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METHODOLOGY
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Abstract 

Background:  Recent advances in sensing technologies have enabled us to attach small loggers to animals in their 
natural habitat. It allows measurement of the animals’ behavior, along with associated environmental and physiologi-
cal data and to unravel the adaptive significance of the behavior. However, because animal-borne loggers can now 
record multi-dimensional (here defined as multimodal) time series information from a variety of sensors, it is becom-
ing increasingly difficult to identify biologically important patterns hidden in the high-dimensional long-term data. In 
particular, it is important to identify co-occurrences of several behavioral modes recorded by different sensors in order 
to understand an internal hidden state of an animal because the observed behavioral modes are reflected by the hid-
den state. This study proposed a method for automatically detecting co-occurrence of behavioral modes that differs 
between two groups (e.g., males vs. females) from multimodal time-series sensor data. The proposed method first 
extracted behavioral modes from time-series data (e.g., resting and cruising modes in GPS trajectories or relaxed and 
stressed modes in heart rates) and then identified two different behavioral modes that were frequently co-occur (e.g., 
co-occurrence of the cruising mode and relaxed mode). Finally, behavioral modes that differ between the two groups 
in terms of the frequency of co-occurrence were identified.

Results:  We demonstrated the effectiveness of our method using animal-locomotion data collected from male and 
female Streaked Shearwaters by showing co-occurrences of locomotion modes and diving behavior recorded by GPS 
and water-depth sensors. For example, we found that the behavioral mode of high-speed locomotion and that of 
multiple dives into the sea were highly correlated in male seabirds. In addition, compared to the naive method, the 
proposed method reduced the computation costs by about 99.9%.

Conclusion:  Because our method can automatically mine meaningful behavioral modes from multimodal time-
series data, it can be potentially applied to analyzing co-occurrences of locomotion modes and behavioral modes 
from various environmental and physiological data.
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Background
Animal behavior comprises a continuous stream of 
events that can be divided into discrete behavioral modes 
(e.g., resting and foraging), although they have generally 

been defined in various terms such as behavioral rep-
ertories, units, and categories [1, 2]. These behavioral 
modes are measured for each sensor modality (i.e., differ-
ent sensors used when observing behaviors and environ-
ments such as sounds and locations). Some behavioral 
modes obtained from different sensor modalities may 
co-occur (we term “behavioral co-occurrence” in this 
paper), and the co-occurrence probability of the differ-
ent behavioral modes depends on different groups or 
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environments. For example, chimpanzees call while they 
are foraging, and the co-occurrence probability of the call 
and foraging behaviors depends largely on sex and indi-
vidual situations [3]. Behavioral co-occurrences reflect 
the decision-making of each group, which provides an 
understanding of sex-specific foraging strategies, poly-
morphism with the corresponding strategies, and the 
life-history strategies of different populations. Therefore, 
it is important to identify behavioral co-occurrences and 
their differences between groups from large behavioral 
data to understand animal behavior and/or its relation-
ship with surrounding environments.

Recent advances in sensing technologies have enabled 
the attachment of small loggers, allowing remote meas-
urement of animal behavior along with associated envi-
ronmental and physiological data and elucidation of the 
adaptive significance of the behavior [4]. Sensor data 
from each modality (such as GPS trajectories and heart 
rates) comprises several behavioral modes, including 
resting and cruising movements and relaxed and stressed 
physiological states, as shown in the hypothetical exam-
ple (Fig. 1). As behavioral modes measured by each sen-
sor modality are a reflection of animals’ internal hidden 
states (e.g., motivation), extracting frequent co-occur-
rences of behavioral modes is crucial to estimating these 
hidden states and understanding group differences. The 
example of frequent co-occurrences of behavioral modes 
in Fig. 1 shows that behavioral mode 1-1 and behavioral 
mode 2-1 appear concurrently in seabirds. Assuming that 
behavioral mode 1-1 is identified as the cruising mode 
and behavioral mode 2-1 is identified as the relaxing 
mode, this co-occurrence indicates that cruising flights 
are more likely to contribute to energy saving during 
movement rather than food searching flights.

In this study, we develop a method that detects co-
occurrence of behavioral modes that differ in frequency 
between two groups (e.g., males and females). We devel-
oped an effective algorithm to extract co-occurrences 
of behavioral modes from time-series data, as shown in 
Fig.  1. Although Fig.  1 is a simple example easily veri-
fied visually or using a simple method, it is often dif-
ficult to identify co-occurrences of several behavioral 
modes from multimodal data in terms of difficulties in 
(i) behavioral mode detection from multimodal data and 
(ii) parameter selection. Supervised and unsupervised 
methods have been used to detect behavioral modes 
from time-series behavioral data. The supervised meth-
ods, such as Random Forest, are trained on labeled data 
and predict a class label for each data point at a time 
slice [5, 6]. As it is difficult to collect labeled data from 
wild animals, unsupervised methods such as clustering 
methods and hidden Markov models (HMMs) have been 
studied actively [7, 8]. However, processing multimodal 

data using unsupervised methods is problematic. In the 
unsupervised methods, data are grouped based on the 
distance between the data points, which makes it difficult 
to properly cluster data points in multimodal sensor data. 
Assume that a data point is composed of an acceleration 
value and an ambient temperature value. In this case, 
even when an animal performs the same activity, which 
is reflected in the acceleration data, the data points col-
lected in the high-temperature condition can be grouped 
into the different cluster from those collected in the low-
temperature condition; this makes it difficult to inter-
pret such meaningless clusters. Although Adam et al. [9] 
employed hierarchical hidden Markov models (HHMMs) 
to estimate the latent states for each sensor modality, the 
latent states of the sensors are dominated by those of the 
main sensor, which is specified by a researcher. Therefore, 
prior studies have only been able to handle multimodal 
data with high correlations, for example, multivariate 
data composed of displacement and accelerometer data.

