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Abstract 

Background Due to their Arctic habitat and elusive nature, little is known about the narwhal (Monodon monoceros) 
and its foraging behaviour. Understanding its ability to catch prey is essential for understanding its ecological role, 
but also to assess its ability to withstand climate changes and anthropogenic activities. Narwhals produce echoloca‑
tion clicks and buzzing sounds as part of their foraging behaviour and these can be used as indicators of prey capture 
attempts. However, acoustic data are expensive to store on the tagging devices and require complicated post‑
processing. The main goal of this paper is to predict prey capture attempts directly from acceleration and depth data. 
The aim is to apply broadly used statistical models with interpretable parameters. The ultimate goal is to be able to 
estimate prey consumption without the more demanding acoustic data.

Results We predict narwhal buzzing activity using mixed‑effects logistic regression models with 83 features 
extracted from acceleration and depth data as explanatory variables. The features encompass both instantaneous 
values as well as delayed values to capture behavioural patterns lasting several seconds. The data correlations were 
not strong enough to predict the exact timing of the buzzes, but were reliably able to detect buzzes within a few 
seconds. Most of the of the buzz predictions were within 2 s of an observed buzz (68%), increasing to 94% within 30 s. 
Conversely, 46% of the observed buzzes were within 2 s of a predicted buzz, increasing to 82% within 30 s. Addition‑
ally, the model performed well, although with a tendency towards underestimation of the number of buzzes per dive. 
In total, we predicted 17, 557 buzzes versus 25, 543 observed across data from 10 narwhals. Classifying foraging and 
non‑foraging dives yielded a precision of 86% and a recall of 91%.

Conclusion We conclude that narwhal foraging estimation through acceleration and depth data is a valid alternative 
or supplement to buzz recordings, even when using somewhat simple statistical methods, such as logistic regression. 
The methods in this paper can be extended to foraging detection in similar marine species and can aid instrument 
development.
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Background
The narwhal (Monodon monoceros) is a marine mam-
mal belonging to the Monodontidae family. They are 
medium-sized whales known for their long character-
istic tusk present predominantly in males. A physically 
mature male will on average grow to be 4.6 ms long and 
a mass of 1650 kg, while the smaller female on average 
grows to 4  ms in length and a mass of approximately 
900  kg [1]. The narwhal lives year-round in the Arctic 
waters around Greenland, Canada and Russia with a 
global population estimated at approximately 170,000 
specimens [2] resulting in a categorization of “least 
concern” in the International Union for Conservation 
of Nature red list of threatened species [3].

The narwhal and the beluga whale are the sole mem-
bers of the Monodontidae family: they are toothed 
whales but lack functioning teeth for prey capture. 
Instead, both species utilize presumably suction feed-
ing. In similar marine mammals, such as harbour seals, 
porpoises and sperm whales, the animals shows strong 
jerking motions in acceleration when surging forward 
capturing a prey [4–6]. We hypothesize that suction 
feeding, in comparison to raptorial feeding, is more 
likely to involve less vigorous movements and therefore 
might be harder to detect. Jerking motions do, however, 
seem to be present during pinniped suction feeding, 
albeit at a shorter duration and less amplitude com-
pared to raptorial feeding [4].

When foraging for food, the narwhal dives to depths 
below 500 m, where it mainly preys on polar cod, Green-
land halibut and squid [7]. It is among the deepest div-
ing cetaceans and has been observed to dive deeper 
than 1800  m [8]. As light is scarce, the narwhal orients 
itself and explores the environment using echolocation. 
The vocalizations emitted during foraging largely con-
sist of short clicking sounds and longer buzzes [9]. In 
other marine mammals, echolocation is used for overall 
orientation, while the buzzes are used for continuously 
visualizing prey up to the moment of striking [5, 6]. We 
hypothesize the same holds for narwhals.

The narwhal’s foraging behaviour is of great inter-
est, both from a biological perspective to understand 
the ecological role of the narwhal, but also to assess 
the robustness of the species to the ongoing environ-
mental changes in the Arctic. The narwhal is highly 
specialized to its Arctic habitat with strong site fidelity 
and low long-term genetic diversity [10]. This indicates 
that the narwhal may be unsuited to adapt to the ongo-
ing climate changes. Furthermore, as the sea-ice cover-
age decreases, human activities in the Arctic are likely 
to increase. Recent studies have shown anthropogenic 
activities to have a greater effect on narwhal behaviour 

than previously anticipated with sound exposure effects 
on narwhal foraging being detected at very low sound 
exposure levels below background noise [11, 12].

Because of their deep diving behaviour in an ice-cov-
ered habitat, narwhal foraging is difficult or impossible 
to monitor directly. Instead, foraging is estimated using 
acoustic recordings of narwhal buzzes obtained from 
animal-borne instruments under the assumption that 
a buzz corresponds to a prey catch attempt. However, 
obtaining acoustic data with recordings of narwhal 
sound production is a demanding process as acous-
tic data are expensive to store. Additionally, buzzes 
have to be verified by specialized experts listening to 
the recordings. The purpose of this paper is therefore 
to investigate whether buzzing (and therein foraging 
behaviour) can be accurately estimated using statistical 
models and recordings of only acceleration and depth, 
as these are more easily measured and have previ-
ously proven to be useful for estimating marine mam-
mal behaviour [7, 13, 14]. As foraging behaviour is our 
primary focus, we are mainly concerned with identify-
ing approximate forage times and dives, as well as the 
proportional number of prey capture attempts, whereas 
exact timing of buzzes are of minor interest.

