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Environmental factors influencing detection 
efficiency of an acoustic telemetry array 
and consequences for data interpretation
Michael Long1,2*, Adrian Jordaan2 and Theodore Castro‑Santos3 

Abstract 

Background Acoustic telemetry is a commonly used technology to monitor animal occupancy and infer move‑
ment in aquatic environments. The information that acoustic telemetry provides is vital for spatial planning and 
management decisions concerning aquatic and coastal environments by characterizing behaviors and habitats such 
as spawning aggregations, migrations, corridors, and nurseries, among others. However, performance of acoustic 
telemetry equipment and resulting detection ranges and efficiencies can vary as a function of environmental condi‑
tions, leading to potentially biased interpretations of telemetry data. Here, we characterize variation in detection 
performance using an acoustic telemetry receiver array deployed in Wellfleet Harbor, Massachusetts, USA from 2015 
to 2017. The array was designed to study benthic invertebrate movements and provided an in situ opportunity to 
identify factors driving variation in detection probability.

Results The near‑shore location proximate to environmental monitoring allowed for a detailed examination of fac‑
tors influencing detection efficiency in a range‑testing experiment. Detection ranges varied from < 50 to 1,500 m and 
efficiencies varied from 0 to 100% within those detection ranges. Detection efficiency was affected by distance, wind 
speed and direction, wave height and direction, water temperature, water depth, and water quality.

Conclusions Performance of acoustic telemetry systems is strongly contingent on environmental conditions. Our 
study found that wind, waves, water temperature, water quality, and depth all affected performance to an extent that 
could seriously compromise a study if these effects were not taken into consideration. Other unmeasured factors 
may also be important, depending on the characteristics of each site. This information can help guide future telem‑
etry study designs by helping researchers anticipate the density of receivers required to achieve study objectives. 
Researchers can further refine and document the reliability of their data by incorporating continuously deployed 
range‑testing tags and prior knowledge on varying detection efficiency into movement and occupancy models.
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Background
Understanding animal habitat use and movements is 
necessary for a variety of applied uses, including spatial 
planning and other management decisions in aquatic and 
coastal environments. Information on movement and 
occupancy can be used to protect endangered and pro-
tected species, spawning aggregations, habitat corridors, 
nurseries, and important ecological areas [1–3]. Accurate 
and detailed information in these areas can assist man-
agement by helping to address conflicts between user 
groups and interested parties, and by promoting contin-
ued sustainability and productivity of natural resources 
[1–3].

Telemetry is used for a variety of purposes in aquatic 
and terrestrial environments, from understanding basic 
species movement ecology to addressing specific con-
servation needs, such as risk assessment and identify-
ing causes and solutions for habitat fragmentation [4, 5]. 
Initially conceived in the 1950s, techniques have contin-
ued to improve over past decades with radio, satellite, 
acoustic, and GPS technologies [6]. Radio, satellite, and 
GPS telemetry methods all rely on transmission of radio 
signals to land- or space-based receivers. Radio transmis-
sions are rapidly attenuated by water, making it challeng-
ing to employ in habitats greater than 6 meters (m) deep, 
and difficulties are even more problematic in saltwater 
environments [1]. However, acoustic signals can transmit 
well in these environments, making acoustic telemetry 
the preferred method in marine environments, as well as 
some freshwater systems.

Acoustic telemetry operates through uniquely coded 
transmitters (tags) that transmit ultrasonic pulses to 
allow identification of individuals [7, 8]. Tags transmit the 
coded pulses at fixed or random intervals and can remain 
active for several years depending on transmission rate, 
battery size, and power output. Receivers detect tag 
transmissions and store codes and detection times, along 
with other information specific to a given application 
such as tag depth, velocity, and temperature. Receivers 
are typically deployed at fixed locations to continuously 
monitor an area for extended periods of time. When 
receivers are fixed in place, they continuously collect data 
within a study area, providing a powerful framework for 
monitoring animal occupancy and movements [9, 10]. 
However, inference of occupancy or movement from 
the receiver data requires several assumptions about 
the probability of detections and the range over which 
the detections are being observed [11]. Typical telem-
etry analyses are based on the determination of presence 
and assumed absence of tagged animals at receivers due 
to the detections or lack of detections of transmission 
signals. If a tagged animal is detected on a receiver, it is 
assumed to be present within the area surrounding that 

receiver, and if an animal is not detected on a receiver, it 
is generally assumed to be absent [11–13], although some 
mark–recapture methods are able to account for missed 
detections [14]. This can lead to inaccurate interpretation 
of results, potentially leading to misinformed manage-
ment decisions [11, 12].

