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TELEMETRY CASE REPORT

First insights into the movements 
and vertical habitat use of blue marlin (Makaira 
nigricans) in the eastern North Atlantic
Carla Freitas1,2*  , Mafalda Freitas1,3, Samantha Andrzejaczek4, Jonathan J. Dale4, Wayne Whippen5 and 
Barbara A. Block4 

Abstract 

Background:  The blue marlin (Makaira nigricans) is a vulnerable migratory fish inhabiting tropical and subtropical 
pelagic waters of the Atlantic, Pacific and Indian Oceans. The biology and spatial ecology of the species in the eastern 
North Atlantic is poorly understood, despite being exploited in the region by recreational and commercial fisheries. 
Here, we present results of the first study to use pop-up satellite archival tags to track blue marlin off Madeira, Portu-
gal (n = 3) and obtain insights into the movements and habitat use of the species within the eastern North Atlantic.

Results:  Blue marlin were tracked for 24 to 83 days, moving from Madeira to pelagic waters off the Canary Islands, 
Cape Verde Islands, as well as along the continental shelf brake of Europe and Africa. Blue marlin spent 71% of their 
time in the upper 5 m and 89% in the upper 50 m, though all individuals dived to depths over 200 m (maximum: 
336 m). Temperature at depth ranged from 12 to 28.6 °C, but the greatest proportion of time was spent in waters 
between 20 and 26 °C. Detailed depth and temperature time-series data were obtained from a tag recovered eight 
years later. These data show clear diel differences in depth use, involving consistent use of the surface at night and 
deeper dive activity during the day, predominately to depths greater than 50 m.

Conclusions:  The highly migratory patterns of this vulnerable species in the eastern North Atlantic highlights the 
need for both local and international conservation measures. Depth-use patterns, particularly the high usage of the 
upper 5 m of the water column, make them susceptible to surface longline fisheries.
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Background
Marine top predators provide important functions and 
services in oceanic and coastal ecosystems, including 
regulating food webs, cycling nutrients and supporting 
fisheries and tourism [1, 2]. Such species are commonly 
characterized by large body size and late sexual maturity, 
making them vulnerable to demographic perturbations 
[3]. Despite their important ecological, economic, and 

cultural value, numerous marine top predators have been 
threatened by overexploitation in industrial fisheries, 
incidental catches in artisanal and local fisheries, climate 
change, pollution and habitat loss, which together have 
caused population declines and local extinctions [4, 5]. 
Because anthropogenic pressure and climate shifts vary 
both spatially and temporally, improved understanding of 
the spatial ecology of marine top predators is crucial for 
ensuring their conservation and preventing loss of biodi-
versity and ecosystem services.

The blue marlin (Makaira nigricans), a billfish of the 
family Istiophoridae, is a large pelagic fish inhabiting 
tropical and subtropical waters of the Atlantic, Pacific 
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and Indian Oceans [6]. The species is highly migratory [7, 
8], forming a single Atlantic-wide genetic stock [9, 10], as 
well as a single genetic population throughout the Pacific 
Ocean [11]. The blue marlin has been exploited exten-
sively by recreational and commercial fisheries through-
out their range [12–16]. Population assessments indicate 
that the Atlantic stock is overfished, and biomass levels 
are 40% below the level that would support a maximum 
sustained yield [17, 18]. The species is currently classi-
fied as ‘Vulnerable’ on the IUCN (International Union for 
Conservation of Nature) Red List of threatened species, 
with a declining population trend [19].