Modelling of narwhal buzzing using accelerometer 
and depth data was already attempted using U-Net 
convolutional networks, logistic regression and random 
forest in [15], by using the presence of a buzz as the 
response variable. Here, the U-Net vastly outperformed 
the two latter models. However, the U-Net has the dis-
advantages of being complex, computationally demand-
ing and nontransparent in its prediction process. In this 
paper, we investigate whether further improvements on 
the simpler logistic regression model through the inclu-
sion of random effects, additional features, autoregres-
sive effects and non-linear inclusions amongst other 
things, might present a valid choice for detecting nar-
whal foraging. As a further simplification, we do this 
with a response variable of buzz startup sampled at 1 
Hz instead of buzzing presence sampled at 10 Hz, as 
registering the duration of a buzz is significantly more 
demanding and less precise than the approximate start. 
This is done using two approaches. One where 10 mod-
els are trained, each on data with one whale left out and 
performance is evaluated on the left-out whale. This 
should help assess if results are overconfident when 
evaluating on previously observed narwhals, compared 
to new specimens. Another approach is a single model 
fitted and evaluated on 80% of the data from all nar-
whals and evaluated on the left-out 20%. Data are split 
chronologically to preserve the temporal structures in 
the data.
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Methods
Narwhal tagging and data sampling
Data consist of measurements from 10 narwhals previ-
ously analysed in [9, 12]. The narwhals were captured 
in Scoresby Sound fjord in cooperation with local Inuit 
hunters after which they were equipped with Acousonde 
acoustic and orientation tags (www. acous onde. com) and 
thereafter released. The tags were attached to the rear 
half side of the dorsal ridge with suction cups and rein-
forced with a magnesium corrodible link and 1 mm nylon 
threads going through the top of the dorsal ridge in order 
to extend the recording period. As the link corrodes, the 
tag detaches and can be retrieved. For six of the data 
series, the tag was placed on the right side of the dor-
sal ridge (2016MM1, 2016MM3, 2017MM1, 2017MM3, 
2018MM2 and 2018MM3), while the remaining had 
their tag placed on the left side (2014MM6, 2018MM1, 
2018MM4, 2018MM5, 2018MM6). The narwhals were 
also equipped with location tags. These were attached 
as backbags using methods described in [16]. The back-
pack tags were mounted on the back of the whale with 
either two or three 8  mm sterilized nylon pins secured 
with washers and bolts on each end. The transmitters 
were programmed to collect an unrestricted number 
of positions through August and September. Three dif-
ferent types of location tags were used: 1) SPLASH tag 
from Wildlife Computers, Redmond, WA (2014MM6); 
2) Argos CTD tag from SMRU (Sea Mammal Research 
Unit, St Andrews, UK) (2016MM1) and 3) SPLASH tag 
with Fastloc GPS option from Wildlife Computers (the 
rest of the whales). The Wildlife Computer tags have an 
accuracy of ≤ 100 m, whereas Argos tag accuracy ranges 
between 250 m and 1500 m. For the modelling process in 
this study, only the Acousonde tag data were used. The 
narwhals were captured in four different years in August. 
First four digits of the i.d. indicate year of capture. Out 

of the ten narwhals, eight were males (2016MM1, 
2017MM1, 2017MM3, 2018MM1, 2018MM2, 2018MM4, 
2018MM5, 2018MM6) and two were females (2014MM3, 
2016MM6). 2017MM3 and 2018MM3 refer to the same 
narwhal, which was tagged both in 2017 and 2018 (see 
Table 1).

To avoid any irregular behaviour connected to capture 
and tagging, data before the first registered echolocation 
event were discarded [9]. This results in a data series for 
each narwhal (or two in the case of 2017MM3) ranging 
between one and six days approximately (Fig.  1). Addi-
tionally, 2014MM6 and 2016MM3 had their data cut a 
few hours short as the tags filled to capacity and stopped 
recording acoustics. An overview of each narwhal’s tra-
jectory during this period can be seen in Fig. 2.

The depth recordings were measured in metres and 
originally sampled at 10 Hz, but averaged to 1 Hz. Infor-
mation loss should be minimal as depth does not change 
significantly on a momentary basis. The depth meas-
urements were corrected for drifting using recursive 
smoothing filters as described in [17].

Acceleration was measured along three axes X, Y and Z 
at 100 Hz. Positive samples along the X-axis correspond 
to the animal pointing up, while positive samples along Y 
and Z correspond to pointing left and being upside down, 
respectively. Narwhals are prone to rolling and swim-
ming upside down [16].

Lastly, data also included the date and time of day as 
well as a binary variable indicating if a startup of a buzz 
was detected in a given second or not. Buzz initiations 
were obtained using a custom-written Matlab buzz 
detection algorithm tuned to miss a minimal number of 
buzzes, after which the buzzes were manually verified by 
a specialized analyst. The algorithm and verification pro-
cess is described in greater detail in [9]. Buzz initiation 
was used as the response variable in the model.

Table 1 Description of data series of the 10 narwhals. 2017MM3 and 2018MM3 is the same narwhal tagged in different years

Year ID Sex Recording start First echoloc. event Recording end No. of buzzes Length (cm)

2014 2014MM6 F 11 Aug 15:32 12 Aug 00:58 15 Aug 21:15 4301 341

2016 2016MM1 M 24 Aug 12:50 26 Aug 00:54 31 Aug 12:00 4587 372

2016 2016MM3 F 24 Aug 13:16 25 Aug 07:09 28 Aug 18:03 2798 450

2017 2017MM1 M 11 Aug 13:31 12 Aug 17:59 14 Aug 19:50 1979 457

2017 2017MM3 M 11 Aug 12:22 12 Aug 04:50 14 Aug 19:19 6167 497

2018 2018MM1 M 24 Aug 21:45 25 Aug 01:52 26 Aug 06:44 651 470

2018 2018MM2 M 25 Aug 10:46 26 Aug 01:32 26 Aug 15:25 132 409

2018 2018MM3 M 23 Aug 21:45 24 Aug 09:24 26 Aug 06:09 952 497

2018 2018MM4 M 23 Aug 22:50 24 Aug 23:37 26 Aug 13:28 499 436

2018 2018MM5 M 24 Aug 21:13 25 Aug 03:26 26 Aug 06:32 905 410

2018 2018MM6 M 23 Aug 22:46 24 Aug 08:30 26 Aug 06:25 2497 460

http://www.acousonde.com
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Fig. 1 Depth timeline for each tagged whale. Buzzing times are indicated by black dots. Dashed lines indicate midnight. Red lines indicate the 
initiation of echolocation. The blue line for 2014MM6 and 2016MM3 indicates where Acousonde were filled to capacity and acoustic data were no 
longer recorded. The data prior to the red lines and after the blue lines were discarded for the analysis