In addition to the aforementioned problem, prior 
supervised and unsupervised behavioral mode detection 
methods have relied on manually defined variables of 
behavior (called a “feature” in machine learning), such as 
locomotion speed [10], with the predetermined number 
of behavioral modes (called a clustering “parameter” in 
the unsupervised methods). Although results of behavio-
ral mode detection are affected greatly by the selection of 
features and parameters by a researcher, it is impossible 
to manually select a combination of features and param-
eters that yields meaningful behavioral modes from high-
dimensional time-series data. To address these issues, we 
developed a computationally efficient method to detect 
the frequent co-occurrence of behavioral modes by 
automatically selecting the parameters and features that 
maximize the usefulness of the obtained co-occurrence 
of those behavioral modes (computed based on the cor-
relation between the two behavioral modes). In addition, 
we use deep learning to automatically extract meaningful 
features from behavioral data.

The contributions of this study are as follows: (1) We 
propose a method to automatically detect frequent co-
occurrence of behavioral modes that differ in frequency 
between two groups from multimodal animal behavio-
ral data. Our method find behavioral modes from dif-
ferent sensor modalities that frequently co-occur, and 
then identifies behavioral modes that differ between the 
two groups in terms of the frequency of co-occurrence. 
To our knowledge, this is the first study to automatically 
detect knowledge related to the co-occurrence of behav-
ioral modes from multimodal animal behavioral data. 
(2) We develop a computationally effective method that 
finds optimum hyperparameters (combinations of fea-
tures used and clustering parameters). (3) We validate the 
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effectiveness of the method using actual data obtained 
from seabirds, including sex-specific differences in sea-
birds related to co-occurrences between horizontal 

(i.e., GPS positions) and vertical movements (i.e., diving 
depths).
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Fig. 1  A hypothetical example of co-occurrence of behavioral modes. Behavioral mode 1-1 extracted from the time-series speed data and 
behavioral mode 2-1 extracted from the time-series heart rate data co-occur frequently. In this example, the meanings of behavioral modes 1-1 and 
2-1 are translated as the cruising mode and relaxing mode based on their respective value ranges. This example also indicates that the frequency of 
the co-occurrences for the male seabird is higher than that for the female seabird
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Materials and methods
Our method comprised of four steps (Fig. 2): (1) feature 
extraction/learning, (2) behavioral mode extraction using 
a clustering method, (3) identifying co-occurrence behav-
ioral modes, and (4) identifying behavioral co-occurrence 
differences between groups. The method started with 
original sensor data (e.g., GPS coordinates) and calcu-
lated or learnt features (e.g., speed) in the first step. Then, 
the method extracted behavioral modes (e.g., cruising 
mode and relaxing mode) from the time-series of features 
in the second step. In the third step, the method identi-
fied pairs of behavioral modes that frequently co-occur. 
In the fourth step, the method output pairs of behavioral 
modes that differ between given two groups in terms of 
the frequency of co-occurrence.

Time-series segmentation and clustering methods have 
been used in previous studies to extract behavioral modes 
from behavioral data such as trajectories and time-series 
sensor data [11]. The time series of feature values (e.g., 
the time series of movement speeds) were extracted 
from the original time-series data and then segmented 
and clustered to identify behavioral modes for each fea-
ture. In previous studies, the features extracted from the 
original time-series data and the parameters of the meth-
ods (e.g., threshold and expected number of behavioral 
modes) were manually selected and/or designed based 
on their experience regarding to the study species [12, 
13]. By contrast, the proposed method could identify co-
occurrences of behavioral modes by changing parameters 
and features without a priori assumptions regarding the 
threshold and number of behavioral modes. However, 
this required a large number of combinations for testing, 
resulting in high computational costs. To achieve this in 

reasonable time, we proposed a method that reduces the 
total computational cost.

Problem definition
Our objectives were as follows: (1) find highly correlated 
behavioral modes between data with multiple time series 
(e.g., GPS data, water pressure data, and ambient temper-
ature data); and (2) identify co-occurrence of behavioral 
modes that differ between groups.

Let L and E be a location-information dataset and a 
dataset of other sensors (e.g., acceleration sensor, water 
pressure sensor, and temperature sensor including envi-
ronmental sensor and physiological sensor), respec-
tively. Specifically, L = {�l1, t1�, ..., �l|L|, t|L|�} , where li 
is two-dimensional (2D) (or three-dimensional) loca-
tion information, and ti is the time when li is observed. 
Additionally, E = {�e1, t1�, ..., �e|E|, t|E|�} , where ei repre-
sents d-dimensional sensor data, and d is � 1. For exam-
ple, when we observe atmospheric pressure and body 
temperature, d = 2 . Our inputs were obtained from L 
and E. Given L, we could extract multiple types of one-
dimensional-feature time series, L1 , L2 , ..., Ln , comprising 
handcrafted features and features learned using feature-
learning approaches [14].

For example, L1 is a time series of speed. Note that, 
when data from multiple individuals were given, Li was 
created by concatenating time-series of a corresponding 
feature from the individuals. Furthermore, given E, E1 , 
E2 , ..., and Em were obtained, where E1 might be a time 
series of the derivative of atmospheric pressure. Next, we 
defined several terms related to clustering.

Fig. 2  Overview of the proposed method. a Feature extraction/learning. b Behavioral mode extraction using a clustering method. c Identifying 
co-occurrence of behavioral modes. d Identifying behavioral co-occurrence differences between groups
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Definition 1  (Segment). Given a time series X and a 
parameter α , a segment s that is computed based on α is a 
subsequence of X. If s = {�xa, ta�, �xa+1, ta+1�, ..., �xb, tb�} , 
the time length of s, denoted by s.t, is [ta, tb].

Definition 2  (Cluster). Given a time series X and a 
parameter set θ comprising α and β , a cluster that is com-
puted based on β is a set of segments that follows Defini-
tion 1. Each cluster can be referred to a behavioral mode.