Although each transmission has an associated prob-
ability of detection (i.e., detection efficiency operates at 
the level of a single transmission), most analyses treat 
the detection of individuals collectively, aggregating data 
over periods of time and so allowing for a higher cumu-
lative probability of detection ([15, 16]. Although this 
issue has been recognized previously, and some of the 
associated risks have been described, the scope and scale 
of the problem of detection efficiency in acoustic telem-
etry remains poorly described, undermining reliability of 
existing data and its interpretation [11]. Throughout this 
paper we adopt the standard proposed by Kessel et  al. 
[11], whereby efficiency is measured in units of propor-
tion of transmissions that are successfully received and 
decoded, and rather than thinking of ‘range’ as a response 
variable we treat it as a covariate that affects detection 
efficiency.

Several physical processes reduce detection range and 
efficiency at a given distance, including wind, waves, 
rain, tide, depth, turbulence, dissolved gasses, thermo-
clines, etc. [7, 17, 18, 19]. Data and theory are limited, 
however, on the magnitude and relative importance of 
these effects, which vary widely among sites and appli-
cations; although performance appears to be robust in 
some pelagic situations, performance can be much more 
variable in near-shore and complex environments [11, 18, 
20]. Here, we describe dramatic variability in detection 
performance of an acoustic telemetry system in a shal-
low, tidally influenced marine environment where tagged 
animals occur in close proximity to the bottom, and ana-
lyze the effects of a suite of environmental conditions on 
detection efficiency.

Methods
Data collection
From the spring of 2015 through fall of 2017, an array 
of 20 telemetry receivers (Vemco VR2W) was deployed 
in Wellfleet Harbor, Massachusetts, USA (Fig.  1). Well-
fleet Harbor is a shallow sub-embayment off Cape Cod 
Bay with an intertidal range of up to 4 m. The bottom is 
almost entirely sand, mud, and shell, with minimal sub-
merged vegetation and very few glacial erratic boulders 
scattered throughout. Receiver mounting hardware and 
design were replicated from the methods of Castro-
Santos et al. [21]. Receivers were fixed to the bottom of 
1.5  m PVC poles and buoyed at the water surface with 
two 20 cm floats at the top of the PVC pole, resulting in a 
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receiver depth of approximately 1 m. This surface mount-
ing was necessary because of the large intertidal range in 

Wellfleet Harbor, and allowed for continuous coverage of 
the inundated portions of the harbor throughout the tidal 
cycle. The PVC float poles and receivers were anchored 
to 45 kg concrete anchors with sinking vertical lines that 
were 1.5 times as long as the high tide water depth at the 
location of each receiver station. This method allowed for 
some variability in position; at 10 m depth, the approxi-
mate maximum depth in the harbor, receiver location 
could deviate by a maximum radius of 11.2 m from the 
recorded central mooring location, or 2% of the a pri-
ori estimated detection range.

During the spring of 2015, preliminary mobile range 
testing on the  full Wellfleet Harbor receiver array was 
conducted on multiple occasions by towing a test tag 
throughout the array at 1–2  m/s behind both a motor-
boat and kayak. The location of the towed tag was 
recorded with a handheld GPS (Garmin eTrex 10) on the 
same synchronized clock as the deployed receivers. Large 
gaps in detection history of the test tag were present 
when it was theoretically in range of a receiver, thus more 
in-depth detection range and efficiency testing was con-
ducted during the spring and summer of 2016 using mul-
tiple fixed-location transmitters. Transmitters (Vemco 
V-13 high power tags, n = 11) were composed of 5 tags 
with precise fixed delay transmissions, and 6 non-precise 
fixed delay tags expected to drift in their transmission 
intervals by less than a second. Transmission intervals 

Fig. 1 Study area location on Cape Cod, Massachusetts, USA (A) and 
map of Wellfleet Harbor study area showing the 9 receiver stations, 11 
test tag deployment locations, and the environmental water quality 
monitoring station used for this range test study (B)

Table 1 Range of test tag distances and observed environmental conditions during acoustic range test sessions in Wellfleet Harbor, 
and observed environmental conditions throughout the full year of 2016 within the harbor

Variable Overall range test sessions
5/24/16–9/21/16

2016 (entire year)

Range Mean Median Standard  
Deviation

Range Mean Median Standard  
Deviation

Tag distance (meters) 50–1628 760 795 388 Not Applicable Not Appli‑
cable

Not Appli‑
cable

Not Applicable

Transmission interval (seconds) 90–115 101 100 8 Not Applicable Not Appli‑
cable

Not Appli‑
cable

Not Applicable

Wind speed (meters/second) 0.00–17.35 6.04 6.17 2.12 0–23.52 6.09 5.45 3.71

Wave height (meters) 0.08–0.83 0.38 0.36 0.10 0.04–3.60 0.53 0.39 0.43

Wind direction (°) 2–357 192 199 71 0–360 192 212 101

Dissolved oxygen (milligrams/
liter)

