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METHODOLOGY

Counting sea lions and elephants from aerial 
photography using deep learning with density 
maps
Chirag Padubidri1,2*  , Andreas Kamilaris1,2, Savvas Karatsiolis2 and Jacob Kamminga1 

Abstract 

Background:  The ability to automatically count animals is important to design appropriate environmental policies 
and to monitor their populations in relation to biodiversity and maintain balance among species. Out of all living 
mammals on Earth, 60% are livestock, 36% humans, and only 4% are animals that live in the wild. In a relatively short 
period, development of human civilization caused a loss of 83% of wildlife and 50% of plants. The rate of species 
extinction is accelerating. Traditional wildlife surveys provide rough population estimates. However, emerging tech-
nologies, such as aerial photography, allow to perform large-scale surveys in a short period of time with high accu-
racy. In this paper, we propose the use of computer vision, through deep learning (DL) architecture, together with 
aerial photography and density maps, to count the population of Steller sea lions and African elephants with high 
precision.

Results:  We have trained two deep learning models, a basic UNet without any feature extractor (Model-1) and 
another with the EfficientNet-B5 feature extractor (Model-2). We measured the model’s prediction accuracy, using Root 
Mean Square Error (RMSE) for the predicted and actual animal count. The results showed an RMSE of 1.88 and 0.60 to 
count Steller sea lions and African elephants, respectively, regardless of complex background, different illumination 
conditions, heavy overlapping and occlusion of the animals.

Conclusions:  Our proposed solution performed very well in the counting prediction problem, with relatively low 
training parameters and minimum annotation. The approach adopted, combining DL and density maps, provided 
better results than state-of-art deep learning models used for counting, indicating that the proposed method has the 
potential to be used more widely in large-scale wildlife surveying projects and initiatives.
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Background
Of all living mammals on Earth, 60% are livestock, 36% 
humans, and just 4% are wild animals [1]. In a relatively 
short period, the development of human civilization 
caused a loss of 83% of wildlife and 50% of vegetation [2]. 
Moreover, the current rate of global decline in wildlife 
population is unprecedented in human history, and the 

rate of extinction of species is accelerating [3, 4]. Wild-
life surveys provide species’ population estimates and 
are conducted for reasons such as species management 
and control, ecological and biological studies, as well as 
long term trend monitoring and behavioral understand-
ing. This information may be essential for the survival of 
species and maintaining ecological balance. For example, 
biologists use population trends to investigate the effect 
of environmental factors, such as the impact of human 
activity on a species’ population in some area/region.

Open Access

Animal Biotelemetry

*Correspondence:  c.padubidri@cyens.org.cy
2 CYENS Center of Excellence, Nicosia, Cyprus
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6175-7723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40317-021-00247-x&domain=pdf


Page 2 of 10Padubidri et al. Anim Biotelemetry            (2021) 9:27 

The Steller (or northern) sea lion (SSL; Eumetopias 
jubatus), the largest member of the family Otariidae, 
experienced a widespread population decline. The causes 
for the decline are likely multi-factorial and include a 
combination of anthropogenic factors, like commercial 
fishing, commercial hunting, and natural factors like 
environmental changes, pollution, disease, and natural 
fluctuation [5]. Environmental change and commercial 
fishing are believed to be the most probable links to the 
decline [6]. The Alaskan sea lion population has been 
reduced to a small fraction of earlier levels resulting 
in the species being listed as threatened under the U.S. 
Endangered Species Act(ESA) [7] in November 1990; the 
western stock was changed to endangered in l997 [6]. A 
similar trend can be seen in other wildlife. The survey 
conducted in 18 African countries with historical data 
showed a decrease in the population of African bush 
elephant (Loxodonta africana) by an estimated 144,000 
between 2007 and 2014, and the population was shrink-
ing by 8% per year continent-wide, primarily due to 
poaching [8]. Many conservation efforts have been per-
formed to restore the wildlife population. The National 
Marine Fisheries Service (NMFS) is one such organiza-
tion working towards marine animal conservation in the 
USA. NMFS conducts annual aerial surveys to estimate 
the Steller sea lion population [9]. This survey informa-
tion can be used to adapt and formulate local and global 
policies to protect and conserve wildlife.