Fig. 2 Narwhals were equipped with GPS tags (blue) and Acousonde behavioural tags (orange) (A) inside Scoresby Sound fjord in East Greenland 
(B). The panels show the GPS tracks (average position/hour) for each narwhal during the included data period, separated by tagging year. 2018MM3 
refers to the second tagging period for narwhal 2017MM3. Tagging site, Hjørnedal, is marked with a star. Data points from 2014MM6 and 2016MM1 
are less accurate and more sparse (20016MM1 more so than 2014MM6) as these were equipped with different location tags. For 2018 data the 
observation count has been reduced to one position per hour to reduce overlap
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Diving phase and RMS jerks
A dive was defined as a period during which the nar-
whal was at 10 m or deeper below surface level, and at 
some point reaches depths of at least 20  m. Dives are 
partitioned into four phases. [7, 18]. The surface phase 
is when the narwhal is not in the process of diving, 
staying at depths less than 10 m. The bottom phase is 
when the narwhal is at 75% or lower than the maxi-
mum depth of the dive. For transition periods between 
surface and bottom, we define the phases descend-
ing and ascending. If a narwhal returns to the bottom 
level before reaching the surface, we define the phase 
in between to be ascending. We may therefore observe 
a phasing of bottom → ascending → bottom , while 
bottom → descending → bottom per definition cannot 
occur. When estimating narwhal foraging, the diving 
state is important as buzzes occur most frequently at 
the bottom of a dive (Fig. 1) [7].

Similar studies on harbour seals, harbour porpoises 
and sperm whales found clear acceleration peaks—
jerks—around the time of prey capture [4–6]. A jerk is 
defined as the difference between consecutive obser-
vations of any of the three acceleration measurements 
[4]. An RMS jerk was then calculated by first taking the 
euclidean norm of the three-dimensional jerk measure-
ments and then calculating the root-mean-square over 
200 ms corresponding to 20 norm jerk observations [4].

In contrast to the aforementioned species, the nar-
whal has no teeth in its jaws, indicating that raptorial 
feeding is unlikely. Jerking motions are therefore likely 
to be less powerful. [15] found that big RMS jerks above 
different thresholds were not sufficiently correlated 
with buzzing to allow for buzz detection. However, [4] 
found that RMS jerks were also indicative of foraging 
with suction feeding in Harbour seals. We therefore 
still expect RMS jerks to have some predictive power 
and include them as features.

Feature extraction
We extracted a series of features from the acceleration data 
based on [19], where human activities were recognized 
using accelerometer data from a pocketed cellphone. Aver-
age peak frequency was left out as narwhal movements, 
in comparison, are characterized by smaller fluctuations 
and are less cyclical compared to human movements. 
Local peaks, therefore, yielded poor predictive results. 
Distance between minimum and maximum observation 
was also excluded as it was highly correlated with the 
standard deviation. We additionally included the effects of 
RMS jerks as we expect more rapid short-interval move-
ments in narwhal foraging as opposed to, for instance, a 

human running. The feature extraction process was largely 
inspired by [15].

The features are:

• Corrected depth, time of day in hours and diving 
phase (surface, descending, bottom and ascending) (3 
features).

• Mean, standard deviation and root-mean-square 
within a given second for each of the three acceler-
ometer measurements AX ,AY  and AZ (9 features).

• Standard deviation and root-mean-square of the 
magnitude of acceleration defined by 
Am =

√

A2
X + A2

Y + A2
Z  (2 features).

• Correlations between the three acceleration observa-
tions in a given second ( CorrXY  , CorrXZ and CorrJK  ) 
(3 features).

• Mean and standard deviation of RMS jerk measure-
ments (2 features).

Since data only included the time of buzz onsets and 
buzzes often last for several seconds [9], any potential 
acceleration patterns were likely to be present after the 
onset of a buzz. Therefore, we included 4 future values of 
all features (except the first three, i.e. depth, time of day 
and dive phase) to ’backcast’ if a buzz was initiated the 
moment before. Four future values were selected based 
on results on narwhal buzz duration where [9] found the 
upper quartile of narwhal buzz duration to be approxi-
mately 4  s or less (one out of six narwhals has upper 
quartile duration of 4.1  s. Rest is below 4  s). The mean 
acceleration in X, Y and Z were found to be highly cor-
related with their future observations. To avoid potential 
issues with collinearity, we instead include the change in 
mean for the future values.

In order to account for variation in the behaviour of 
individual narwhals, we used mixed-effect models allow-
ing narwhal i.d. to be included as a random effect on the 
intercept. For the narwhal with two tagging periods we 
use i.d. 2017MM3 for both data series. In total, we have 
the listed 19 features of which 16 have 4 future observa-
tions included as well. This results in a model with one 
random effect and 83 fixed-effects features.