Despite ocean-wide connectivity, mark-recapture 
records and satellite tagging suggest that blue marlins 
may spend a high proportion of time in subregions of 
their stock range [8, 20, 21]. The biology and spatial ecol-
ogy of blue marlin in the eastern north (NE) Atlantic is 
poorly understood, particularly in the waters surround-
ing Madeira, Portugal, where the species has been fished 
by recreational fishermen since the 1970s [22]. The fish-
ing season for blue marlin in Madeira and nearby regions 
of the Azores, Southern Portugal, Canary Islands and 
Cape Verde Islands spans from May to September [23–
25]. The distribution of the species outside the summer 
fishing season is unknown, but is likely to include tropi-
cal areas further south, given the affinity of the species to 
warm water above 24 °C [21, 26–29]. Recreational fisher-
ies in Madeira and other regions are primarily based on 
catch and release [25] and post-release mortality is gen-
erally low (~ 5%) [30]. Conversely, incidental catches on 
longline fisheries, targeting tuna and swordfish, account 
for the majority of the fishing mortality of Atlantic blue 
marlin [18, 31]. Recent development of a surface drifting 
longline fishery, targeting the swordfish Xiphias gladius 
and other pelagic fish in some areas of the NE Atlantic 
[32], has generated concerns about potential interactions 
with vulnerable pelagic species, such as sea turtles [33, 
34] and blue marlin. Studies from other regions show that 
blue marlin spend most of the time in the first few meters 
of the water column [21, 26, 27], therefore, increasing 
their susceptibility to bycatch by surface-based fishing 
gears [18]. Individuals have also been recorded to per-
form diel vertical movement patterns, remaining very 
close to the surface at night, while oscillating between 

the surface and deeper waters (> 100 m) during the day, 
presumably driven by a visually based foraging strat-
egy [26, 28, 35]. These patterns, however, can be highly 
variable between individuals and vary depending on the 
temperature and dissolved oxygen levels of the surface 
mixed layer [21, 36–38]. So far, no telemetry studies have 
tracked the movements and vertical habitat use of blue 
marlin in the NE Atlantic. Filling this knowledge gap is 
crucial to understand blue marlin ecology and evaluate 
potential interactions with fisheries or other anthropo-
genic activities. In this study we used pop-up satellite 
archival tags to monitor the movements and patterns 
of depth and temperature utilization of blue marlin off 
Madeira and adjacent regions, obtaining the first insights 
into their spatial ecology in the region.

Methods
Biotelemetry
Three blue marlin were tagged with pop-up satellite 
archival tags (PSATs) off the south coast of Madeira 
Island, Portugal in August 2012 (Table 1, Fig. 1). PSATs 
were of type MK10 from Wildlife Computers (Redmond, 
WA, USA), leadered with 18–20 cm monofilament fish-
ing line (136 kg test), which was protected by a layer of 
braided Kevlar surrounded by shrink-wrap to prevent 
abrasion. One end of the leader was affixed to the tag and 
the other end had a 6 × 1.3-cm titanium dart attached 
with stainless steel crimps.

Tagging was performed by sportfish anglers as 
part of the International Great Marlin Race (IGMR) 
organized by the International Game Fish Associa-
tion (IGFA) in collaboration with Stanford University 
(https://​igfa.​org/​the-​great-​marlin-​race/). Blue marlin 
were caught on rod and reel with artificial baits, trolled 
in spreads of four or five lures off sport fishing vessels 
at 7—10 knots. Once a blue marlin was caught on hook 
and line, the fish was brought alongside the boat for 
tagging. Using an aluminum tagging pole, the tag was 
inserted into the dorsal musculature of the marlin just 
below and behind the leading edge of the dorsal fin. 
Once the tag was affixed, the hook was removed from 
the blue marlin’s mouth and the fish released. Fish 
weight was visually estimated during tagging by expe-
rienced recreational anglers.

Table 1  Summary of tracking records of three blue marlin (Makaira nigricans) tagged in Madeira, Portugal in August 2012

Fish ID Tag ID Weight (kg) Deployment date Pop-up date Track 
duration 
(days)

Max depth (m) Min temp (°C) Max temp (°C)