The use of satellite imagery and aerial photography 
allows biologists to survey remote species across vast 
areas. However, manual counting methods based on 
human labeling are laborious, expensive, limited, logis-
tically challenging, etc. For example, it takes a team 
of biologists up to 4 months to count Steller sea lions 
from thousands of photographs collected each year by 
the NMFS [10]. Automated counting methods based on 
computer vision techniques may accelerate analyses of 
the animal census process via wildlife surveys and free up 
critical resources, allowing organizations to focus on the 
actual conservation of the animals.

In this paper, the use of deep learning (DL) to auto-
matically count the animals from aerial photography is 
considered in combination with the modern and prom-
ising technique of density maps [11, 12]. DL is a power-
ful computer vision technique demonstrating excellent 
performance for environmental monitoring [13–15]. DL 
extends machine learning (ML) by adding more “depth” 
(complexity) into the model, transforming the data using 
various functions that allow data representation in a hier-
archical way, through several abstraction levels. Com-
pared to traditional techniques, such as Support Vector 
Machines and Random Forests, DL has demonstrated 
enhanced performance in classification and counting 

computer vision-related problems [15]. A preliminary 
effort in this direction can be found in [16], where real 
and synthetic data were used together to count the 
number of houses from aerial photographs acquired by 
unmanned aerial vehicles (UAVs).

Related work
DL has been demonstrated as a promising technologi-
cal solution to the problem of counting entities in images 
[15]. DL models can be grouped into two categories 
based on their function: discriminative and generative 
[17]. Discriminative models are used for predictions/
classifications, whereas generative models are used for 
synthesis/generation of data similar to the input data set. 
The use of generative data to train DL models is promis-
ing, with early attempts in agriculture indicating positive 
outcomes [16]. Discriminative models, focused on pre-
dictions of the precise number of targets in an image, i.e., 
counting, are employed herein. Three annotation meth-
ods are explored in this work, as described below.

Counting via detection
In this method, a visual object detector is used to localize 
individual object instances in the image. Given the locali-
zation, counting becomes trivial. In this case, objects are 
annotated by a bounding box. Several methods [18–20] 
use detection based object counting. For instance, in 
[18], a sliding window detection and classification algo-
rithm was proposed to count Steller sea lions. However, 
counting via detection yields poor results when there is 
high occlusion among objects in the image, whereas the 
annotation of densely crowded images is computationally 
expensive.

Counting via image‑level regression
This method is based on image-level label regression. The 
images are directly fed to the Neural Network to learn a 
non-linear function to predict the count, making no need 
for additional labeling of the data. Hence, this method 
employs the least computationally expensive annotation 
technique. In [21], an accuracy of 91% is reported for a 
regression model used to count tomatoes. The model 
learns feature directly from the input image using regres-
sion and predicts the number of tomatoes in the image. 
However, this method cannot perform object localiza-
tion, hence cannot be used in cases, where the knowledge 
of the spatial distribution of objects is important.

Counting via Density Maps
In this method, a point corresponding to each object’s 
location in the image is marked and a density heat map is 
used for training the model. The spatial properties of the 
density map frame the scene information better than the 
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previous techniques, mitigating the problem of occlusion. 
The learning-to-count model of [22] introduces a count-
ing approach, which works by learning a linear map-
ping from local image features to object density maps. 
By properly training the DL model, one can estimate the 
object count by simply integrating over regions of the 
density map produced by the model. The same strategy is 
employed in [11, 12].