5.61–10.36 7.21 7.12 0.72 0.84–13.31 8.07 8.08 1.87

Turbidity (nephelometric 
turbidity units)

0.01–45.24 5.55 2.39 7.04 0.00–125.87 7.64 2.68 12.36

Water temperature (°Celsius) 11.43–23.97 21.00 21.28 1.78 1.00–30.38 16.55 16.79 7.13

Receiver water depth (mean 
low water, meters)

0.62–11.29 3.21 3.23 1.39 Not Applicable Not Appli‑
cable

Not Appli‑
cable

Not Applicable

Salinity (parts per thousand) 29.24–31.99 30.74 30.77 0.41 24.47–32.58 30.08 30.44 1.39

Wave direction (°) 0–359 211 216 86 0–359 208 239 125

Chlorophyll (micrograms/liter) 0.07–30.27 7.77 6.99 4.24 0.00–59.39 9.29 6.94 8.21
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had staggered start times and ranged from 90 to 115  s, 
with extended intervals selected to accommodate a mul-
tiple second transmission duration and avoid collisions.

Tags were attached approximately 0.1 m above a fluke 
anchor on sinking vertical lines with a fastener  system 
(Velcro), super glue adhesive (Pacer Technology Zap-
A-Gap adhesive and Zap Kicker accelerator), and two 
zip ties. Tags were placed outside of channels to ensure 
a continuous, uninterrupted line-of-site between tags 
and receivers; all tags and receivers used in the analysis 
were fully submerged at all tide levels (Table 1). A small 
float was attached to the sinking vertical line just above 
the tag to prevent the tag from sitting in the bottom sedi-
ment. This method was chosen to closely replicate how 
tags were attached to benthic invertebrates [22, 23], and 
should also provide data representative of benthically 
oriented vertebrates. Transmitters were directed upward 
and not obstructed other than the two zip ties and over-
lapping beads of super glue.

Range test tags were deployed in two multiday sessions 
in the spring of 2016 (May 24–26, and June 17–24) and 
one single-day session in the fall of 2016 (September 21; 
Table 1). Five tags were deployed in each of the two main 
spring sessions, with only 1 tag deployed in the single-day 
fall session. Tags were deployed at various set distances 
away from a single reference receiver; however, the high 
density of receivers in the harbor allowed for tags to be 
detected on multiple other receivers within each test 
session. Where this occurred, distances from neighbor-
ing receivers were measured and data were included in 
analyses.

Environmental conditions were collected during the 
range test sessions through external data sources (Fig. 1). 
Water temperature, salinity, water depth (including vari-
able tidal height), turbidity, chlorophyll, and dissolved 
oxygen data within Wellfleet Harbor were collected 
at 15  min intervals at a fixed station by the Barnstable 
County Cape Cod Cooperative Extension Water Qual-
ity Monitoring Program (www. capec odext ension. org). 
Wind speed and direction data were collected at 5  min 
intervals at the Hatch Beach WeatherFlow DataScope 
station on the shore of Cape Cod Bay south of Wellfleet 
Harbor (41.817° N -70.003° W; www. weath erflow. com). 
Wave height and direction data were collected at 30-min 
intervals in Cape Cod Bay at a buoy station maintained 
by the United States Geological Survey (USGS) (Wave-
rider  44090) within the National Oceanic and Atmos-
pheric Administration  (NOAA) National Data Buoy 
Center program (41.840° N 70.329° W; www. ndbc. noaa. 
gov).

Data analysis
Once all data had been collected, time sequences were 
created for all tags based on the date and time each tag 
was deployed and then retrieved in the field. The time 
sequences were setup as a series of ten non-overlapping 
transmission interval windows specific for the program-
ming of each tag; for example, a tag with a transmission 
interval of 100 s would have its time sequence as a non-
overlapping series of 1000  s windows from the time it 
was deployed until the time it was retrieved. The length 
of time for each window was always equal to ten expected 
transmission intervals, but varied based on the individual 
tag transmission interval. These ten transmission inter-
vals will hereafter be referred to as efficiency windows, 
which served as the sampling unit for all analyses.

Efficiency window time sequences were established for 
each tag–receiver combination with at least one detec-
tion. This excluded combinations that never got any 
detections, which would have overly biased estimates of 
covariate effects. Detection efficiency was calculated by 
dividing the number of detected tag transmissions by 10 
for each efficiency window. Environmental conditions 
were assigned to each efficiency window as the mean of 
all observed values within each efficiency window. Where 
efficiency windows spanned  more than one recording 
interval for environmental data, the mean of the environ-
mental data intervals was used to best approximate con-
ditions that occurred during the efficiency window.

