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An open-source platform for sub-g , sub-µ A 
data loggers
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Abstract 

Background Rapid improvements in inexpensive, low-power, movement and environmental sensors have sparked 
a revolution in animal behavior research by enabling the creation of data loggers (henceforth, tags) that can capture 
fine-grained behavioral data over many months. Nevertheless, development of tags that are suitable for use with 
small species, for example, birds under 25 g, remains challenging because of the extreme mass (under 1 g ) and power 
(average current under 1 µ A) constraints. These constraints dictate that a tag should carry exactly the sensors required 
for a given experiment and the data collection protocol should be specialized to the experiment. Furthermore, it can 
be extremely challenging to design hardware and software to achieve the energy efficiency required for long tag life.

Results We present an activity monitor, BitTag, that can continuously collect activity data for 4–12 months at 0.5–
0.8g , depending upon battery choice, and which has been used to collect more than 500,000 h of data in a variety 
of experiments. The BitTag architecture provides a general platform to support the development and deployment of 
custom sub-g tags. This platform consists of a flexible tag architecture, software for both tags and host computers, and 
hardware to provide the host/tag interface necessary for preparing tags for “flight” and for accessing tag data “post-
flight”. We demonstrate how the BitTag platform can be extended to quickly develop novel tags with other sensors 
while satisfying the 1g/1µ A mass and power requirements through the design of a novel barometric pressure sensing 
tag that can collect pressure and temperature data every 60s for a year with mass under 0.6g.

Keywords Biologging, Dataloggers, Accelerometer, Pressure sensor, Songbird activity

Background
A wide variety of sensors have been used in studying 
animal behavior including accelerometers, barometers, 
temperature sensors [1–5], and various devices used for 
geolocation [6–8]. [9–11] provide surveys of the available 

technologies and their use in animal behavior research. 
While the tag designs we present in this paper utilize 
accelerometers to measure motion and barometers to 
measure changes in altitude, the system we present and 
its corresponding design processes are easily extended to 
support both other types of sensors and other data col-
lection protocols.

The key attribute of our tag designs is the combination 
of longevity with low mass. It is difficult to find published 
specifications for sub-gram archival tags—Table  1 pro-
vides details of several archival tags with mass under 2 g 
including the two tag designs discussed in this paper—
BitTag and PresTag. The closest comparable design in 
terms of mass is the pressure sensor tag developed at 
Cornell University [5] which, as we will discuss, requires 
significantly more power than either of the tags we 
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present. We excluded tags with only a light sensor from 
our discussion.

Accelerometers have been especially useful in stud-
ies relating to migration, its timing, and flight behavior 
of small birds [4, 17–21]. Accelerometers can be used to 
determine when an animal is active and, with additional 
signal processing, the nature of its activity (e.g., resting, 
flapping, or gliding). Pressure sensors (altimeters) have 
been used for studying the flight behavior of animals and 
for discerning group behavior [22–25]. Remarkably, pres-
sure sensor data can be combined with global weather 
data to provide relatively accurate global positioning. [26]

It seems natural that the additional burden of carrying 
a tag could be deleterious to animals in general and birds 
especially. Although 3–5% has been used as a “rule-of-
thumb” for maximum tag mass, it is far from clear what 
limit is necessary [27]. There have been a number of 
attempts to quantify the effect of additional mass on the 
survival of the experimental subjects [28–32].

One might reasonably ask how many species can be 
studied with a tag of a given mass. There have been sev-
eral studies that analyzed the available data on the weight 
of various species [33–35]. The essential takeaway is 
that the vast majority of bird species (more than 75% of 
6209 studied) are in excess of 16 g with a median mass of 
37.6 g. Thus, at 3% body weight, a 0.48 g tag can be used 
with 75% of all bird species.

Because of the engineering effort required to create 
a novel tag [36], it is tempting to combine a variety of 
sensors in a single design and indeed such designs have 
found great utility with larger bird species [37]. However, 
ultimately biologists are engaged in a battle of weight—
improvements in miniaturization have led to smaller 
tags, but that in turn has led to their use on smaller ani-
mals [38]. Rather than attempt to create a multi-purpose 
tag with a variety of sensors, we address the engineering 

difficulties inherent in creating ultralight, ultra-low 
energy tags that can be specialized to their application.

Methods
The physical design of tags is just a small part of the effort 
required to create a tag system. To be useful, the tags 
require a support “system” that enables tag configuration, 
battery charging, and data recovery. This system includes 
both software (tag firmware, configuration software, 
data processing), and support hardware. The BitTag sys-
tem architecture is designed to be extensible in order to 
enable the rapid development of tags with other sensors 
or data collection protocols. The keys to this extensibil-
ity are a flexible software architecture that enables adding 
new tags to the system with minimal software develop-
ment and a hardware architecture that supports rapid 
prototyping with accurate power measurement.

In order to demonstrate this extensibility, we present 
the design of a prototype barometric pressure sensor 
tag— PresTag—which has 100 times more memory and 
uses less than 1/10 the power of a recently published 
design. [5] PresTag can collect altitude (pressure/temper-
ature) data every 60 s for over a year with a 0.23 g battery 
and an expected mass of under 0.6 g.1 The large storage 
and low power requirements of PresTag make it ideal for 
use with a recently developed geolocation algorithm that 
utilized global weather data to estimation location using 
only pressure measurements [26].