Mixed‑effects logistic regression implementation
To test the model predictions, we divided the data fol-
lowing two approaches. The first approach splits the 
data chronologically for each narwhal into 80% training 
and 20% test data. Training data were used for fitting 
the model and finding appropriate probability predic-
tion cutoff, while test data were used for evaluating the 
performance of the model. When fitting and evaluat-
ing on the same set of narwhals, we risk overestimating 
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performance as every whale has been previously 
observed by the model. In practice, we are unlikely to tag 
the same narwhal more than once. To minimize over-
confidence, we renamed the narwhals used in the test 
set such that the model treats the data as being from 
not previously observed narwhals. The second approach 
involves leaving one narwhal out for test set and fitting to 
the remainder. The split is repeated with each whale used 
as test set, meaning the entirety of our data set serves as 
both test and training set. This method ensures that we 
do not overestimate performance by training and test-
ing on the same individual. However, evaluation across 
10 models is less transparent and parameter values and 
importance is likely to vary between the different mod-
els, compared to fitting and evaluating a single model fit 
across all individuals.

The mixed-effects logistic regression model was 
implemented using the glmer function from the lme4 
R-package (version 1.1.29) [20] with option family = 
binomial. The response was the 0-1 variable of absence 
or presence of a buzz initiation, and explanatory variables 
were the features listed in the previous section. Following 
[7, 9], we modelled depth with a natural cubic spline with 
three degrees of freedom using the ns function from the 
splines package (version 4.1.2) [21]. Degrees of free-
dom were kept constant to avoid overfitting. Time of day 
was included with a periodic B-spline with 3 degrees of 
freedom and boundary knots in 0-24, such that the spline 
is connected at the change of day. This was implemented 
using the pbs function from the pbs-package (version 
1.1) [22].

All features were included as additive effects. Predic-
tions of the model are given as estimated probabilities 
p̂(xt) of a buzz at each time point with features xt . We 
then predict a buzz at time t if the predicted probability is 
larger than some cutoff value p0.

Dealing with imbalanced data
Since data are imbalanced (the response Yt = 1 , initiation 
of a buzz at time t, is much less frequent than Yt = 0 , only 
1.08% of observations are positive buzz observations) and 
we are more interested in correctly predicting a buzz 
Yt = 1 than a non-buzz Yt = 0 , we use a different cutoff 
value than the usual p0 = 0.5 . To select p0 , we used five-
fold cross-validation on a grid of cutoff values between 
0.05 and 0.5 with increments of 0.01. As error measure, 
we used the Dice loss [23] function defined by

Here, yi and ŷi , i = 1, . . . , n , denote the ith observed 
and predicted response values within a given fold, 

(1)DL(p0) = 1−
2
∑n

i=1 yiŷi
∑n

i=1 yi +
∑n

i=1 ŷi
.

respectively. Dice loss was chosen as it is designed for 
classification problems with imbalanced data. To prevent 
too many positive predictions, the loss increases when 
the total sum of positive predictions increases, and only 
the correct predictions lead to a zero loss.

Cross-validation folds were split chronologically for 
each whale in the same vein as the training and test set 
partitioning. These splits respect the time structure of 
the data, but might yield poor results for narwhals with 
shorter tagging periods as a potential break from forag-
ing can result in a fold with little to no buzzing. There-
fore, we also tried cross-validation with folds partitioned 
randomly for comparison. We evaluated both cases using 
Dice loss. For the chronological split, we also defined an 
adjusted version of Dice loss in the equation below:

Logistic regression and ordinary dice loss have the disad-
vantage of not accounting for the temporal structures in 
the data. A positive prediction increases the loss, unless it 
lines up with the exact second of the observed onset. This 
is regardless of the prediction potentially being only a few 
seconds off. The adjusted dice loss is designed to partially 
correct for this by also reducing loss if a positive predic-
tion falls within 1  s of a positive observation. Adjusted 
dice loss with 2-s and 3-s lags were also considered, but 
yielded same conclusion. The adjusted Dice loss was not 
attempted on the randomly assigned folds as neighbour-
ing data points might belong to different folds.

When fitting on imbalanced data, one should be aware 
of the one-in-ten rule of thumb [24], which states that 
there should be at least 10 minority class observations 
for each included feature. In each training fold, we had 
at least 14227 recorded buzzes indicating that our model 
meets the one-in-ten rule, even with a few non-linear 
features that use several degrees of freedom.

Likelihood approximation
In generalized linear mixed modelling, the marginal den-
sity of the response Y is too complex to be evaluated in 
closed form. The log-likelihood is instead estimated and 
maximized using numerical methods. In glmer this is 
done using a Gauss–Hermite approximation with param-
eter nAGQ denoting the number of points per axis in 
which the approximation is evaluated. The standard set-
ting is nAGQ = 1 corresponding to a Laplace approxima-
tion. However, for the given number of features and data 
points, this setting proved too computationally demand-
ing. Instead, nAGQ = 0 was used, where fixed effects 
are estimated in the Penalized Iteratively Reweighted 
Least Squares step (PIRLS) when estimating the random 

(2)ADL = 1−
2
∑

i=1 yi max{ŷi−1, ŷi, ŷi+1}
∑

i=1 yi +
∑

i=1 ŷi
.
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effects conditioned on the response [20]. This means 
that the fixed-effect coefficients are fitted much quicker, 
but the deviance at the fit may be higher than if we had 
included the fixed effects in the non-linear optimization 
of the Laplace approximation. This method was chosen 
as it yielded better results than excluding random effects 
altogether or decreasing the number of fixed-effect fea-
tures down to where the running times were manageable. 
For this data set it took ≈ 12 min on a Lenovo Think-
Pad T490, whereas it had still not converged after 3 days 
when using the option nAGQ = 1 . We also attempted 
using other software packages such as glmmTMB (version 
1.1.5) [25], but with the same results regarding running 
times.