Given Li , Ej , and clustering parameter sets θn and θm , 
we have Li,θn and Ej,θm , which are respectively the cluster-
ing results of Li and Ej . The clustering result Li,θn contains 
clusters, and each cluster (i.e., behavioral mode) is com-
posed of segments belonging to the behavioral mode. 
Let Lpi,θn ( E

q
j,θm

 ) be the p-th (q-th) cluster (i.e., the behav-
ioral mode) in Li,θn ( Ej,θm ). Note that p (q) is larger than 
or equal to 1 and smaller than or equal to the number of 
clusters. Here, we defined the score of the pair of Lpi,θn and 
E
q
j,θm

.

Definition 3  (Score(Lpi,θn ,E
q
j,θm

) ). Given 
L
p
i,θn

= {s
p
1, s

p
2, ...} and Eq
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q
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where

and

Note that Corr(Lpi,θn ,E
q
j,θm

) measures the time correla-
tion between Lpi,θn and Eq

j,θm
 (i.e., co-occurrence between 

a behavioral mode extracted from Li and that from Ej ). 
Additionally, Freq(Lpi,θn ,E

q
j,θm

) provides a penalty if the 
relationship between Lpi,θn and Eq

j,θm
 is simply a steady 

activity, i.e., Lpi,θn and/or Eq
j,θm

 occur too often.

To mine useful information, clustering should be exe-
cuted by varying the clustering parameters. Given a range 
for each clustering parameter, we obtained multiple pairs 
of clusters and then provided a ranking list of the cluster 
pairs based on their scores (described in Definition 3).
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) measures the difference 
between groups in the co-occurrence of behavioral 
modes. Corr(Lp,Ai,θn

,E
q,A
j,θm

) and Corr(Lp,Bi,θn
,E

q,B
j,θm

) are the cor-
relation in group A and group B, respectively. Lp,Ai,θn

 ( Eq,A
j,θm

 ) 
shows segments in the p-th (q-th) cluster obtained from 
individuals belonging to group A. The greater the value 
of Diff(Lp,Ai,θn

,E
q,A
j,θm

, L
p,B
i,θn

,E
q,B
j,θm

) , the greater the difference in 
the frequencies of the co-occurrence of behavioral modes 
between the two groups.

Algorithm
Given a set of feature time series, i.e., location time series 
( L1 , ..., Ln ) and other sensor data time series ( E1 , ..., Em ), 
and ranges of clustering parameters, we preformed 
clustering for each time series and parameter and com-
puted the scores of all cluster pairs obtained from Li and 
Ej . This required efficient clustering of the time series; 
however, achieving efficient clustering was not trivial, 
because naively enumerating all cluster pairs was infea-
sible if the number and length of the time series were 
large. Therefore, we proposed an efficient method that 
overcomes this challenge. To segment time series effi-
ciently, we first employed symbolic Aggregate Approxi-
mation (SAX) [15], which is a symbolization method, 
to convert a series of numerical values into a series of 
symbols. After obtaining the result of SAX, we reduced 
the length of the time series of symbols by merging the 
same adjacent symbols. Additionally, we used spectral 
clustering [16], which is a graph-partitioning algorithm 
and constructs a similarity graph, where each segment 
associated with a symbol corresponds to a graph node 
in our case. We regarded segments with the same label 
as a vertex in the graph, which speeds up the clustering 
process. An overview of the method is described in the 
Algorithm 1. Given a set of time series X  , a range of SAX 
parameter α , i.e., [αmin,αmax] , and a range of cluster num-
ber β , i.e., [βmin,βmax] , we first obtained features learned 
by an autoencoder neural network and added them to X  
(line 1). For each time-series Xi in X  , we computed its 
mean, µ , and variance, σ 2 , to enable SAX-based segmen-
tation (line 5). Next, for each parameter α ∈ [αmin,αmax] , 
we executed time-series segmentation with SAX (line 7), 
followed by spectral clustering for each β ∈ [βmin,βmax] 
(lines 8–12) (i.e., a segmentation result using α could 
be reused when β is randomized by the algorithm). The 
scores of all cluster pairs were then computed based on 
Definition  3, and results diversification was performed 
to remove similar co-occurring behavioral modes. We 
then divided the data according to the type of group, 

Diff (L
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calculated correlations in each group, and ranked the 
correlated behavioral modes based on the difference in 
correlation between the two groups.

Note that we employed SAX in the segmentation pro-
cedure because SAX uses the breakpoints of distribu-
tion of data for symbolization; thus, we could reuse these 
breakpoints to speed up the segmentation process. In 
addition, we wanted to avoid grouping data points with 
the same symbol into different clusters, we employed 
a graph-based clustering method (i.e., spectral cluster-
ing). Each function used in Algorithm  1 (e.g., SAX) is 
explained below.

trained to output values equivalent to the input values. 
The autoencoder first used the encoder to compress 
the input into a latent representation and then used the 
decoder to reconstruct the output from this representa-
tion. By limiting the number of hidden units to less than 
the number of input and output units, the network could 
obtain compressed representations of the input while 
preserving important information of the input that was 
necessary for its reconstruction (i.e., the output of the 
autoencoder). Because locomotion modes, such as cruis-
ing, included in an animal trajectory could be regarded 
as latent representations of movements, concepts similar 
to locomotion modes were expected to be obtained by 
feeding handcrafted features (i.e., features designed by 

researchers) into the autoencoder. The network used in 
this study comprised an input layer, a hidden LSTM layer 
using a rectified linear unit activation function, and an 
output layer. We used output time series for each hidden 
unit (unit in the hidden layer) as inputs to the next proce-
dure. The feature learned by each hidden unit was called 
a “learned feature”. The input of the encoder and the out-
put of the decoder corresponded to handcrafted features 