We tested a set of several hundred candidate logistic 
regression models using the environmental conditions 
and tag distance to receiver as predictors of detection 
efficiency. All feasible models were included as candi-
dates, and only periods during which all environmental 
data were available were used to select the best models. 
Inclusion was determined based on interpretability of 
resulting candidate models, and included covariates with 
correlation coefficients  < 0.60 [24]; where strong correla-
tions occurred or were expected, interaction terms were 
included (see below). This approach balanced the risks 
associated with both data dredging [25] and confirma-
tion bias [26]. To capture unmeasured effects associated 
with sessions and/or tags, we included test session or tag 
ID separately as factored predictors and random effects. 
Because tag and session were not independent, however, 
only one of these effects was included in any given model. 
Wind direction was included as a categorical variable 
discretized on the four cardinal directions, with south 
included as the reference in model intercepts. Because 
the harbor is protected by land from all directions but 

http://www.capecodextension.org
http://www.weatherflow.com
http://www.ndbc.noaa.gov
http://www.ndbc.noaa.gov
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the south, wind direction was also separately tested as a 
binary predictor of south wind or non-south wind. All 
non-categorical predictor variables were standardized 
(z-scored to be compatible with the glmer function in the 
lme4 R package) [27].

Interactive predictor effects were also tested where 
appropriate. We tested interactions of wind speed with 
wind direction and wind speed with wave height because 
of the harbor’s increased exposure to southern winds. 
Wind and wave direction alone were never tested as 
independent predictors because they hold no weight 
without a measure of wind speed or wave height. An 
interaction between water depth and wind speed was 
included in candidate models with expected impacts 
on detection efficiency being greater as water depth 
decreased and wind speed increased. Similar interac-
tions were also included for water depth and wave height. 
Because of the intuitive correlation between wind speed 
and wave height, i.e., higher wind speed causing higher 
wave heights, those two independent predictors were not 
tested in the same model. However, the last interaction 
term we tested was between wind speed and wave height, 
thus incorporating wind gusts and  potential effects of 
wind and waves travelling in either the same or opposite 
directions into candidate models.

Once a full set of candidate models was compiled, 
model fits were compared using Akaike information cri-
terion (AIC) [25]. Only models with ΔAIC  < 2 were con-
sidered in our interpretations as the most parsimonious 
models. The best model was then used to predict detec-
tion efficiency and range over the course of an entire year 
of study to assess temporal patterns in performance that 
could affect study outcomes.

Results
We logged 7,560 efficiency windows from which to 
parameterize and compare models. Environmental con-
ditions varied widely over the period of testing, such that 
the range of most covariate values was greater than their 
mean value (Table  1).Covariates were largely independ-
ent (Additional file 1: Figure S1), except for turbidity and 
chlorophyll (Pearson’s r = 0.91). All other potential com-
binations of environmental parameters were used in can-
didate models.

Two tags were undetected during the first test session. 
One, at 1,250  m distance from the nearest receiver was 
active and deployed properly throughout the session. The 
second, however, at 1,000 m, had become detached from 
its float and so was excluded from the efficiency analyses. 
All other tags were detected by at least one receiver dur-
ing their deployments.

We did not observe any differences in performance 
between the fixed delay and the precise fixed delay tags 

during our test sessions. The tag transmission intervals of 
both types of tags drifted within 1–2 s from their original 
specified transmission interval.

Detection efficiency and range
Raw data showed highly variable and dynamic detection 
ranges and efficiencies. The maximum distance between 
a tag and receiver which detected a transmission was 
1,628  m; conversely, there were periods of time greater 
than 3.5  h during which tags as close as 100  m from a 
receiver were not detected.

There were 3 general patterns of the effect of tag dis-
tance on detection efficiency: periods when efficiency 
was generally high for all tag distances tested, periods 
when efficiency was generally low for all tag distances 
tested, and intermediate conditions with tags at short 
distances still producing high efficiency and tags at long 
distances producing low efficiency (Fig. 2).

Predictor variables
All tested environmental factors contributed to observed 
detection efficiency. Our AIC best fit model (inference 
model) included tag distance, wind speed, water depth, 
salinity, chlorophyll, dissolved oxygen, water tempera-
ture, and interactions of wind speed with wind direc-
tion (four direction categorical), wind speed with water 
depth, and wind speed with wave height. Tag distance, 
wind speed, wave height, chlorophyll, salinity, and dis-
solved oxygen all had negative effects on detection effi-
ciency, while efficiency improved with water depth and 
temperature (Table  3; Fig.  3). Of these, the predictors 
that explained the most variance were tag distance, wind 
speed, and water depth (Tables 2 and 3, Fig. 3).