In [11], a modified Counting Convolutional Neural 
Network (Counting CNN) model, which is a combina-
tion of CCNN and ResNeXt models, is proposed for esti-
mating pig density in livestock farms. The CNN model 
does not depend on foreground segmentation as it takes 
only appearance information into consideration. A simi-
lar proposal is the DisCountNet model, a two-stage net-
work (DiscNet and CountNet) that uses theories from 
both detection and density-map networks [12]. Initially, 
the DiscNet model performs a coarse detection of the 
patches of the images from a larger input image contain-
ing dense objects. The CountNet model then operates on 
the dense regions of the sparse matrix to generate a den-
sity map, which provides fine locations and count predic-
tions on densities of objects. This method requires prior 
information about the data set to appropriately set opera-
tional parameters.

Our contribution
In this work, different data sets are used to count animals 
using a DL approach based on density maps: a) the Stel-
ler sea lions data set [10] and b) the Aerial Elephant data 
set [23]. This paper is not the first targeting wild animal 
counting. The novelty of this work lies in the approach of 
counting animals via density maps, which has important 
differences in implementation than the use of this tech-
nique in related work [11, 12] (see “Methods” and “Pro-
posed approach” sections). Moreover, our data sets have 
unique challenges due to the high overlapping and occlu-
sion observed. For example, female sea lions frequently 
cluster together with their pups during their everyday 
life (see Fig.  2b). The same goes to female African ele-
phants with their calves. By employing the UNet model, 
an encoder–decoder architecture for animal counting 
from aerial images [24], we used semantic segmentation 
for density estimation without pixel-level annotation, 
improving the counting and localization performance 
with minimum annotation, demonstrating better results 
than the state-of-art models and research works.

Methods
Data sets
Steller sea lion data set
The Steller sea lion data set from the Kaggle competition 
[10] consists of a training and test folder. The training 

images were manually annotated with a dot by human 
annotators. For the purpose of this work, we considered 
only the annotated training images. The training image 
folder had 948 aerial images comprising different catego-
ries and a number of SSLs. The SSL categories have been 
defined based on age and sex: (a) adult males, (b) sub-
adult males, (c) adult females, (d) juveniles, and (e) pups. 
Each image was provided with two versions: the original 
and a dot-annotated image, with dots approximately at 
the center of each SSL. We assumed that the dot-anno-
tation provided is without any error. The average image 
resolution was approximately 5000× 3000 with 3 chan-
nels, each image roughly occupying 5 MB.

The Aerial Elephant Data Set
The Aerial Elephant Data Set [23] is a collection of aer-
ial images of African bush elephants, aiming to promote 
research on animal detection under real-world condi-
tions. The images were gathered using Canon 6D con-
sumer-oriented digital single-lens reflex cameras, which 
were mounted in a SkyReach BushCat light sport aircraft 
by means of a purpose-built frame [25]. To maximize the 
width of the image strip underneath the plane, the frame 
was built to accommodate three cameras. One camera 
was oriented such that the lens was pointing straight 
down centered between the other two cameras tilted to 
the left and right. The data set consists of 2,074 images 
containing a total of 15,581 African bush elephants in 
their natural habitats, imaged with a consistent method-
ology over a range of background types, resolutions, and 
times-of-day. These images were acquired over the course 
of 8 separate campaigns in different physical environ-
ments. The images have a resolution of ≈ 5000× 3000 
with 3 channels. The resolution of the images varied 
between 2.4 and 13 cm/pixel. The data set represents 
both dry- and wet-season backgrounds in a variety of 
landscapes, captured over the full day from sunrise to 
sunset.

Proposed approach
A semantic segmentation end-to-end model inspired 
by the UNet DL model [24] was used. The model was 
designed to produce density maps, containing precise 
locations of the animals from input images. The princi-
pal disadvantage of semantic segmentation algorithms is 
the tedious requirement of pixel-level annotation during 
training. We used dot annotation, i.e., placing dots at the 
center of each animal, which largely reduces the annota-
tion overhead. Significant improvements in counting and 
localization performance are gained with only minimum 
annotation required.