Feature extraction/learning
We first extracted manually designed features from the 
time series (i.e., locomotion features, such as speed and 
angular speed, were extracted from a trajectory time 
series.) (Fig. 2a). To automatically obtain additional fea-
tures from the raw time series or the basic handcrafted 
features in X  , we employed a Long Short-Term Memory 
(LSTM) autoencoder that comprises LSTM cells [17, 
18]. An autoencoder neural network (Fig.  3) was then 
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Fig. 3  Feature learning using an autoencoder. An autoencoder is a neural network that learns the latent representation of an input. The 
encoder converts the input into the latent representation, the hidden layer contains the latent representation of the input data, and the decoder 
reconstructs the original input from the latent representation. Each circle is regarded as a unit in the neural network. The number of units in the 
input layer and that of the output layer are identical to the dimension of the input data. The number of units in the hidden layer is less than that 
in the input layer. By limiting the number of hidden units, we can compress the input data. Because the compressed representation contains 
important information necessary to reconstruct the output, the compressed data are considered to represent latent states of an animal (i.e., 
behavioral modes)

Fig. 4  Symbolization using SAX with different parameters ( α = 6 and α = 3 ). The area under Gaussian distribution is divided into α equal-sized 
areas, with each area associated with a unique symbol. When a value in a time series falls into a divided area, the value is converted to a symbol 
corresponding to the space. Comparison of breakpoints between α = 6 and α = 3 shows that the second biggest breakpoint when α = 6 is equal 
to the biggest breakpoint when α = 3 , the second biggest breakpoint when α = 6 is equal to the biggest breakpoint when α = 3 . It means that 
the data converted to a and b when α = 6 are converted to a when α = 3 ; the data converted to c and d when α = 6 are converted to b when 
α = 3 ; the data converted to e and f when α = 6 are converted to c when α = 3 . Therefore, we can easily obtain symbol series when α = 3 by 
re-using that of α = 6
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in our study. We trained the network to minimize the 
mean absolute error between the input and output by 
employing backpropagation based on Adam [19]. We 
performed the feature learning procedure for each sensor 
modality. For example, we prepared an autoencoder for 
GPS data and features from the GPS data such as speed 
and acceleration were fed into the autoencoder.

Behavioral mode extraction
Behavioral mode extraction (Fig.  2b) included two 
phases: time-series segmentation and clustering.

Segmentation
Given a time-series Xi , we computed its mean, µ , and 
variance, σ 2 , which were then used for all parameters 
∈ [αmin,αmax] . We then segmented Xi using SAX, which 
assumes that normalized time-series data (based on µ 
and σ 2 ) x ∈ Xi follows the Gaussian distribution and 
uses breakpoints (a sorted list of numbers) to divide the 
area under Gaussian curve to equal-sized areas. The data 
above the biggest breakpoint were mapped to the sym-
bol a and the data smaller than the biggest breakpoint 
and larger than or equal to the second biggest breakpoint 
were mapped to the symbol b (Fig. 4). The symbols of the 
neighbor area were called neighbor symbols. The symbolic 
version of the time-series was ccbbaa....eddc, and the 
neighbor symbols of c are b and d. Note that as shown 
in Algorithm 1 (line 6), segmentation was executed in the 
descending order of α in order to reuse the previously 
obtained results. Specifically, when α = αi , we reused 
the results of α = 2 · αi to obtain the results of α = αi . 
For example, if x was converted to a or b when α = 6 in 
the case of Fig. 4, x was absolutely converted to a when 
α = 3 (i.e., just converting b in the results of α = 6 to a to 
obtain results of α = 3).

Next, let Xi(z) be the set of x ∈ Xi , where x was con-
verted to z. We computed the average value of Xi(·) 
(i.e., avg  Xi(·) =

∑
x

|Xi(·)|
 ) for each symbol, because this 

was one of the inputs to spectral clustering. Similar to 
symbolization, this averaging could utilize the previous 
results to save computation cost. In Fig. 4, we computed 
avg  Xi(a) when α = 3 based on avg  Xi(a) , avg  Xi(b) , 
|Xi(a)| , and |Xi(b)| was computed when α = 6 (i.e., 
|Xi(a)| avg Xi(a)+|Xi(b)| avg Xi(b)

|Xi(a)|+|Xi(b)|
 ). We then segmented Xi 

(line 7 in Algorithm 1). Each repeating symbol was coded 
once together (i.e., the segments of the time-series in 
Fig. 4 ( α = 6 ) was c, b, ..., d, and c).

Clustering
After Xi was segmented, we constructed a similarity 
graph defined, as follows.

Definition 5  (Similarity graph). Given a set of segments 
of Xi ( {s1, s2, ...} ), a similarity graph, G, constructed by the 
segment set is a weighted graph that has a node set and 
an edge set. Nodes correspond to the segments, and an 
edge is created between two nodes with the same symbol 
or neighbor symbols. Assume that two nodes, si and sj , 
have an edge, and that their symbols are, respectively, z 
and z’. The weight of the edge wsi ,sj , which corresponds 
to the similarity between nodes, is defined below.

We used this edge weight to reduce computation costs 
in the following procedure. It is worth noting that creat-
ing edges between all nodes would allow acquisition of an 
odd cluster, which contains some symbols but not their 
neighbor symbols. To avoid this, we considered only the 
same and neighbor symbols. After constructing G, we 
obtained the non-normalized Laplacian matrix of G and 
compute its eigenvectors. We then clustered nodes (i.e., 
divide G into k subgraphs G1 , G2 , ..., Gk by k-means++ 
[20] based on the eigenvectors) and obtained clustering 
result Xi,α−β (lines 9-11 from Algorithm 1). (The param-
eter k is β ∈ [βmin,βmax] and β < α .) This graph division 
aimed to minimize the summation of the weights of cut 
edges. Let Vj be the set of nodes of Gj . This graph-division 
problem was formalized to minimize

where

(sj , sj′) was a removed edge, and V was a node set of G. 
These operations incurred a high computational cost 
if the graph size was large; therefore, we reduced the 
computational cost by graph-size reduction via merg-
ing nodes with the same symbol into a single node. This 
merged similarity graph was defined as follows.