The magnitude of these effects is best described by the 
z-scored odds ratios (Table 3). These describe the multi-
plicative effect of the standard deviation of each covari-
ate on detection probability (Tables 1 and 3). Thus a value 
near 1 indicates minimal effect, while values close to zero 
or much greater than 1 indicate strong effects. By way of 
example, distance had the strongest effect on efficiency, 
with a 1 standard deviation (SD) increase of 388 m reduc-
ing efficiency by a factor of 0.03, and conversely a reduc-
tion in distance of the same amount results in a 33-fold 
increase in detection efficiency.

The interaction terms for wind speed and wave height 
were important predictors in the inference model and 
most of the top models. Both wind speed and wave 
height had negative effects on detection efficiency, with 
wind speed having a stronger effect. The correlation 
with wave height likely affected the magnitude of the 
estimates: a negative effect for wave height as well as 
for northly wind speed suggests that the null condition 
(southerly wind direction) may be an underestimate, and 
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Fig. 2 Detection efficiency from a preliminary range test session showing the three main efficiency patterns (top) and the corresponding wind 
speeds during the session (bottom). The three main efficiency patterns are: high efficiency of all tag distances (2016‑05‑20), stratified efficiency 
observed with varying tag distance (2016‑05‑14), and low efficiency of all tag distances (2016‑05‑16)

Table 2 Top‑ten models and corresponding model summaries for variable acoustic telemetry detection efficiency in Wellfleet Harbor, 
with the predictor variables present in each model marked by an x

Variable Model rank

1 2 3 4 5 6 7 8 9 10

Tag distance x x x x x x x x x x

Wind speed x x x x x x x x x x

Water depth x x x x x x x x x x

Water temperature x x x x x x x x x x

Turbidity x x x x

Salinity x x x x x x

Chlorophyll x x x x x x

Dissolved oxygen x x x x x x

Wind speed:wind direction x x x x x x x

Wind speed:water depth x x x x x x x x x x

Wind speed:wave height x x x x x x x x x x

Model Summaries

 K 13 12 13 11 12 9 10 11 12 10

 AIC 16610 16613 16629 16643 16645 16647 16648 16661 16662 16664

 ∆ AIC 0 3.05 19.18 32.67 34.44 36.73 37.95 50.75 51.93 54.16

 Weight 0.82 0.18 0 0 0 0 0 0 0 0

 Cumulative weight 0.82 1 1 1 1 1 1 1 1 1

 R2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
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wave height effect might be overestimated. The results 
offer insights in how wind speed and wave height might 
be de-coupled (Table 3), but readers should bear the con-
text in mind when interpreting them more broadly.

The strong effect of water depth was surprising due 
to the limited range of water depths that were tested, 
but this result demonstrates the extent to which shallow 

depths can limit performance of acoustic telemetry. 
Even the change in depth from 1 to 10  m results in an 
increase in efficiency from nearly 0–100% when all other 
model parameters are held at their observed means and 
tag distance is held at 400 m (Fig. 3). The interaction term 
between wind speed and water depth was also important, 
with negligible effects of wind on detection efficiency 
under deep conditions, but a strong negative effect at 
shallow depths (Fig. 3).

Efficiency predictions for the full year of 2016 (Table 1, 
Fig.  4) illustrate the likely importance of the effects 
described here on ongoing studies in the area. Impor-
tantly, however, these predictions included covariate 
values well outside the range of what we tested, includ-
ing temperatures ranging from 1–30 °C (Table 1, Fig. 4). 
Less severe extrapolation can also be seen in the 2016 
model predictions for daily efficiency with other variables 
(Table  1), but water temperature has the largest impact 
because of the extreme efficiencies predicted for both 
high and low temperatures.