The input image is fed to the proposed architecture, 
where the Encoder part of the architecture generates 
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a high dimensional feature vector1. Then, the Decoder 
semantically projects the features learned by the encoder 
onto the pixel space, generating a corresponding density 
distribution for the given image. This density map is used 
to get the number of objects by simply integrating the 
density distribution over the region (see “Counting from 
density map” section) (Fig. 1).

Data preparation
Both data sets were split into training and testing images 
with a ratio of 80  :  20, respectively. For the SSLs’ data 
set, the first 800 images were used for training, and the 
remaining 148 were used as test images to evaluate the 
model’s performance. For the elephants’ data set, 1649 
images were used for training, while 452 images were 
used for testing.

We observed that the large image resolution of the 
SSLs’ data set gave better details about the animals than 
the elephants one (Fig.  2a). In both data sets, the num-
ber of animals in each image varied significantly and 

were grouped closely together, leaving large portions of 
the image with background only. To address this issue 
and accelerate the training process, some image pre-pro-
cessing operations were performed (Fig. 2). Images were 
cropped to remove sections containing only background 
information (Fig.  2b). A sliding window-based cropping 
with 10% overlap was employed to produce images of 
size 256× 256 (Fig. 2c). Images that did not contain any 
animal were manually discarded from the training set 
(Fig. 2c, crops 3 and 4).

The number of SSLs per image in the pre-processed 
images ranged from 1−−80 with mean µ = 4 and stand-
ard deviation σ = 6 , whereas the number of elephants 
per image varied between 1and12 with mean µ = 0.67 
and standard deviation σ = 1.12.

Implementation
We tried to avoid some pitfalls observed in related 
work, where information loss occurred due to down-
sampling and reduction of spatial resolution in higher 

Fig. 1  Block Diagram: The proposed method for SSL counting. Given an aerial image, we feed it into our DL architecture to produce a density map, 
from which we are able to estimate the number of SSLs present in the image

Fig. 2  Data Pre-processing Workflow a The original image with dimension (3328X4992). b Background cropped image. c Sliding window-based 
cropped images of size (256X256)
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layers of the DL models employed. Specifically, the 
feed-forward regression networks in [11, 26] compress 
and encode images into smaller representation vectors, 
while the combination of CCNN and ResNeXt models in 
[11] takes an input image of size 72× 72 and produces 
an output density map of size 18× 18 . To overcome 
this potential information loss, the UNet model was 
employed as the learning model [24]. UNet is a CNN 
architecture originally proposed for biomedical image 
segmentation, based on an encoder–decoder-type net-
work. The name of the architecture is derived from its 
distinctive ‘U’ shape. The down-sampling/encoder block 
encodes the input images into feature representations at 
multiple level, capturing the context information from 
the image. The up-sampling/decoder block decodes the 
feature maps learned from the encoder. The symmet-
ric up-sampling path enables precise localization of the 
objects in the image.

In the proposed work, the down-sampling (contract-
ing) path repeatedly applies a block comprised of two 
3× 3 convolutions, followed by batch-normalization, 
a Rectified Linear Unit (ReLU) activation and a 2× 2 
max-pooling layer of stride 2. The number of feature 
map channels in the contracting path is doubled at 
each down-sampling block. Similarly, the up-sampling 
(expansive) path replaces the max-pooling layers with 
up-sampling layers that apply nearest-neighbor interpo-
lation. Analogous to the contracting path, the number 
of feature map channels is halved at each up-sampling 
block. The feature maps of the up-sampling path are 
concatenated with the feature maps of the contracting 
path. Finally, the output layer results by applying a 1× 1 
convolution.