Definition 5  (Merged similarity graph). The merged 
similarity graph of G, Ĝ , includes nodes with different 
symbols and edges that were created between nodes with 
neighbor symbols. Assume that two nodes, ŝi and ŝj , in Ĝ 
have an edge, and that their symbols are, respectively, z 
and z’. Let V (z) be the set of nodes having symbol z of 
V. The weight of the edge ŵsi ,sj is

(1)wsi ,sj =
1

|avg Xi(z)− avg Xi(z’)|
.

(2)RatioCut(G1,G2, ...,Gk) =

k∑

i=1

Cut(Vi,V \Vi)

|Vi|
,

(3)
Cut(Vi,Vi′) =

∑

sj∈Vi ,sj′ ∈Vi′

wsj ,sj′
,

(4)ŵsi ,sj =
∑

s∈V (z),s′∈V (z’)

ws,s′ .
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Definition  5 shows that the numbers of nodes and 
edges of Ĝ are α and O(α) , respectively. Note that 
α ≪ |V | and α are small integers in practice, suggesting 
the efficiency of graph-size reduction. Furthermore, we 
showed that this reduction in graph size did not sacrifice 
its correctness.

Theorem 1  (Correctness). Ĝ provides the same cluster-
ing result as that with G.

Proof  First, the weights of edges between nodes with 
the same symbol are regarded as ∞ from Eq. (1); there-
fore, nodes with the same symbol are never assigned to 
different clusters when α >= β , thereby allowing nodes 
with the same symbol to be merged. Moreover, based on 
this observation and Eqs. (3) and (4), we have

This suggests that the cutting results of G and Ĝ are the 
same. Therefore, Theorem 1 holds. �

Theorem 1 allowed use of Ĝ instead of G, enabling effi-
cient execution of spectral clustering. Next, we introduce 
the time complexity of the clustering step.

Theorem  2  (Time complexity). Given a time series Xi , 
clustering requires O(

∑
α(|Xi| + α3 +

∑
β αβ)) time.

Proof  SAX and Merge-Symbols(·) requires O(|Xi|) 
time. Similarity graph construction incurs O(α2) time, 
whereas computing the eigenvectors requires O(α3) 
time [21]. For a fixed iteration number, k-means++ 
requires O(αβ) time [22]. Because k-means++ is exe-
cuted ( βmax − βmin + 1 ) times, for a given α , we require 
O(|Xi| + α3 +

∑
β αβ) time. Therefore, the time complex-

ity of the clustering step is O(
∑

α(|Xi| + α3 +
∑

β αβ)) , 
which completes the proof. �

Because α and β were practically small integers, the 
method could rapidly obtain all cluster pairs.

Identifying co‑occurrences in behavioral modes 
and diversification
We computed a ranked list of the pairs (co-occurrence 
of behavioral modes) based on their scores (Fig. 2d), fol-
lowed by removal of similar co-occurrences of behavio-
ral modes in the list. We first grouped co-occurrences 
of behavioral modes derived from the same features. 
For each group, we then computed the time correlation 
between each pair of behavioral modes. Given two behav-
ioral modes, (Lpi,θa ,E

q
j,θb

) and (Lri,θc ,E
s
j,θd

) , we computed 

Cut(V (z),V (z’)) = ŵsi ,sj

= Cut({ŝi}, {ŝj}).

Corr(L
p
i,θa

, Lri,θc ) and Corr(Eq
j,θb

,Es
j,θd

) . When the two cor-
relation values exceeded a threshold, the co-occurrence 
of a behavioral mode with a lower score was discarded. 
This was because some features obtained by the autoen-
coder can be strongly correlated with each other.

Identifying the co‑occurrence of behavioral modes 
that differs between groups
After we obtained the ranked list of co-occurrences 
of behavioral modes, we calculated the difference in 
the correlation between groups in descending order 
(Fig.  2c). First, for each co-occurrence of behavioral 
modes, we divided the corresponding animal-locomotion 
data or learned features into two groups (e.g., groups 
A and B). Second, we calculated Corr(Lp,Ai,θn

,E
q,A
j,θm

) and 
Corr(L

p,B
i,θn

,E
q,B
j,θm

) , respectively. Next, we computed the 
absolute value of the difference between the two groups 
and then obtained a ranked list of differences between 
males and females. Finally, the co-occurrence of behav-
ioral modes that differs in frequency between the two 
groups was output.

Dataset
We evaluated our method using two time-series data-
sets: the 2D trajectories from GPS and water-depth sen-
sor data, which are the most widely used data types [23]. 
The GPS and water-depth data were collected from sen-
sor data loggers (Axy-Trek; Technosmart, Roma, Italy) 
attached to Streaked Shearwaters (Calonectris leucome-
las) breeding around Awashima Island (38◦ 28’ N, 139◦ 
14’ E; Niigata, Japan) in 2016, 2017, and 2018. Analysis 
of these sensor data using the proposed method was 
expected to reveal co-occurrences of behavioral modes 
related to the relationship between diving activity and 
locomotion mode. Refer to [24] for details concerning 
data collection. The sampling interval of the GPS was  1 
min, and that for the depth sensor was 1.0 Hz. The num-
ber of trajectories was 79, the average duration of the 
trajectories was 329 h, and the average number of data 

Table 1  Description of feature parameters. These parameter 
values are selected to capture short- and long-term behaviors of 
seabirds

Features feature parameters

Moving average of speed, 
acceleration and angular 
speed

window size (min) = 5, 10, 15, 20, 25, and 30.

