future work may also attempt to 
use visual feature tracking algorithms in order to recog-
nise areas that have been revisited (i.e. within an animal’s 
home range) to perform drift correction or loop closure 
[72–74]. Such a feature, known as ‘Area Learning’ on the 
Tango platform, could allow researchers to visit and ‘learn’ 
an area in advance to produce area description files that 
correct errors in trajectory data. The application of such 
techniques in outdoor environments, across seasons, 
under a range of weather conditions at different times of 

day is challenging and subject to active research [75, 76]. 
For other forest-based evaluations of the platform accu-
racy, see [77, 78]. Physical factors that could impact the 
performance of motion tracking or SL depth sensing 
include a lack of visual features and the reflective proper-
ties of surfaces [79–81]. The raw point clouds used in the 
present study disregard non-surface information and can 
be susceptible to sensor noise. Future work may there-
fore seek to improve the quality of 3D reconstruction by 
experimenting with alternative techniques such as opti-
mised variants of occupancy grid mapping and truncated 
signed distance fields (TSDF) which use the passthrough 
data of emanating rays to provide more detailed volu-
metric information [82, 83]. Ideally, the performance of 
motion tracking and depth sensing would also be tested 
with a wider range of environments, vegetation types, and 
movement speeds to closer emulate conditions found in 
more challenging field deployments. It may be possible 
to reconstruct occluded and unobserved regions of mod-
els using hole filling techniques (e.g. [84]). In relatively 
dynamic scenes, depth sensors have been used to track 
the trajectory of objects in motion (e.g. humans [85, 86]). 
The removal of dynamic objects from 3D models gener-
ated by mobile devices has also been demonstrated [87].

The development kit used in the current study was pri-
marily intended for indoor use with a touch screen to 
allow human interaction. Therefore, careful consideration 
would be needed before routine deployments of a device 
with similar capabilities on other terrestrial animals. 
When preparing such a device, particular attention should 
be focused on the mass, form factor, and attachment 
method in order to reduce potential impact on the welfare 
and behaviour of a wild study animal [88, 89]. Whenever 
possible, applications should attempt to gracefully handle 
adverse situations such as temporary loss of motion track-
ing due to objects obstructing cameras at close range, or 
sudden movements overloading the sensors. Addition-
ally, onboard downsampling of point cloud data could 
reduce storage requirements over longer deployments. 
Official support for the device used in the present study 
has now ended (partially succeeded by ARCore [90]); 
however, the general concepts of combined depth sens-
ing and VIO motion tracking are not vendor specific. 
Active depth-sensing capabilities can be added to stand-
ard mobile devices using products such as the Occipital 
Structure Sensor [91]. Various open-source implementa-
tions of VO motion-tracking algorithms may also be suit-
able for deployment with further development (e.g. [92]). 
Future work may seek to compare the performance of 
(or augment) animal-attached VIO motion tracking with 
previously described magnetometer, accelerometer, and 
GPS-based dead-reckoning methods (e.g. [93]) in a range 
of environments. For example, under dense vegetation 
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where the performance of GPS can deteriorate, VIO could 
offer significant advantages [38, 94]. The simultaneous 
collection of tri-axial accelerometer data would also allow 
the classification of animal behaviour along the pose tra-
jectory within reconstructed models. This could enable 
further research into links between specific behaviours 
and various structural environmental attributes. In com-
parison with point clouds obtained from airborne laser 
scanning, similar to terrestrial laser scanning, animal-
attached depth sensing could enable a higher point den-
sity at viewing angles more appropriate for the resolution 
of small or vertical objects [95].

Conclusions
The application of an animal-attached active depth-sens-
ing and motion-tracking device enabled environmental 
reconstruction with 3D point clouds. Model segmenta-
tion allowed the semantic labelling of objects (tree trunks) 
surrounding the subject animal in a forested environment 
with high precision and recall, resulting in reliable esti-
mates of their physical properties (i.e. radius/circumfer-
ence). The simultaneous collection of depth information 
and device pose allowed for reconstruction of the ani-
mal’s movement path within the study site. Whilst this 
case report discussed the technical challenges that remain 
prior to routine field deployment of such a device in bio-
telemetry studies, it demonstrates that animal-attached 
depth sensing and VIO motion tracking have great poten-
tial as visual biologging techniques to provide detailed 
environmental context to animal behaviour.  

Abbreviations
IR: infrared; LiDAR: light detection and ranging; PCL: point cloud library; 
RANSAC: random sample consensus; SL: structured light; TSDF: truncated 
signed distance field; VO: visual odometry; VIO: visual–inertial odometry.

Additional files

Additional file 1. A first-person animation of a camera following the 
position of the animal-attached recording device, demonstrating the 
coupling of motion tracking and area reconstruction. The camera has a 
focal point fixed to the position of the final pose measurement, with an 
up direction set to the vertical axis. The RANSAC labelled tree trunks are 
displayed in green. Note that the point cloud was downsampled using a 
voxel grid filter with a leaf size of 0.02 m. 

Additional file 2. The RANSAC labelled tree trunks are displayed in 
green (28 of 30). An elevation filter was applied to the ground returns. 
Extract the .ZIP archive and open `index.html’ in a WebGL supporting web 
browser (e.g. FireFox 4.0+ or chrome 9.0+) to view in 3D with rotation 
and zoom options. 

Additional file 3. The RANSAC labelled tree trunks are again displayed in 
green (83 in total). An elevation filter was applied to the ground returns, 
highlighting the vertical decline (8.70 m). Note that an additional voxel 
grid filter (leaf size 0.045 m) was applied to the ground segment in order 
to improve rendering performance. Extract the .ZIP archive and open 
`index.html’ in a WebGL supporting web browser (e.g. FireFox 4.0+ or 
chrome 9.0+) to view in 3D with rotation and zoom options.
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