Loss function
In accordance with the performance metrics used in 
similar previous studies, the Root Mean Square Error 
(RMSE) loss between the predicted density map ( D̂ ) and 
the true density map (D) is employed in this paper. RMSE 
is the square root of the average of squared differences 
between predicted and actual count, defined as

Counting from density map
For training, a set of annotated images was used, where 
all animals had been marked with dots placed approxi-
mately at their center of mass. The ground truth density 
map Dx , for an image x, is defined as a sum of Gaussian 
functions centered at the 2D coordinates p of each dot:

(1)L =

√

√

√

√

1

N

N
∑

n=1

(D̂ − D)2

where Ax is the set of 2D-point animal annotations for 
the image x and N (p,

∑

) represents an isotropic 2D 
Gaussian function with a mean p and a covariance matrix 
∑

 . Covariance is modeled as 
∑

=σ 2I , with I being the 
identity matrix and σ is a parameter linked to the spread 
of the distribution. For our application, the sigma value 
was selected based on the average pixel width at the 
center of the animal as derived from the input data sets 
(see “Datasets” section). A σ = 25 was selected for SSL 
and σ = 10 for elephant.

The density map represents the distribution. Given the 
density map Dx , the total count Nx can be obtained by 
summing up the pixel values of Dx as shown below:

In summary, the model predicts the distribution density 
map, while the total number of objects of interest (i.e., 
animals’ counting) is obtained via the integration of the 
density map over the image space.

Performance metrics
Mean Absolute Error (MAE) and RMSE were the met-
rics employed for evaluating the model’s performance, 
in respect to the accuracy of the model’s animal count-
ing. The MAE is the average of the absolute differences 
between predicted and actual count, i.e., it measures the 
average magnitude of the errors in a set of predictions. 
The MAE characterizes the accuracy of the algorithm, 
while the RMSE represents the degree of dispersion of 
the error. The mathematical representations of MAE and 
RMSE are provided below:

where yi is the actual animal count in the ith image, ŷi is 
the predicted animal count in the ith image and N is the 
total number of test images.

Results
To assess the performance of the proposed network 
architecture, we employed two different models and 
trained: Model-1, i.e., a basic UNet without any fea-
ture extractor and Model-2, i.e., a UNet with the 
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)
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(5)RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2.
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EfficientNet-B5 feature extractor [27]. EfficientNet is a 
CNN developed by Google, characterized by high accu-
racy and computational efficiency. Model-2 was initial-
ized by pre-trained weights based on the Imagenet data 
set [28]. All the parameters were optimized using the 
Adam optimizer with a learning rate of 0.001.

Training
An Nvidia GeForce RTX 2060 GPU was used for train-
ing, with a batch size of 8. Model-1 (without feature 
extractor) was trained for 7 h and Model-2 (with a fea-
ture extractor) for 17 h. Based on the model’s perfor-
mance on the validation set, the early stopping technique 
was applied to avoid over-fitting. Model-2, which used 

pre-trained weights and thus some prior relevant infor-
mation, converged faster than Model-1 (Fig. 3).

Model evaluation: testing
Table  1 shows the model’s performance on the test-
ing images (see “Data preparation” section). Model-2, 
with 37M parameters, outperformed Model-1 with 15M 
parameters in terms of the counting prediction, for both 
the SSL and elephants’ data sets. Figure  4 shows the 
actual vs. predicted number of animals. The diagonal red 
line represents the case of no errors (i.e., perfect predic-
tion). The closer the points are to the line, the better the 
prediction.

Fig. 3  Training loss curve: training loss function gradient vs. iteration curve for Basic UNet (Model-1) and UNet with EfficientNet-B5 feature extractor 
architecture (Model-2)