Moving variance of speed, 
acceleration and angular 
speed

window size (min) = 5, 10, 15, 20, 25, and 30.

FPT radius (m) = 100, 200, 300, 400, 500, 600, 
700, 800, 900, and 1000.

Displacement window size (min) = 5, 10, 15, 20, 25, and 30.
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points in one trajectory was 14,233. The dataset included 
information for 37 males (average trajectory duration: 
334 h; average number of data points in one trajectory: 
14,459) and 42 females (average trajectory duration: 
325 h; average number of data points in one trajectory: 
14,034). Because we could obtain a multi-dimensional 
time-series for each trajectory (79 time-series in total), 
we concatenated the 79 time-series to make one multi-
dimensional time-series, and used this as input.

Experimental methodology
We prepared three types of time-series: 1) locomotion 
features from GPS, 2) the number of dives extracted from 
water-depth data, and 3) time stamps. We extracted loco-
motion features widely used in biology studies, such as 
speed [m/s], acceleration [m/s2 ], angular speed [rad/s], 
moving average and variance of speed, acceleration and 
angular speed, first passage time (FPT) [13] calculated 
from GPS coordinates, distance to coastline, and dis-
placement [12, 25], by varying their feature parameters 
(e.g., window size). Table 1 shows the description of the 
feature parameters. For example, we computed the mov-
ing average of speed with different windows size (5, 10, 
15, 20, 25, 30), resulting in six time-series of the moving 
average of speed. Because the distance to coastline has no 
feature parameters, for example, a single time-series was 
computed. We also computed the displacement from the 
GPS data using sliding window with different windows 
size (5, 10, 15, 20, 25, 30), resulting in six time-series of 
displacement.

In total, 55 feature time-series data were extracted 
from each trajectory, from which we obtained 32 features 
learned by the autoencoder. We set αmin to 4, αmax to 20, 
βmin to 2, and βmax to 10, respectively. These parameters 
were determined empirically. We obtained a depth time 
series with sampling intervals of 1 min and 1 h by calcu-
lating the number of dives per minute and hour, respec-
tively. Additionally, we used the series of time stamps, 
which were based on the hour of the day (e.g., 01:00, 
02:00, etc, local time), as the third feature type, because 
we expected to obtain a correlation between the diving 
activities or locomotion features of the seabirds and the 
hour of the day. Note that, when we computed two fea-
ture time series, their sampling interval should be identi-
cal; therefore, we converted the depth data into the time 
series of the number of dives so that the sampling interval 
of the time series was identical to that of the GPS data (or 
the series of time stamps). α ranged from 4 to 20, and β 
ranged from 2 to 3. The following methods were used to 
evaluate the computational time of the proposed method. 
In this study, we focused on the computational time. In 
general, researchers iterate analysis processes many times 
by designing and adding new features according to the 

results of the previous run. Therefore, reducing the com-
putational cost of an iteration is crucial.

•	 Proposed: the proposed method in this paper.
•	 w/o symbol: a variant of the proposed method that 

does not reuse previous SAX results.
•	 w/o reduce: a variant of the proposed method that 

does not use a merged similarity graph.

Note that all the above methods provided the same 
output. However, the computation times were differ-
ent. Furthermore, we omitted cluster pairs not satisfy-
ing Corr(Lpi,θn ,E

q
j,θm

) > γ in order to filter out behavioral 
modes with low correlation. Additionally, we set γ to 
0.3. All methods were implemented in C++ and eigen-
vectors were calculated by CLAPACK 3.2.1. Moreover, 
we ran K-means++ and HMM on our data set instead 
of the combination of SAX and spectral clustering. As 
these methods do not have the segmentation proce-
dure, we simply varied the number of clusters from 3 to 
10. K-means++ was implemented in C++. HMM was 
implemented in Python by using hmmlearn 0.2.5. All 
experiments were conducted on a PC with a 3.4-GHz 
Intel Core i7 CPU with 16 GB RAM.

Results
Table 2 shows the running time of each method. The seg-
mentation and clustering columns show the computation 
times of the segmentation and clustering procedures, 
respectively, indicating the efficiency of the proposed 
method in terms of the computational time compared to 
the other methods.

42 co-occurrences of behavioral modes were obtained 
from the method. The following are the co-occurrences 
of behavioral modes with the top three highest scores. 
Note that, as the goal of the study was to find co-occur-
rences of two behavioral modes, we focus only on these 
two behavioral modes and ignore the remaining behav-
ioral modes.

Co-occurrence of behavioral modes with the best 
score: “A behavioral mode corresponding to small values 
of a learned feature by the 23rd hidden unit in the LSTM 
autoencoder” and “a behavioral mode of distance from 
the coastline (from 60 to 2200 m)” were highly correlated. 
The Corr of male seabirds and female seabirds were 0.358 
and 0.615, respectively. The learned feature related to the 
locomotion speed, because the feature was highly cor-
related with the average moving speed (window size: 30 
min; Pearson correlation: 0.902); therefore, the behavio-
ral mode from the learned feature was translated as low 
speed (between  0.1 and  6 m/s). To determine the mean-
ing of a behavioral mode (e.g., low-speed mode), we sim-
ply plotted the distribution of the identified feature and 
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compared it to the distribution of data points belonging 
to the behavioral mode.

As above, the frequency of co-occurrence of the low 
speed mode and the behavioral mode of proximity to the 
coast for the female seabirds was higher than that for the 
male seabirds.

Figures 5 and 6 show the entire trajectories of a female 
and male seabird under the co-occurrence of behavio-
ral modes with the best score. The red segments are the 
identified behavioral modes.