Quasi‑poisson model
For comparison purposes we also tried to fit the number 
of buzzes per dive to a quasi-poisson model, using fea-
tures related to the depth, duration shape of the dive. 
This should help assess if the inclusion of acceleration 
data is significant when aggregating buzz activity per 
dive instead of on a momentary basis. The quasi-poisson 
model uses number of buzzes per dive as response and 
maximum corrected depth, seconds spent at the bottom 
phase and proportion of dive spent at bottom phase as 
features.

Results
Prediction cutoff
In Fig. 3, the results of the cross-validation are shown for 
the different cutoff values p0 . The Dice loss was overall 
marginally lower on the randomly assigned folds than on 
the chronological splits, but they both yield an optimum 
of 0.09. Using the adjusted Dice loss gives a slight edge 
to a cutoff value of 0.10, but the difference is minimal. 
Adjusted Dice loss with two and three seconds delay was 
also attempted, leading to the same optimum (results not 
shown). Based on these results a cutoff value of p0 = 0.10 
was chosen. The low threshold is likely a result of the 
model being unable to detect the exact second of some 
buzzes, resulting in the probability being spread across 
several seconds. Therefore, we end up with a few seconds 
of medium-high probability instead of one second with 
probability above 0.5.

Buzz detection
Movement patterns correlated with foraging are expected 
to be prevalent up to or after an observed buzz. There-
fore, estimated buzz probabilities are likely to be above 
the threshold in a time window around the true buzzes. 
Thus, classifying buzzes using cutoff values will result in 
one true buzz yielding several buzz predictions at the sec-
onds in the window. As a result, the buzzing frequency 

is likely to be overestimated. Furthermore, a buzz tends 
to inhibit initiation of a new buzz in the first couple of 
seconds, but thereafter excite new buzzes [26]. To correct 
for this, we counted consecutive positive predictions as 
one buzz and placed the startup in the observation at the 
highest probability (Fig.  4). A marginal number of con-
secutive buzzes are present in the data, but not enough 
to have any significant effects on the results. Additionally, 
buzzes interlinked by breaks shorter than a second are 
likely to be tied to the same prey capture attempt.

We assessed the precision and recall of the model pre-
dictions. Precision is defined as the number of true posi-
tives over the number of positive predictions (i.e. the 
proportion of estimated buzzes that are true buzzes), 
while recall is the number of true positives over the num-
ber of positive observations (i.e. the proportion of buzzes 
that are correctly identified):

To allow for slightly time-shifted predictions, we defined 
extended versions of precision and recall as functions of 
the distance k in seconds to the nearest observed or pre-
dicted buzz:

(3)Precision =

∑n
i=1 yiŷi

∑

i=1 ŷi
; Recall =

∑n
i=1 yiŷi

∑n
i=1 yi

.

(4)

Precision(k) =

∑n
i=1 max{yi−k , . . . , yi, . . . , yi+k}ŷi

∑

i=1 ŷi
;

Fig. 3 Average Dice loss from fivefold cross‑validation for different 
prediction cutoff values. Optimal value is between 0.09− 0.10 (large 
dots). Black line: Dice loss on chronologically split folds, eq. (1). Blue 
line: Dice loss on randomly split folds, eq. (1). Red line: adjusted Dice 
loss on chronologically split folds, eq. (2)
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Fig. 4 One‑minute representative extract of buzz probability predictions from 2016MM1 bottom dive data (lower panel), visualizing how highest 
point probability above threshold results in buzz prediction (blue dots) and how these align with observed buzzes (red dots). Three‑dimensional 
acceleration and RMS jerks are also shown to indicate how these interact with the buzz activity
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Together, these indicated how much of the buzzing activ-
ity is recognized by the model as well as how reliable the 
model predictions are. The results based on the test set 
predictions for k = 0, 1, . . . , 30 are plotted in Fig. 5.

For the leave-one-out approach, the precision was 
0.309 and the recall was 0.213 ( k = 0 ). Of the predicted 

(5)Recall(k) =

∑n
i=1 yi max{ŷi−k , . . . , ŷi, . . . , ŷi+k}

∑n
i=1 yi

.

buzzes, 68% were at most 2  s from an observed buzz. 
Furthermore, 46% of the observed buzzes fell in a 2-s 
window of a positive prediction. For 30-s intervals, the 
numbers increase to 94% of predicted buzzes and 82% 
observed buzzes. This implies that the vast majority of 
predicted buzzes correspond to true buzzes, however, 
some buzzes are missed. In the "Detection analysis" 
section, we investigate whether the undetected 54% (2-s 
window) and 18% (30-s window) of observed buzzes 
differ from the detected buzzes in a systematic way. A 
limit of 30-s was chosen to asses if a buzz was detected 
within the same foraging event, while 2-s intervals indi-
cate if the individual buzz was detected.

The results for the chronological split of data gave 
similar results for recall with slightly better precision. 
For k = 0 , the precision was 0.323 and the recall was 
0.208. For 2-s intervals this increases to precision 0.729 
and recall 0.457, while for 30-s intervals the precision 
was 0.967 and the recall was 0.826. This can also be 
derived from Fig. 5 where the precision is a few percent 
above the leave-one-out curve after the initial seconds, 
while the recall is essentially the same. Predicting on 
the training data yielded a slightly higher precision of 
0.339 and recall of 0.251. This is fairly unsurprising as 
testing on the training data tends to overestimate per-
formance. 71% and 94% of predictions fell in a 2- and 
30-s window of a prediction, respectively. 51% and 
86% of observed buzzes were within 2 and 30  s of a 
prediction.