Table 1  Performance comparison of Model-1, Model-2 on test data set

Model Feature extractor SSL Elephant Parameters

RMSE MAE RMSE MAE

Model-2 Eff.Net-B5 1.88 1.09 0.60 0.34 ≈37M

Model-1 No 5.57 3.54 1.01 0.53 ≈14M

Fig. 4  Visualizing actual vs. predicted count: scatter plot representing ground-truth count and predicted count. The diagonal red line indicate the 
zero error predictions. a SSL predictions, b African Elephant predictions
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Discussion
We present a method for counting animals in images by 
calculating the probability of each pixel showing a part of 
an animal and then integrating over these probabilities 
to predict the number of animals. This approach is fun-
damentally different from the prediction of animals with 
one-shot identification. Our approach assigns a prob-
ability of animal occurrence to each pixel and does not 
solely rely on increased activation detection to infer that 
an animal is present at a specific image location. While 
our approach is not advantageous when animals are scat-
tered and nicely captured in the image, it provides sig-
nificant advantages when animals are very close to each 
other and have overlapping figures. It is also advanta-
geous in cases when the animals are not completely vis-
ible due to occlusion caused by surrounding objects like 
trees and rocks or other animals and when the size and 
shape of the animals vary greatly. For example, models 
that rely on increased output values’ detection to count 
animals suffer from substantial errors when dealing with 
over-sized or undersized animals. They also tend to mis-
count the animals when there is an occlusion or when the 
animals are very close to each other. Assigning a prob-
ability to the pixels adds awareness of the content of 
neighboring pixels. Because probabilities in a local den-
sity map are constrained by probability laws, the model is 
less prone to over-counting and under-counting, because 
each candidate animal identification must be converted 
to a distribution reflecting the content of the surround-
ing pixels. Even in the case of overlapping animal figures, 
the distributions get accumulated through the integra-
tion of probability maps that maintain meaningful scale 
and representation ability. On the contrary, one-shot 
models accumulate nearby high activations in an uncon-
trolled and unscaled manner, resulting in worse results 
when animals are very close to each other or vary in size. 
Such models often apply a smoothing operation on their 
results to avoid such problems, which is a less proper way 
to maintain a sense of scale than applying local density 
maps. Furthermore, these operations tend to mitigate the 
over-counting problem, but reinforce under-counting, 
because they do not consider local animal features.

The solution presented here made use of the Kaggle 
competition data set, but was not submitted to that 

competition. To verify the accuracy of the proposed 
model, we compared it with two different architectures: 
(a) the SSL Kaggle competition winning regression 
model [29] (named Model-K) and (b) Count-ception 
[30], a counting approach based on Inception mod-
ules and a fully convolutional network. Both models 
were trained exactly with the same training images and 
tested on the same test images. Table  2 shows a com-
parison of the RMSE and MAE scores for actual and 
predicted counts obtained by Model-2 (used in this 
paper) and the scores obtained by Model-K and Count-
ception, using the same testing data sets.

Comparison with Model‑K
The Model-K architecture is a regression model based 
on VGG16 without the feature extractor on top. The 
output layer was flattened and given as input to 2 fully 
connected (FC) layers with linear output. The regres-
sion model was designed to predict classwise (five 
categories) count. To compare it with the proposed 
solution, we modify the model by connecting the out-
put layer with a fully connected one output neuron. 
Model-K was initialized with pre-trained Imagenet 
weights and then trained using our training data set 
with a Stochastic Gradient Descent (SGD) optimizer 
and an MSE loss function. The proposed Model-2 
with EfficientNet feature extractor reached an RMSE 
value of 1.88 and 0.60 for the SLL and elephants’ data 
sets, respectively, performing better than the Model-K 
with an RMSE of 2.17 and 0.81 for SSL and elephants’ 
data set, respectively (Table  2). The Kaggle-winning 
Model-K gave a better classwise count (for SSL count-
ing competition) but the proposed Model-2 was able to 
detect more animals and predict more accurate overall 
counting.

Comparison with count‑ception
The Count-ception network [30] uses Inception modules 
to build a network for counting objects in an image. The 
model applies a fully convolutional architecture, and it 
does not use any pooling layers to retain as much infor-
mation as possible. After each convolutional layer, batch 