Co-occurrence of behavioral modes with the 2nd best 
score: “A behavioral mode of daytime (10:00–17:00 in 

Fig. 5  Example of a co-occurrence of behavioral modes for female seabirds with the best score. The correlated behavioral modes are the behavioral 
mode of proximity to the coast (60–2200 m from the coast) from distance from coastline and the low speed mode from the 23rd learned feature. 
The upper maps show bird trajectories. The dashed gray lines show the coastlines, the blue line shows the trajectory, and the red segments 
represent identified behavioral modes. The lower graphs show time series of features, and the red segments show the identified behavioral modes
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local time)” and “a behavioral mode of medium frequency 
of dives (between 10 and 14 times per hour)” were highly 
correlated. The Corr of male seabirds and female seabirds 
were 0.409 and 0.620, respectively.

As above, the frequency of co-occurrence of the day-
time mode and the behavioral mode of medium fre-
quency of dives for the female seabirds was higher than 
that for the male seabirds.

Additional file 1: Figure S1 and Additional file 2: Figure 
S2 show the entire trajectories of a female and male sea-
bird under the co-occurrence of behavioral modes with 

the 2nd best score. The red segments are the identified 
behavioral modes.

Co-occurrence of behavioral modes with the 3rd best 
score: “A behavioral mode corresponding to moderate 
values of a learned feature by the 15th hidden unit in the 
LSTM autoencoder” and “a behavioral mode of multiple 
dives (i.e., behavioral mode corresponding to time when 
a seabird performed multiple dives per min)” were highly 
correlated. The Corr of male seabirds and female seabirds 
were 0.404 and 0.257, respectively. The learned feature 
was related to the locomotion speed, because the fea-
ture was highly correlated with the average moving speed 

Fig. 6  Example of a co-occurrence of behavioral modes for male seabirds with the best score. The correlated behavioral modes are the behavioral 
mode of proximity to the coast (60–2200 m from the coast) from distance from coastline and the low speed mode from the 23rd learned feature. 
The upper maps show bird trajectories. The dashed gray lines show the coastlines, the blue line shows the trajectory, and the red segments 
represent identified behavioral modes. The lower graphs show time series of features, and the red segments show the identified behavioral modes
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(window size: 20 min; Pearson correlation: 0.914), and 
the behavioral mode from the learned feature was trans-
lated as a high-speed mode (> 5 m/s).

As above, the frequency of co-occurrence of the high-
speed mode and the behavioral mode of multiple dives 
for the male seabirds was higher than that for the female 
seabirds.

Additional file 3: Figure S3 and Additional file 4: Figure 
S4 show the entire trajectories of a female and male sea-
bird under the co-occurrence of behavioral modes with 
the 3rd best score. The red segments are the identified 
behavioral modes.

Figure 7 shows the boxplots of the correlation between 
females and males under the co-occurrences of behav-
ioral modes with the top three scores. The co-occur-
rences of behavioral modes with the top three highest 
scores were analyzed by generalized linear mixed models 
(GLMMs) using Gaussian distributions. We treated Corr 
of each seabird as independent variable, sex as response 
variable and individuals as random factors in the mod-
els. We used R (version 3.6.0) package lme4 1.1.21 [26] 
for the linear models. The co-occurrence of behavioral 
modes with the best score differed significantly between 
males and females (t = −3.515 , df = 77, p = 7.39× 10−4 ). 
The co-occurrence of behavioral modes with the 2nd 

best score differed greatly between males and females (t 
= −2.788 , df = 77, p = 6.68× 10−3 ). The co-occurrence 
of behavioral modes with the 3rd best score differed 
between sex (t = −2.228 , df = 77, p = 9.30× 10−4).

Discussion
To the best of our knowledge, this is the first method 
that detects co-occurrences of behavioral modes that 
differ between two groups. Behavioral mode detec-
tion (time-series clustering) from multimodal data with 
unsupervised manner was problematic because mean-
ingless sensor modalities affect the clustering results. In 
addition, the unsupervised methods required manual 
selection of parameters. Our method could deal with 
these problems by clustering time-series for each sensor 
modality and find the best combination of the modality 
and parameters efficiently.

As shown in Fig. 7, the proposed method could detect 
the difference in behavioral co-occurrences from mul-
timodal time-series data recorded from wild seabirds. 
Additionally, the method substantially decreased com-
puting time by applying graph-size reduction. As shown 
in Table  2, when comparing the proposed method with 
w/o symbolization, we confirm that re-using the previ-
ous SAX results reduced computation time related to 
the segmentation. Because αmax = 20 , the proposed 
method used the previous SAX results when α ≤ 10 (As 
αmax increases, we obtain benefits of re-using the previ-
ous SAX results). Moreover, comparison of the method 
without reducing the graph size indicated an increase 
in efficiency following the reduction in the clustering 
procedure. As shown in Table  2, the proposed method 
was  fourfold faster following graph-size reduction. These 
results showed that reducing the graph size significantly 
affected the computational cost. The proposed method 
had superior performance in terms of computational 
time to that of either the K-means++ or HMM method, 

Fig. 7  Boxplot of Pearson correlation for each co-occurrence of behavioral modes. A significant difference between male and female seabirds 
was observed by the generalized linear mixed models with Gaussian distributions. Each data point corresponds to a trajectory. a Co-occurrence of 
behavioral modes with the best score (t = −3.515 , df = 77, p = 7.39× 10

−4 ). b Co-occurrence of behavioral modes with the 2nd best score (t = 
−2.788 , df = 77, p = 6.68× 10

−3 ). c Co-occurrence of behavioral modes with the 3rd best score (t = 2.668, df = 77, p = 9.30× 10
−3)

Table 2  Evaluation of the efficiency of seabird data: running 
time (s)

Segmentation Clustering Total

Proposed 4.30 8.10 12.40

w/o symbol 5.98 8.16 14.14

w/o reduce 4.32 5.61× 10
5

5.61× 10
5

K-means++ – – 173

HMM – – 1.28× 10
5
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indicating the high efficiency of the proposed method. 
Although the computational cost of K-means++ was 
much smaller than that of HMM, K-means++ could not 
take into account the temporal regularity of behavioral 
data.