Fig. 5 Precision/proportion of predicted test set buzzes that are 
within 0‑30 s of an observed buzz (left) and recall/proportion of 
observed buzzes which are within 0‑30 s of a predicted buzz (right). 
Results are shown both for model trained on 80% of data across all 
narwhals and models trained by leaving one whale out

Table 2 Time to nearest observed test set buzz (seconds) between detected and undetected observed buzzes across the 10 models 
trained by leaving one narwhal out. Detection status refers to whether there is a predicted buzz in a 2/30‑s window of the observed 
buzz

Buzz type Min. 1st Qu. Med. Mean 3rd Qu. Max

Detected 2s 1 6 9 13.08 15 4851

Undetected 2s 1 5 8 14.67 14 3329

Detected 30s 1 5 8 11.61 13 4851

Undetected 30s 1 6 11 24.42 28 3329

Table 3 Number for buzzes, median buzz distance, tag placement and detection rate for different model fits with each narwhal used 
as test data and the remainder as training set. Detection rate refers to observations having a positive prediction in a 2/30‑s window

Whale as test 2014MM6 2016MM1 2016MM3 2017MM1 2017MM3 2018MM1 2018MM2 2018MM4 2018MM5 2018MM6

No. of buzzes 4301 4587 2798 1979 7119 615 132 499 905 2497

Median buzz dist. 6 10 18 6 7 18 22 17 9 9

Tag placement Left Right Right Right Right Left Right Left Left Left

Detection rate 2s 0.27 0.83 0.60 0.32 0.29 0.31 0.35 0.60 0.73 0.45

Detection rate 30s 0.72 0.99 0.82 0.88 0.74 0.55 0.69 0.79 0.95 0.87



Page 10 of 15Jensen et al. Animal Biotelemetry  2023, 11(1):14

Detection analysis
In Table  3, we list the distribution of time elapsed 
between buzzes in the detected and undetected groups. 
Results are shown for the leave-one-out analysis only as 
both approaches gave similar results. For the 30-s inter-
vals the average and third quartile both have twice as 
much time between undetected buzzes, than that of the 
detected, thus indicating that undetected buzzes showed 
tendency towards being more “solitary” buzzes. However, 
the model was able to detect some truly solitary buzzes 
(the max among the detected buzzes was 4851 s, which 
is more than an hour and thus is a single observed buzz 
in a dive). Due to the high maximum values caused by 
dives with only one buzz occurrence, the distribution is 
skewed, and the median is therefore more informative of 
the typical time distance than the mean. For 2-s intervals, 
the distribution is more similar between undetected and 
detected buzzes.

Results across the 10 models trained by leaving one 
whale out were best for 2016MM1 and 2018MM5 and 
worst for 2018MM1 and 2018MM2 (Table  2). Perfor-
mance varies a lot depending on the narwhal with ≈ 80% 
of buzzes for 2016MM1 being detected within 2-s inter-
vals, whereas 2018MM1 barely reaches 50% detection 
rate in 30-s intervals.

For the model fitted on all whales, performance was 
best for 2016MM1, 2017MM3 and 2018MM4, and 
worst for 2016MM3 and 2018MM1 (Table  4). In the 
extreme cases, the model was 15.22

0.30
≈ 51 times more 

likely to detect a buzz in a 2-s interval for 2016MM1 
than for 2018MM1. Compared to the leave-one-out 
approach, results seem noticeably better for 2014MM6, 
2017MM3 and 2018MM4 and noticeably worse for 

2016MM3, 2018MM1, 2018MM5 and 2018MM6. 
Potential causes for this are considered in the "Discus-
sion" section.

Buzz frequency per dive
To assess the ecological role of the narwhal, it is of 
interest to estimate the quantity of dives that are ded-
icated to foraging. Inspired by [15], we compared the 
observed number of buzzes per dive with the predicted 
amount in Fig.  6. We likewise assessed how well the 
model could distinguish between non-foraging versus 
foraging dives, i.e. dives with or without buzzes. Over-
all, we predicted 17,557 buzzes versus 25,432 observed 
across the 10 leave-one-out splits, meaning the buzz 
quantity was underestimated. When classifying dives, 
our model had a precision of 0.860 and a recall of 0.909. 
Further details on the dive classification results are 
shown in Table 5. Among the misclassified forage dives 
72 of the 85 dives belonged to 2016MM6 of which most 
were shallow dives of depths under 50  m and with a 
marginal number of buzzes. This behaviour pattern was 
mostly unique to 2016MM6 and not prevalent among 
the other narwhals. For the 80-20 split the results were 
similar regarding underestimation yielding 3,  869 pre-
dicted buzzes versus 6, 001 observed. Results for clas-
sifying dives were noticeably better with a precision 
of 0.947 and recall of 0.939. The quasi-poisson model 
predictions were greatly underestimated with a maxi-
mum of 4 predicted buzzes in any given dive. Results 
did not improve when excluding non-forage dives from 
the training and test data.

Table 4 Number of training/test set buzzes and median seconds elapsed between buzzes for each whale for in model trained on 80 
% first observations of each whale, also includes rate and odds‑ratio for observations having a prediction in 2/30‑s windows