Table 2  Performance comparison of Model-2, Model-K, and Count-ception

Model Feature extractor SSL Elephant Parameters

RMSE MAE RMSE MAE

Model-2 Eff.Net-B5 1.88 1.09 0.60 0.34 ≈37M

Model-K VGG 2.17 1.43 0.81 0.43 ≈48M

Count-ception No 5.57 3.54 1.59 0.84 ≈14M
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normalization and leaky ReLU activation are applied 
for speeding up convergence. The model takes an input 
image and outputs a prediction map. The predicted count 
is calculated using the following formula:

where F(I) is the predicted map for the image I and 
r = 32 is the proposed receptive field size. Using our 
testing data set, Count-ception scored an RMSE value of 
5.57 and 1.59 for SSL and elephants’ data set, respectively 
(Table 2). Count-ception had a better counting accuracy 
for images having less overlap between objects (SSLs 
and African elephants), but the accuracy largely dropped 
when the overlap was high, i.e., when the animals were 
lying close together and/or close to the image bound-
ary. The models proposed in this paper (i.e., Model-1 and 
Model-2), identified objects lying close to the boundaries 
more efficiently than Count-ception.

Visualization
Figure  5 shows 6 test images together with their actual 
and predicted density maps, as well as the total count. 
Images [a–b] are examples, where the difference between 
the actual and predicted count is small. In these images, 
Model-2 is not heavily affected by differences in illumi-
nation, occlusion, and overlapping. When animals clus-
ter close to each other, the density maps superimpose. 
The resultant pixel value will be the sum of each pixel in 
the density maps, which greatly helps to overcome the 
overlapping issues. The model was able to perform well 

(6)count =

∑

x,y F(I)

r2

despite challenging conditions such as the presence of 
water and complex background information.

Images [c–d] show examples of a noticeable difference 
between the true and predicted counts. The main source 
of error in the SSL data set was attributed to juveniles, 
and pups being inherently difficult to detect because of 
their small size compared to other SSL types. Pups look 
like rocks in the background Fig. 6a and tend to be closer 
to female SSLs (most likely their mothers), which makes 
their detection difficult Fig. 6b. Similarly, elephant calves 
were comparably smaller Fig. 6c, and hidden by tree can-
opy  Fig.  6d, were difficult to detect using the proposed 
model.

Conclusion
We proposed a method for automating animal census 
from aerial photography using deep learning together 
with density maps. The deep learning model is trained 
with minimal effort, using dot annotations placed on the 
centers of the animals as depicted on the images. The 
UNet semantic segmentation model is proposed, due 
to its high accuracy in segmentation-related computer 
vision problems and the relatively low computational 
cost. Using EfficientNet as a feature extractor architec-
ture, lower RMSE values were achieved, based on data 
sets which included a variety of background complexi-
ties, illumination conditions and animal densities as 
well as high occlusion among the animals. The proposed 
method would help biologists survey the animals from 
images at a higher rate and accuracy with less resource, 
allowing them to focus on the conservation of animals.

Fig. 5  Sample outputs: the ground-truth density map and predicted density maps for Model-2 with corresponding animal count for test images. 
From left to Right: Predicted Density Map; Ground-Truth Density Map; and Input Image
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The proposed method performed very well in the 
counting prediction problem, with a relatively low num-
ber of training parameters and minimal annotation. The 
principal sources of error were the generally high occlu-
sion observed and the fact that small-sized animals were 
sometimes almost identical with background elements of 
the image. A comparison with other state-of-art models 
indicated that the method proposed in this paper per-
formed better at the animal counting task. The evaluation 
of the model using two different data sets indicates that 
the proposed solution could be extended for counting 
other species’ populations at large scale and at a fast pace, 
using remote sensing techniques such as aerial photog-
raphy. The use of satellite/aerial images allows surveying 
remote species across vast areas. The proposed method 
will primarily benefit the biologging community with a 
faster and easier animal survey.

Future work
The authors will focus their future efforts on improving 
the detection accuracy of Model-2. Various optimiza-
tion techniques will be considered and the generation 
of synthetic data will be investigated, especially to gen-
erate images of animals that are occluded and animals 
that look almost identical to their background. Finally, 
non-isometric Gaussian functions will be used to 
improve the alignment between the animals’ positions 
and their corresponding density maps.

Abbreviations
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