BM1 11A0721 320 2012–08-03 2012–08-27 24 224 15 25.2

BM2 11A0717 227 2012–08-10 2012–11-01 83 302.7 14.3 28.6

BM3 11A0724 272 2012–08-23 2012–11-07 76 336 12 27.0

https://igfa.org/the-great-marlin-race/
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The tags were programmed to record temperature, 
depth and light at 1-min intervals. Data were recorded 
on the tag until either the tag reached its programmed 
120-day deployment period, or it detected no change 
in depth greater than ± 2.5  m for a period of 96  h, 
indicating that the tag had either pulled free from the 
fish or that the fish had ceased all activity. Once one 
of these conditions was met, the tag passed an elec-
tric current through the corroding pin attaching it to 
the leader, causing it to be released and brought to 
the surface. Upon surfacing, the tag transmitted for 
a period of 7–10 days, relaying the tag location and a 
summary of its stored data through the Argos satellite 
system. Summary data were provided for daily (24  h) 
blocks that included: (i) time-at depth (TAD), i.e., the 
proportion of time spent within 12 depth bins (0–5, 
5–10, 10–25, 25–50, 50–100, 100–150, 150–200, 200–
250, 250–300, 300–500, 500–1000 and > 1000  m); (ii) 
time-at-temperature (TAT), i.e., the proportion of time 
spent within 12 temperature bins (< 8, 8–10, 10–12, 
12–14, 14–16, 16–18, 18–20, 20–22, 22–24, 24–26, 
26–28 and > 28  °C), (iii) maximum depth, (iv) mean 
sea surface temperature (SST), i.e., temperature at 
1 m depth; and (v) light levels. One tag was physically 
recovered, allowing the whole archival data set (1-min 
sampling interval) to be downloaded.

Data analysis
Data received from the PSATs were processed using the 
Wildlife Computers software (DAP Processor; Wildlife 

Computers, Redmond, WA, USA), which provided 
daily summaries of time-at-depth, time-at-temperature, 
max depth, mean SST and light level. Daily geolocation 
estimates were generated for each individual using the 
Wildlife Computers GPE3 software, a discretized hid-
den Markov model that requires observations of light 
level, SST, and maximum swimming depth as inputs [39]. 
Pop-up locations were estimated by the  Argos System 
using Doppler shift. Only Argos messages with location 
classes 2 and 3 (accuracy 500 and 250  m, respectively) 
were used to determine the pop-up location of each fish. 
The straight-line distance between tagging and pop-up 
locations were determined using great circle distance. 
Probability density surfaces of 50%, 75% and 95% were 
also calculated for each individual by averaging the 24-h 
probability density surfaces generated by GPE3 and resa-
mpling the 0.25° GPE3 grid at a resolution of 0.0125° with 
bilinear interpolation using the packages ‘ncdf ’ and ‘ras-
ter’ in the R statistical environment [40]. The resulting 
tracks and probability density surfaces were subsequently 
plotted using the R packages ‘ggmap’ and ‘ggplot2’.

Depth and temperature data were used to investigate 
the vertical distribution and thermal preference of blue 
marlin in the NE Atlantic. The proportion of time spent 
in each depth and temperature bin was plotted using 
ggplot2. For fine-scale data recovered from a physical 
tag, the R package ‘suncalc’ was used to split the data 
into diel phases by determining times of sunrise and sun-
set at each daily geolocation estimate [41]. Igor Pro ver. 

Fig. 1  Estimated most probable tracks for three blue marlin, BM1 (A), BM2 (B) and BM3 (C), equipped with pop-up satellite archival tags off 
Madeira, Portugal in August 2012. Circles are daily estimates of location derived from transmitted light, depth and temperature data and are 
coloured by month and deployment and pop-up locations. Inset map indicates location of study region. Polygons represent the merged probability 
density surfaces for each PSAT, with light to dark shades representing 95%, 75% and 50% probability contours. Note that the horizontal scale differs 
between maps
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8.0.3.3 software (Wavemetrics, Inc. Lake Oswego, USA) 
was used to plot depth profiles and ambient temperature 
data.

Results
Tagged blue marlin were tracked for 24 to 83  days and 
together collected 183  days of tracking data (Table  1). 
All three individuals were tagged in the same year and 
month (August 2012) and in the same site located off 
the south coast of Madeira (Table  1). Pop-up locations 
were determined with accuracies of 250  m, 500  m and 
250 m for individuals BM1, BM2 and BM3, respectively. 
Most-probable tracks, probability surfaces and pop-up 
locations indicated that the tracked fish used pelagic 
waters off the archipelagos of Madeira, Canary Islands 
and Cape Verde, all located outside the northwestern 
coast of Africa, as well as along the continental shelf 
brake of Europe and Africa (Fig.  1). Individuals tended 
to move southwards in autumn, notably in October and 
November (Fig.  1). The maximum straight-line distance 
from tagging to pop-up location was recorded by BM2, 
with 2050  km moved in 83  days, representing an aver-
age displacement of 24.7  km/day (Fig.  1). The tag from 
this individual popped up near Cape Verde in November 
2012, and was found on a beach in Eleuthera, Bahamas, 
in February 2021, enabling the full archival record to be 
downloaded.