2014MM6 2016MM1 2016MM3 2017MM1 2017MM3 2018MM1 2018MM2 2018MM4 2018MM5 2018MM6

Training set

 No. of buzzes 2756 3153 2348 1252 5770 472 132 432 835 2281

 Median buzz dist. 7 10 17 6 7 16 22 19 8 9

 Detection rate 2s 0.25 0.83 0.64 0.43 0.38 0.38 0.36 0.56 0.77 0.57

 Detection rate 30s 0.68 0.99 0.87 0.91 0.86 0.67 0.73 0.74 0.95 0.94

 Detection OR 2s 1 14.65 5.51 2.32 1.87 1.89 1.68 3.90 10.10 4.05

 Detection OR 30s 1 31.62 3.34 4.78 2.87 0.99 1.28 1.35 9.51 7.32

Test set

No. of buzzes 1545 1434 450 727 1349 143 0 67 70 216

 Median buzz dist. 6 10 24 5 6 31 Na 9 29 21

 Detection rate 2s 0.31 0.87 0.33 0.28 0.36 0.12 Na 0.70 0.46 0.37

 Detection rate 30s 0.83 0.99 0.53 0.87 0.83 0.20 Na 0.99 0.76 0.57

 Detection OR 2s 1 15.22 1.10 0.84 1.22 0.30 Na 5.17 1.85 1.29

 Detection OR 30s 1 18.35 0.23 1.36 1.01 0.05 Na 13.66 0.65 0.27
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Fig. 6 Predicted versus observed number of buzzes per dive on test set for leave‑one‑out split (left) and chronological split (right). The line is the 
identity and thus, the closer the points fall to this line, the better the predictions. Point size indicates number of observations. There are more buzzes 
and dives in the left plots because the leave‑one‑out split has larger test set and smaller training set than the chronological split. Top row shows 
results for the main model, while bottom row shows results for the quasi‑poisson model

Table 5 Distribution of test set dive maximum depths grouped after observed dive type (foraging or non‑foraging) and classification 
results (correct or incorrect). Results are for the models trained by leaving one whale out as test set. The presence or absence of buzzes 
determines the dive type. Correct forage dives are deep compared to the correct non‑forage dives, while the incorrect dives fall 
between the two. This might indicate that depth is indicative of dive type for certain depths

Dive type No. of dives Target depth of dive

Min. Lower quartile Median Mean Upper quartile Max

Correct foraging 844 49 342 444 430 528 845

Correct non‑foraging 822 20 27 37 54 65 332

Incorrect foraging 85 21 28 36 94 54 680

Incorrect non‑foraging 137 30 61 101 127 164 546
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Discussion
The models performed poorly when trying to detect the 
exact timing of a buzz initiation. However, a significant 
proportion of the predictions were only off by a few sec-
onds (Fig.  5). We found that ≈ 68% of the buzz predic-
tions were within 2  s of an observed buzz and ≈ 94% 
within 30 s. When the model predicts a buzz it is there-
fore highly likely that buzzing is taking place within 30 s 
of the given time. Obviously, buzz detection within larger 
intervals will always improve the accuracy, but there is a 
noticeable jump in accuracy, especially in the first sec-
onds of both precision and recall (Fig. 5). The observed 
buzzes are largely in close proximity to predicted buzzes, 
but a bit less so, with ≈ 46% and ≈ 82% falling within 2 
and 30 s windows of a prediction, respectively. The curve 
for recall does not seem to have converged within the 
30-s interval. However, we deem buzzes more than 30 s 
from a prediction to be too inaccurate to be considered 
detected.

The purpose of this study was not to predict the exact 
timing of narwhal buzzes, but rather if a prey capture 
attempt has a corresponding positive model predic-
tion. This is indeed the case: most buzz predictions fall 
in a short interval of a true observation, although ≈ 18% 
of buzzes remained undetected, even when considering 
30-s intervals. It is apparent that the detected buzzes 
were more clustered and therefore more likely to overlap 
with a prediction (Table 3). Most buzzes were, however, 
spaced out with 5+ seconds in between and the results 
were still fairly good when allowing predictions to be off 
by only 4 s (Fig. 5). The majority of observations should, 
therefore, have a corresponding prediction and vice 
versa. The estimated number of buzzes per dive seems 
to follow similar trends to the true buzzes, although with 
noticeable levels of underestimation (Fig. 6).

Another reason for the undetected buzzes could be 
differences in behavioural patterns compared with the 
detected buzzes (such as less strong jerk motions or 
shallow depths). The undetected buzzes were associ-
ated with slightly lower acceleration activity on aver-
age, but no other features were found to have obvious 
distributional changes (results not shown). Alter-
natively, the prediction performance varied signifi-
cantly between individuals. Overall performance was 
good for 2016MM1, 2016MM3, 2017MM1, 2018MM5 
and 2018MM6, decent for 2014MM6, 2017MM3 and 
2018MMM4 and poorest for 2018MM1 and 2018MM2. 
The narwhals, on which the model performed worst, 
have in general fewer and more spread-out buzzes, 
which might explain why they were harder to detect. 
Variations in tag placement could be a reason behind 
the large gaps in performance, but comparing the nar-
whal’s tag placement side with their detection rate does 

not indicate any strong correlations as both left- and 
right-side tagged whales are in the best and worst per-
forming groups.

Comparing the leave-one-out approach to the chrono-
logical split showed varying results (Table 2 and Table 3). 
Somewhat surprisingly, some narwhals performed better 
when not previously observed. Comparing the chrono-
logical and individual-based test sets showed that, for 
most narwhals, a higher detection rate seems to corre-
spond to a lower median buzz distance, which seems like 
a probable explanation for the better performance. For 
2014MM6 and 2017MM3, we saw a significant increase 
in quality despite having a high number of buzzes and 
similar median buzz distance in both test data splits. In 
contrast, 2016MM1 saw only marginal improvement 
while also having a large number of observed buzzes 
in each test set. Overall, the results are worse on the 
individual-based split. However, the effects vary a lot 
depending on the individual narwhal. Overall, fitting and 
evaluating on the same narwhals seem to have less of an 
impact than the variations in test and training set.

The estimations of buzz frequency per dive are centred 
around the ground truth with a tendency towards under-
estimation, especially among dives with a higher number 
of buzzes (Fig. 6). It should be noted that dive duration 
has not been corrected for in this figure and longer dives 
contain more buzzes all things equal. For the dives with 
more than approximately 50 buzzes we underestimate 
the number of buzzes in all dives, indicating that we per-
form worst on the dives with highest buzzing rate. The 
majority of dives with zero buzzes were, however, cor-
rectly identified (Table  5). Results for the main model 
were vastly better than for the quasi-poisson model on 
both data splits (Fig. 6). This is despite that fact that the 
quasi-poisson model is fitted to aggregated results per 
dive, whereas the main model only considers buzzes on 
a moment-to-moment basis. This seem to indicate that 
acceleration and jerk motions diving patterns alone are 
not sufficient for estimating buzzing activity and that the 
inclusion of acceleration and jerk data greatly enhances 
the predictions.