Discussion
For acoustic telemetry research in aquatic environments, 
proper interpretation of tag transmission detections is 
vital for determining tag presence and absence and infer-
ence of behaviors within the context of movement ecol-
ogy and management decisions. Inference of presence or 
absence based on tag detections is commonly predicated 

Table 3 Model summary of AIC best fit model for variable acoustic 
telemetry detection efficiency in Wellfleet Harbor. Odds ratios are for 
z‑scored continuous covariates (wind direction was categorical and 
untransformed)

Variable Odds ratio (95% CI) p

Intercept (south wind direction) 0.01 (0.01–0.02)  < 0.001

Tag distance 0.03 (0.03–0.04)  < 0.001

Wind speed 0.54 (0.51–0.56)  < 0.001

Water depth 2.33 (2.22–2.43)  < 0.001

Salinity 0.86 (0.82–0.90)  < 0.001

Chlorophyll 0.89 (0.85–0.92)  < 0.001

Dissolved oxygen 0.92 (0.88–0.96)  < 0.001

Water temperature 1.26 (1.16–1.36)  < 0.001

Wind speed:wind direction (East) 0.84 (0.74–0.95) 0.005

Wind speed:wind direction (North) 0.68 (0.62–0.74)  < 0.001

Wind speed:wind direction (West) 0.82 (0.74–0.92)  < 0.001

Wind speed:water depth 1.66 (1.59–1.74)  < 0.001

Wind speed:wave height 0.88 (0.86–0.91)  < 0.001

Fig. 3 Model prediction plots for each of the continuous predictor variables in our top performing inference model for variable acoustic telemetry 
detection efficiency in Wellfleet Harbor. All variables were fixed at their observed mean, with the exception of tag distance, which was fixed at 
400 m for all but the tag distance plot. In addition, interactions of wind speed and water depth are illustrated with curves representing the mean 
value (green), the lower standard deviation  (blue), and the upper standard deviation (red) for depth on the wind speed panel and for wind speed 
on the depth panel. X axis range is the observed range of data from the test sessions in this study
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on the assumption that detection ranges and efficiencies 
are consistent across time and space. Previous studies 
have identified environmental conditions that influence 
detection efficiency [7, 18] or accounted for it in mod-
eling [20, 28]. Here we explicitly quantified the role and 
magnitude of a suite of environmental covariates, all of 
which had an influence on detection range and efficiency 
in a shallow-water, tidal marine environment with broad 
application to near-shore telemetry systems.

The environmental context of our study system is 
important; in tidal environments with large intertidal 
regions, channels, and sandbars, it is necessary to deploy 

receivers near the surface to maintain line-of-sight (or 
line-of-signal for telemetry equipment) surveillance of 
the study area, particularly for studying benthic-oriented 
species. This deployment  allows continuous monitoring 
of submerged habitat, the geometry of which changes 
dramatically with the rise and fall of the tides [21, 29].

The sites selected for range testing in this study were 
not subject to the most extreme variation in bottom 
topography, being outside of the intertidal zone, and 
were selected for flat bathymetry with minimal struc-
ture to interfere with signal propagation. Nevertheless, 
the placement of receivers near the water surface likely 

Fig. 4 2016 mean daily acoustic telemetry detection efficiency estimates (top) and observed water temperatures in the Wellfleet Harbor study 
site (bottom). Grey shaded areas represent time periods where water quality and water temperature data were not available. Red lines represent 
the range of water temperature observed in the range test sessions; dates with temperatures outside that range have model extrapolation. Other 
variables have similar extrapolation throughout 2016; however, water temperature provides the best visualization



Page 9 of 13Long et al. Animal Biotelemetry           (2023) 11:18  

caused some reduction in overall detection range as they 
were more susceptible to wind and wave effects than 
might have occurred with bottom deployments and/or 
in more stable environments [7, 18, 30]. However, similar 
effects are possible regardless of receiver location, since 
benthic species can, and do, find positions in shadows 
within the benthic habitat or by burial [31]. In addition, 
as the depth shoals, effects from either surface or bottom 
fixed receivers are likely to converge as all the available 
water column is agitated. The ranges we observed here 
were much less than those found in studies performed 
in deep marine environments. Our models suggest that 
detection efficiencies < 50% at 100 m are likely to be com-
mon for much of the year. These results are similar to 
those described by Gjelland and Hedger [20], but con-
trast strongly with Huveneers et al. [18] who consistently 
detected > 50% of transmissions at ranges greater than 
600 m.

Complex benthic habitats present greater potential 
for signal interference [19]. As a result, shallow complex 
systems have the highest probability of poor detection 
range, while deep continuous habitats have the high-
est detection ranges, regardless of the deployment loca-
tion of receivers [18, 20]. Deployments similar to those 
described here are not uncommon for both fixed and 
mobile tracking [29], however, the results have broader 
relevance to deeper and bottom fixed receiver deploy-
ments as well. These examples, coupled with our data, 
emphasize the importance of local variability in trans-
mission distances, and the importance of monitoring 
during studies [18].

With these deployment details in mind, it is striking 
that nearly all tested environmental parameters affected 
efficiency, with tag distance and wind speed having the 
strongest effects. The effect of distance, central to the 
concept of a range test, is the least surprising: acoustic 
signals are attenuated as a function of distance, owing to 
energy losses during transmission through the water as 
the signal expands into the environment [30]). This effect 
was entirely expected and its inclusion was required to 
characterize the remaining environmental factors that 
were of greater interest.