All three tagged blue marlin spent the majority of their 
time (89%) in the top 50  m of the water column, but 
71.6% of that time was in the top 5 m (Fig. 2). Individuals 
spent a small proportion of time in mesopelagic waters 
(> 200  m), with a maximum depth of 336  m recorded 
by BM3 (Table  1). Ambient temperatures ranged from 
12 to 28.6  °C (Table  1, Fig.  3), but the majority of time 
was spent in water ranging from 20 to 26  °C (Fig.  2). 
BM3 spent more time in the lower temperature range at 
20–22  °C (29.8%) than the other two fish (BM1: 7.24%, 
BM2: 1.9%), coinciding with its movements into higher 
latitude waters (Figs. 1, 2, 3).

The PSAT tag from BM2, recovered in the Bahamas 
in 2021, provided access to the entire fine-scale data set, 
i.e., depth and temperature time-series at a 1-min fre-
quency. These data revealed fine-scale patterns of diel 
vertical migration (DVM) throughout the deployment 
record for this individual (Figs. 4, 5). Mean depths (± SD) 
at day and night were 22.2 ± 43.6 and 3.0 ± 10.1  m, 
respectively. Notably, median depths did not differ 
between diel periods (day = 1.4  m, night = 0.8  m). Dur-
ing the night, this individual spent > 90% of the time in 
surface waters < 5  m with limited vertical movements, 
while during the day, surface movements were inter-
spersed with deeper dives to depths > 50 m (Figs. 4, 5). As 
autumn progressed and BM2 moved southwards (Fig. 1), 

SST increased from ~ 24 to 28  °C (Fig.  5). Median day-
time depth remained < 2 m until the last four days of the 
deployment, where median depths of 10.3, 19.3, 22.33 
and 27.3  m were recorded, coinciding with increased 
ambient water temperature both at the surface and at 
depth (Fig. 5). 

Discussion
This study collected valuable information on the move-
ments and habitat use of blue marlin in the NE Atlantic. 
Despite the low number of deployments, the tracked 
individuals accumulated 183  days of movement data in 
an Atlantic region which has not been previously stud-
ied. Blue marlin were tracked from Madeira to pelagic 
areas off the Canary Islands, Cape Verde and within the 
productive eastern boundary current off the African and 
European continental shelves. Individuals moved south-
wards in autumn, i.e., October and November, possibly 
reflecting a seasonal southward migration as a response 
to cooling sea temperatures further north. Our results 
demonstrate high mobility of the species across interna-
tional borders in the NE Atlantic during a period of less 
than 3 months, supporting the highly migratory nature 
of this species [7–9]. Animals moved up to 24.7 km/day, 
which aligns with displacement rates reported in previ-
ous studies in the Pacific and west Atlantic [27, 29, 42].

Diving behavior and water temperature preferences off 
Madeira were similar to those of blue marlin previously 
tagged with satellite and acoustic tags, demonstrating a 
preference for shallow (0–5  m) and warm (20–26  °C) 
waters [21, 26–29]. Blue marlin tagged in this study spent 
more than 70% of their time in the upper 5 m of the water 
column. The substantial use of surface waters is common 
to blue marlin in the western Atlantic and Pacific [26, 35, 
43] and is also common to other billfish species [36, 44]. 
This makes these fish particularly susceptible to inciden-
tal catches on surface-based fishing gear [26]. In the off-
shore banks around Madeira, surface longline fisheries 
that target swordfish operate mostly during autumn and 
winter [32]. This is well timed, as blue marlin are likely 
absent from these waters during winter. Still, catch sta-
tistics report dozen to hundreds of blue marlin catches 
by Portuguese and other European surface fishing fleets 
[18]. Time-series data downloaded from the recovered 
tag (BM2) revealed patterns of DVM, involving consist-
ent use of the surface at night and deeper dive activity 
during the day, predominately to depths greater than 
50 m. This may result in increased susceptibility to sur-
face fishing gear at night, particularly because surface 
longline fisheries off Madeira also concentrate their effort 
during the night [32].
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Fine-scale dive data from BM2 also showed deeper div-
ing activity during the day, a pattern previously reported 
for blue marlin in the west Atlantic and Pacific [26, 
28, 35]. These predators are likely using ambient light 
available during the day to locate prey at light-limited 
depths, where their morphological and physiological 
visual adaptations allow them to forage successfully [26, 
45, 46]. As temperatures at depth are much cooler than 
at the surface, however, fish may need to swim back to 