In the experiment, we processed 87 ( 55+ 32 ) time 
series by changing two clustering parameters, resulting in 
6,525 runs of the time-series segmentation and clustering 
process. Therefore, 21,284,550 combinations were inves-
tigated to find the best pair of time series and parameters. 
Our method could help this exhaustive analysis via fast 
time-series segmentation and clustering.

Investigation of the co-occurrence of behavioral 
modes with the best score indicated that the low-speed 
mode (from  0.1 to  6 m/s) and the behavioral mode of 
proximity to the coast (60–2200 m from the coast) were 
highly correlated, with females showing a higher cor-
relation than the males. This co-occurrence of behavior 
mode indicates that the females fly at low speeds within 
60 meters–2200 meters of the coast, which is more char-
acteristic of females than males (Figs. 5 and 6). Because 
females are smaller than males, this suggests that they 
might prefer to stay close to the coast where the wind is 
not as strong [24].

The 2nd best score showed that the daytime mode 
(10:00–17:00 in local time) and the behavioral mode of 
medium frequency of dives (between 10 and 14 times 
per hour) were highly correlated, with females showing 
a higher correlation than males (Additional file 5: Figure 
S5 shows the ratio of multiple dives per hour for males 
and females). This indicates that females dive more fre-
quently than males between 10:00 and 17:00 (Addi-
tional file 1: Figure S1 and Additional file 2: Figure S2 ). 
The differences in diurnal modes between males and 
females have been often observed in seabirds [27], which 
was interpreted as a result of sexual size dimorphism or 
sex-specific roles. In the case of Streaked Shearwaters, 
females conduct relatively short trips for chicks, suggest-
ing that they dive soon after initiating foraging trips (i.e., 
in the morning). As above, a new insight related to diving 
of Streaked Shearwaters and timestamp was obtained by 
applying our method.

The 3rd best score showed that the high-speed mode 
(> 5 m/s) and the behavioral mode of multiple dives (i.e., 
corresponding to time when a seabird performed mul-
tiple dives per min) were highly correlated, with males 
showing a higher correlation than females. This indicates 
that the male seabirds performed multiple dives at higher 
speed and more frequently than female seabirds (Addi-
tional file  3: Figure S3 and Additional file  4: Figure S4). 
This might be associated with sexual differences in for-
aging behavior. As above, a new insight related to diving 

of Streaked Shearwaters was obtained by applying our 
method to locomotion data of Streaked Shearwaters.

The proposed method was designed to detect co-
occurrence of behavioral modes that differs between 
two groups. When the groups are more than two, we can 
detect the difference using the standard deviation of the 
Corr in all groups.

Conclusions
The proposed method allowed acquisition of novel 
insights related to seabirds. The experimental results 
showed that the proposed method could find co-occur-
rences of behavioral modes that differed with groups and 
it took less time to run than did other machine learning 
methods. Because this method was designed to mine 
meaningful co-occurrences from any type of time-series, 
it can potentially be applied widely to discover relation-
ships between locomotion modes and foraging activ-
ity [28], heart rate and group formation [29], and brain 
signals and behaviors [30]. Our future work will involve 
verification of our findings by measuring other modali-
ties of sensor data (e.g., recording diving activities of the 
seabirds with video loggers). In addition, the proposed 
method could be extended to detect behavioral modes 
in more than two groups (e.g., juveniles, subadults, and 
adults).

Supplementary Information
The online version supplementary material available at https://​doi.​org/​10.​
1186/​s40317-​021-​00242-2.

 Additional file 1: Figure S1. Example of a co-occurrence of behavio-
ral modes for female seabirdswith the 2nd best score. The correlated 
behavioral modes are thebehavioral mode of frequent dives (between 10 
and 14 times perhour) from number of dives per hour and the daytime 
mode(10:00--17:00 in local time) from timestamp. The upper maps show-
bird trajectories. The dashed gray lines in the map show thecoastlines, the 
blue line shows the trajectory, and the red segmentsrepresent identified 
behavioral modes. The lower graphs show timeseries of features, and the 
red segments show the identifiedbehavioral modes. 

Additional file 2: Figure S2. Example of a co-occurrence of behav-
ioral modes for male seabirdswith the 2nd best score. The correlated 
behavioral modes are thebehavioral mode of frequent dives (between 10 
and 14 times perhour) from number of dives per hour and the daytime 
mode(10:00--17:00 in local time) from timestamp. The upper maps show-
bird trajectories. The dashed gray lines in the map show thecoastlines, the 
blue line shows the trajectory, and the red segmentsrepresent identified 
behavioral modes. The lower graphs show timeseries of features, and the 
red segments show the identifiedbehavioral modes. 

Additional file 3: Figure S3. Example of a co-occurrence of behav-
ioral modes for female seabirdswith the 3rd best score. The correlated 
behavioral modes are thebehavioral mode of multiple dives number of 
dives per minute andthe high-speed mode from the 15th learned feature. 
The upper mapsshow bird trajectories. The dashed gray lines in the 
map show thecoastlines, the blue line shows the trajectory, and the red 
segmentsrepresent identified behavioral modes. The lower graphs show 
timeseries of features, and the red segments show the identifiedbehavio-
ral modes. 
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Additional file 4: Figure S4. Example of a co-occurrence of behavioral 
modes for male seabirdswith the 3rd best score. The correlated behavioral 
modes are thebehavioral mode of multiple dives number of dives per 
minute andthe high-speed mode from the 15th learned feature. The 
upper mapsshow bird trajectories. The dashed gray lines in the map 
show thecoastlines, the blue line shows the trajectory, and the red 
segmentsrepresent identified behavioral modes. The lower graphs show 
timeseries of features, and the red segments show the identifiedbehavio-
ral modes. 

Additional file 5: Figure S5. Ratio of multiple dives between male and 
female seabirds per hour.
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