The second most important factor affecting detec-
tion efficiency was wind speed, which interacted with 
both wind direction and wave height. Importantly, wave 
height augmented the reduction in detection efficiency 
associated with wind speed. This effect is to be expected; 
wind generates noise as it passes over the water surface 
[7, 30, 32], and the depth that waves’ orbitals penetrate 
is a function of wavelength [33]. Waves will interrupt the 
path of signals (particularly at distance), act to alter the 
orientation of the receiving hydrophone, and increase the 
mixing of air bubbles and water turbidity. As dissolved 

gasses exceed saturation, they come out of solution cre-
ating micro-bubbles [34, 35]. The process of transition-
ing from dissolved to a gaseous state can itself produce 
noise, and once in the gaseous state bubbles are much 
more compressible than water and act to increase attenu-
ation [7, 36, 37]. Thus, waves affect detection efficiency in 
several ways and should be an important environmental 
covariate to monitor, particularly in shallow-water envi-
ronments. As waves enter shallower water the impact on 
the benthos increases, mobilizing sediment and stimu-
lating algal growth, and thus increasing both turbidity 
and chlorophyll. In deep-water deployments, waves are 
unlikely to contribute to ambient noise unless they are 
actively breaking.

Several other factors (turbidity, chlorophyll, etc.) are 
unlikely to directly cause noise, although they may be 
correlated with noise-producing factors such as wind, 
biological activity, physical mixing, and scour. It is less 
clear how chlorophyll, suspended organic matter, and 
solids attenuated signals. It is likely that these suspended 
particles are themselves interfering with sound waves 
and contributing to attenuation of signals. Phytoplank-
ton release gasses during photosynthesis and respiration, 
and thus contribute to the gaseous content of the water 
column.

There is a suite of other factors that can contribute to 
noise interference, but were not quantified, including 
boat motor noise, sonars, aquatic biotic activity, rainfall, 
etc. Some of these are transient events, and only by con-
tinuously monitoring the acoustic environment would it 
be possible to account for them [7, 17]. We are unaware 
of any studies that include continuous acoustic monitor-
ing and its effects on detection range or efficiency, but 
such an addition would assist inferences regarding eco-
logical patterns.

With a maximum of 69% explained variance in our 
inference model, there is still variability in observed 
detection efficiencies not captured by our predictor vari-
ables. Future studies may wish to expand the range of 
monitored environmental factors, both to address con-
cerns of local conditions and to improve the general-
ity of our results. Equipment performance also likely 
varied based on the physical condition of receivers and 
transmitters. Over time, receivers accumulate biological 
growth, biofouling, that influences the ability of receivers 
to detect tag transmissions [35, 38]. Similarly, tag attach-
ment or insertion methods on study animals may lead to 
variability in tag performance [39], particularly for exter-
nal tag attachments that may allow for biofouling [21].

Tag transmission collisions are a possible source for 
decreased detection efficiency values; however, any 
impact in this study likely only resulted a small effect. 
Although there was only a maximum of five range test 
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tags deployed in each session, there were other concur-
rent acoustic telemetry studies taking place in the area, 
including a horseshoe crab (Limulus polyphemus)  study 
which had approximately 100 tagged crabs active within 
Wellfleet Harbor at the time of this study. However, these 
horseshoe crab tags were programmed with variable 
pulse intervals, meaning that although collisions may 
have contributed to reduced efficiency, these would have 
been rare events and not repeated within the intervals 
used here to calculate efficiency.

Inference implications and suggestions for future work
Methods are available to enhance the quality of acous-
tic telemetry data. Fixed receiver arrays require calibra-
tion and continuous monitoring with fixed transmitters 
to define the varying geographic limits of detection. 
Mobile tracking is even more susceptible to environmen-
tal effects, as environmental conditions change with each 
change in receiver position. Additionally, when receivers 
are towed, the turbulence of water moving around the 
receiver and hydrophone can cause additional effects, as 
can noise from engines, propeller cavitation, etc. Here 
again, known tag deployments in fixed locations can help 
quantify changes in detection range. Lastly, positioning 
studies requiring multiple detections of a single tag trans-
mission can include detection variability in study design, 
helping to inform the number and placement of receiv-
ers to optimize coverage for intended testing [40–42]. 
These study types would all be impacted and biased if 
detection efficiency is non-constant among receivers, and 
recognizing the existence and causes of this bias can help 
inform various aspects of study design and interpretation 
[14, 43]. Monitoring and recording this interference and 
quantifying the effects on detection range and efficiency 
would be of great utility.