Comparing the results to those of [15], our model per-
forms significantly better than the logistic regression 
and random forest model. Comparing the results of the 
U-net implementation, our implementation seems at the 
very least competitive if not better. The predictions of the 
U-net model tend towards overestimating the number of 
buzzes per dive whereas our model underestimates. The 
precision of the U-net is initially higher at around ≈ 0.62 
vs our 0.31. However, within the 5-s interval our preci-
sion increases to around 0.80, where the U-net is fairly 
stagnant at around 0.7. The random forest and logistic 
regression methods of [15] seem both significantly less 
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precise in a 5-s interval and also less accurate when esti-
mating buzz frequency per dive.

When classifying foraging and non-foraging dives, the 
model performed well. Dive depth had a strong deter-
mining effect as the correctly classified non-foraging 
dives are significantly more shallow than the rest (Table 5 
). This is backed by [7], where dives below 300 ms were 
found to predominantly be related to foraging. Thus, a 
rough classification of foraging dives is probably possible 
solely based on the dive depth and shape. However, shal-
low dives (less than 40 m deep) are present in all classifi-
cation groups (Table 5). Results were significantly better 
on the 80-20 data split than the leave-one-out approach. 
A determining factor was 2016MM4 as this whale 
showed a larger tendency towards very shallow forage 
dives, most of which were included in the training set of 
the 80-20 approach. It is unknown if this is unusual or 
part of variable behaviour. It is, therefore, hard to deter-
mine which data split has the most realistic precision and 
recall. The shallow dives occurred at areas also visited 
by other narwhals. Hunting ground does, therefore, not 
seem to be the determining factor.

Data limitations
The narwhals included in this paper were all tagged 
around the fjords of Scoresby Sound for a week or less 
in August. Data might not be representative of overall 
narwhal behaviour and should therefore preferably be 
compared to similar data. The narwhals inhabit Scoresby 
Sound fjord for most of the summer, but spent winters 
off-shore [8] where they dive deeper and eat more [27]. 
The difference in depth and hunting ground indicate that 
the narwhal hunt other prey during winter, which could 
yield different jerk signals than seen in the summer data. 
However, the model can be refitted on winter data if 
available.

When used for foraging detection, accelerometer 
estimations are less precise and transparent than buzz 
recordings, since specific motion patterns are unlikely 
to be as indicative as a specific and recognizable buzz 
sound. Additionally, if the environment of the narwhal 
changes drastically, it might also affect the model’s per-
formance. External factors expected to affect foraging 
might also affect movement patterns. If, for example, the 
narwhal becomes more stressed it might show more spo-
radic movement patterns which could be mistaken for 
foraging patterns. However, judging by data initially fol-
lowing release it seems that escape dives, in general, are 
not sufficiently deep to be mistaken for foraging dives. 
This was also observed under a controlled noise exposure 
study [11, 12]. This indicates that narwhal behaviour, at 
least during some stressful situations, is clearly distinct 
from foraging behaviour.

Conclusion
We provide an alternative or supplement to acoustic 
recordings when detecting narwhal foraging attempts 
in the form of statistical estimation using accelerometer 
data. Model predictions were not accurate enough to 
estimate the exact timing of a buzz, but were in general 
only off by a few seconds. 46% of observed buzzes were 
in 2-s windows of a prediction, increasing to 82% in 
30-s windows, although performance varied depending 
on the narwhal. Additionally, we found the model esti-
mates of buzz frequency per dive and dive classification 
to be accurate, although underestimating the number 
of buzzes, especially in dives with high buzz activity.

Comparing the results to [15], the methods are com-
petitive to the U-Net convolutional network, despite 
the simpler model choices and data sampling. Compar-
ing the results to the logistic regression model, we see 
significant improvements in our implementation. Addi-
tionally, we conclude that considering only the startup 
of narwhal buzzes seems to yield adequate results for 
modelling narwhal foraging, as long as effects of future 
acceleration features are accounted for. Lastly, we rea-
son that the methods discussed in this paper can be 
repeated for detecting foraging activity of other marine 
mammals. Our results offer new avenues for animal-
borne tag development demonstrating a new and 
valuable usage for depth and acceleration data. By inte-
grating on-board processing of these data into long-
duration tagging applications, information on foraging 
activity could be relaid via satellite links from the entire 
deployment period. The narwhal and the closely related 
beluga (Delphinapterus leucas), are the only toothed 
whale species inhabiting the Arctic year-round. Due to 
its habitat, there are still major knowledge gaps regard-
ing their behaviour and habitat use during winter. In 
addition, the Arctic is changing rapidly with increasing 
sea temperature, decreasing ice-coverage and increas-
ing anthropogenic disturbance. A tag that could esti-
mate the amount of buzzes in a given dive or even just 
detect buzzes and recognize a dive as a foraging dive, 
would yield critical knowledge on narwhal behaviour 
during migration and at the wintering grounds. Addi-
tionally, it may allow identification of critical forag-
ing habitats during winter when most of the foraging 
is thought to occur. This has not only high biological 
significance, but would also improve the management 
of the species. Finally, this type of data would allow us 
to assess narwhal resilience in the changing Arctic and 
their responses to anthropogenic disturbance outside 
their fjord habitats during summer. Data collected in 
the future would allow to determine any spatiotemporal 
shifts in foraging.
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