the surface to rewarm between dives, resulting in a pat-
tern of oscillatory diving during the day. Ambient sea 
temperature is important for the maintenance of mus-
cle activity in blue marlin, as they lack heat exchangers 
in the vascular system supplying blood to the swimming 
muscles and, therefore, do not have the ability to sus-
tain swimming muscle temperature significantly above 
water temperature, as do tunas [43]. Over the course of 
its track, BM2 moved approximately 2050  km SSW to 

Fig. 2  Percent time at depth (A–C) and percent time at temperature (D–F) for blue marlin BM1 (A, D), BM2 (B, E), and BM3 (C, F), tagged off 
Madeira in August 2012. Histograms for BM2 were made using 1-min time-series data retrieved from the recovered tag
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Cape Verde. Movements in this southern location coin-
cided with increasing daytime depths and warmer SSTs. 
The processes underlying this changed vertical behavior 
are difficult to disentangle but may be due to more suit-
able ambient temperatures at depth, so that this ecto-
thermic fish did not need to swim back to the surface 
to rewarm between deep dives. Alternatively, changes 
in diving behavior may have been driven by local prey 
availability. This generalist species is known to prey on a 
variety of epipelagic and demersal fish and cephalopods 
[47]. Increased sample size of satellite tag deployments is 
required to further investigate these hypotheses.

In addition to ambient temperature, other factors such 
as mixed-layer depths and dissolved oxygen availabil-
ity can limit the vertical and horizontal distribution of 
blue marlins [21, 36–38]. For instance, blue marlin in the 
eastern tropical Atlantic (south of Cape Verde) spend a 
greater proportion of time in near-surface waters when 
dissolved oxygen is limited at depth, likely increasing 

their vulnerability to overexploitation by surface gears 
[37, 38]. Dissolved oxygen levels are generally higher in 
waters around Madeira and Azores [37]; however, climate 
change may expand oxygen-limited zones. Understand-
ing environmental drivers of movements and habitat use 
is vital to predicting where and when a species is vulner-
able to fishing pressure, and how patterns may change 
with a changing climate, both of which are critical for 
effective management [43] and are, therefore, important 
factors to be investigated in future studies in this region.

Conclusions
This study provided important initial insights into the 
movements, depth use and environmental preference 
of blue marlin in the NE Atlantic. This type of informa-
tion is vital to understanding the biology and ecology of 
this apex predator, evaluating their vulnerability to fish-
ing pressure and climate change, and generating effective 
management strategies [48–50]. Southward movements 
during autumn are likely to reflect seasonal migration to 
avoid unfavorable cooling waters further north. Future 
climate change may allow the species to use the waters 
off Madeira year-round. The highly migratory behavior of 
the species in the NE Atlantic suggests the need for local 
and international management cooperation. Depth use 
patterns, namely, the high usage of the upper 5 m of the 
water column, make blue marlin susceptible to surface 
longline fisheries in the region. Future research, including 
an increase in tagging effort, with more tags and longer 
deployments, is needed to obtain a clearer picture of spa-
tial distribution and connectivity between areas within 
the NE Atlantic, and to identify areas of special conserva-
tion interest, such as foraging hotspots, spawning areas 
and migration corridors.

Fig. 3  Temperature and depth profiles for three blue marlin, BM1 (A), BM2 (B) and BM3 (C), tagged off Madeira in August 2012. Data for BM2 from 
archival data set. Black solid lines display isotherms

Fig. 4  Percent time at depth for blue marlin BM2 during day and 
night summarized from recovered archival tag data
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