One technique that can help to offset the hazards of 
missed detections is to incorporate both detection effi-
ciency and behavior into occupancy metrics [44]. The 
intervals between detections are distributed as a nega-
tive binomial, and when a tagged animal is within the 
detection zone these intervals can be used to provide an 
estimate of receiver efficiency. The distribution of inter-
vals for animals in motion represent a mixture of at least 
two distributions, including the detection efficiency as 
well as movement in and out of the detection zone of the 
receiver array. Several objective methods are available 
for differentiating among these distributions [44–47]. 
An attractive feature of this approach is that it allows 
for an empirical estimate of bout frequency, and hence 
a threshold for delineating between occupancy events. 
This allows researchers to identify appropriate interval 
durations to delineate unique occupancy events, pro-
vided that the transmission interval is sufficiently smaller 

than this and the detection efficiency is sufficiently high, 
missed detections can be tolerated without substantial 
loss of information. Furthermore, this approach also 
allows for some variability in detection efficiency, and 
bias is minimized provided the above caveats are met. 
Regardless of the approach, it will be important for future 
studies to separate the detection probability as it related 
to environmental covariates and the movement ecology 
of the species of interest.

All of this highlights the fundamental constraints of 
telemetry studies in producing reliable results, given that 
decisions regarding transmission intervals, the inher-
ent detection efficiencies and ranges, and rates of move-
ment must all be considered to appropriately address 
the hypotheses being tested [48]. Slow-moving animals 
in systems with large detection ranges (e.g., crustaceans 
and gastropods) will be minimally affected by fluctu-
ating ranges and efficiencies. Conversely, animals that 
move swiftly, are transient, occupy habitats with vary-
ing efficiencies and/or low ranges, as well as studies of 
fine-scale movements will require tags that transmit at a 
faster rate and a greater density of receivers. Thus, habi-
tat preference studies of mobile species in heterogeneous 
environments with limited receiver coverage are likely to 
be most susceptible to biases imposed by environmental 
conditions.

This poses an intrinsic challenge for the technology 
tested here: the selected tag codeset, like many others in 
this frequency range, requires multiple seconds to deliver 
the complete code. When multiple tags are present, long 
and varying intervals between transmission are needed 
to reduce the risk of collision between transmissions. 
Alternative technologies do not have these same con-
straints [49–51], and technical solutions continue to be 
developed at a rapid pace. As new technologies emerge, 
it will be important to subject them to rigorous testing to 
understand reliability and to assist researchers to design 
studies that minimize bias.

In fine-scale studies examining residency within com-
plex habitats [52] or fluctuating environmental condi-
tions (Banks et  al. [53]), a series of non-detected tag 
transmissions could bias results and miscalculate habitat 
preferences or other aspects of life history. For exam-
ple, fish passage studies of migratory species often rely 
on brief occupancies of animals as they move up- and 
down-stream to access spawning areas, and a few missed 
transmissions on a receiver could result in miscalculated 
passage or movement rates [44, 48]. Triangulation studies 
would also be greatly impacted from poor detection effi-
ciencies in their study areas, because each triangulated 
position requires detections on multiple receivers for 
each individual tag transmission [51].
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The various factors affecting detection efficiency have 
implications for reliability of ecological data, including 
public safety. Series of receivers have been deployed 
along beaches of Australia, Cape Cod, and other loca-
tions as part of warning networks to inform lifeguards 
and the public when tagged sharks are likely to be in 
specific areas [54, 55]. Some of these beaches are pop-
ular for swimming and surfing during months when 
sharks are active, and specifically given that surfer 
activity is greatest when waves are large, the reduced 
efficiency of these receivers could contribute to reduced 
estimates of shark presences [56] and impart a bias to 
risk assessments. These challenges are not unique to 
shark detections, and any management decisions that 
are dependent on acoustic telemetry inference, includ-
ing protection of spawning habitats, essential habitat 
determination and mitigation of human activities such 
as offshore wind energy development, will require a 
proper accounting of the detection probability change 
with environmental conditions. Communication of 
biases, uncertainty, and limitations are particularly 
challenging in the context of public engagement.

Improved knowledge of environmental conditions 
that impact detection efficiency in acoustic telemetry 
in future studies and analyses may allow better pre-
dictions of periods of time in which the likelihood of 
false absences of tagged animals are increased. Includ-
ing temporal and spacial variability of detection range 
and detection probability in telemetry analyses could 
lead to substantially increased modeling power. This 
increased modeling power could lead to less biased 
study results and better-informed management deci-
sions for aquatic species and areas.
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