In this article, we describe the BitTag system includ-
ing key architectural decisions that make it easy to create 
novel tags with different sensors and data collection pro-
tocols. We also discuss the tools and techniques we use 
to optimize their energy usage.

Achieving sub-µ A currents requires careful hard-
ware and software design, and the measurement of the 
dynamic power consumption of actual tags. Very small 
errors in either software or hardware can completely 
destroy the energy budget; for example, with a misconfig-
ured pin we have observed excess current consumption 
of up to 100 µ A (our design budget is under 1 µA).2 In 
the tags we design, all of the required energy is carried in 
the form of batteries—for sub-g tags, energy harvesting 
through solar or other means would add significant addi-
tional complexity and mass.

As an example tag, consider BitTag, illustrated in Fig. 1. 
BitTag utilizes a low-power accelerometer to detect when 
an animal is active (e.g., when the acceleration due to 

Table 1 Example archival tags under 2 g

A accelerometer, L light, M magnetometer, P pressure, T temperature
a Estimated using same batteries as BitTag
b Not including battery
c Estimated

Manufacturer Mass (g) Memory Sensors Reference

Cornell University 0.33-0.67a 40KB P [5]

Swiss Ornithological 
Institute

1.3 Unknown ALMPT [12]

UC Berkeley 1.5-2.5 512KB A [13]

Lund University 1.2 Unknown AL [14, 15]

Wild Byte Technologies 1.7b MicroSD AMPT [16]

BitTag 0.5-0.8 240KB A This article

PresTag 0.5-0.8c 4MB P This article

1 While we have prototyped PresTag and designed the tag PCB, the current 
semiconductor shortage prevents building the final design. The mass estimate 
is based upon a design with exactly the same outline as BitTag.
2 As an example, the STM32 pins include configurable (nominally) 40 k� 
pull-up resistors which, at 2.5 V, draw 62  µA.
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movement crosses a threshold measured in g). Activity is 
detected on a per-second basis as bits that are aggregated 
and stored in flash memory. BitTags with 0.5–0.8 g mass 
(depending upon battery) have been used in experiments 
with a variety of species (Dark-eyed Junco, Pine Siskin, 
Great Tit, White-crested Elaenia, and American Robin) 
with both captive and free animals to collect more than 
500,000 h of activity data.

BitTag is part of a larger system architecture that 
includes supporting software and hardware. The hard-
ware for a tag system consists of a tag, a base board, and 
a host computer. The base board includes battery charg-
ing circuitry, a processor to mediate communication 
between the tag and a host computer, and hardware to 
support high-resolution power measurement. In addition 
to these hardware components, the system includes both 
host software, for accessing tags, and the software (firm-
ware) executing on the tag. In addition to presenting the 
components of our BitTag system, we explore our tech-
nique for measuring tag power requirements and esti-
mating long-term energy consumption. By design, our 
power measurement solution utilizes the same hardware 
that we provide to researchers for configuring tags and 
that hardware can also be used to program new firmware 
onto tags.

We begin with a generic tag architecture and then dis-
cuss the BitTag system hardware and software design. In 
order to make the BitTag system extensible, the design 
of the host and tag software builds upon a well-defined 
software architecture that dictates how the host and tag 
exchange information. Our software architecture is eas-
ily extended to support the configuration of new types of 
tags and downloading of new types of logging data.

A high-level view of the major components of a generic 
tag is illustrated in Fig. 2 with optional sub-components 
indicated by dashed boxes. Every tag has an interface, a 
battery, a real-time clock (RTC), and a processor. We dis-
tinguish between components that are always powered 
(the “always on” domain), and components that consume 

too much energy to remain powered when not in use 
(the “switched” domain). The always on domain includes 
the core processor, the RTC, and any devices (sensors or 
flash memory) with sufficiently low quiescent current ( Iq ) 
to remain powered throughout the tag life. The acceler-
ometer used in BitTags (ADXL362) has a low 10 nA Iq . 
Some tags will have external devices with high Iq requir-
ing them to be electrically disconnected when not in use. 
For example, we have built prototype tags with pressure 
and light sensors that have quiescent currents of greater 
than 0.5 µ A which mandates the use of power switching.

Clearly, an important step in tag design is the selection 
of components that are capable of meeting the energy 
constraints necessary to collect data over long periods. 
In our tags we use the STM32L43x family of processors, 
which have extremely low-power “standby” states (under 
100  nA ignoring the cost of the RTC reference signal), 
and, most recently, the RV-3028 RTC, which has 1 ppm 
accuracy and consumes 45 nA. With these components, 
our tags require approximately 210 nA (measured) when 
hibernating. The difference between this number and 
one reached simply by calculating from a datasheet is an 
important reminder of the need to measure actual cir-
cuits. For example, driving the clock signal from the RTC 
to the processor consumes energy, real capacitors suffer 
from leakage, and the cost of driving the processor RTC 
from an external clock signal cannot be determined from 
the datasheet.

Furthermore, datasheet estimates frequently assume 
the specific operating conditions and actual consump-
tion can vary significantly—especially in the extreme 
low-power domain where our devices operate and hence 
depend crucially upon the tag software. Examples of soft-
ware impact include the frequency with which the pro-
cessor wakes, how often the processor communicates 
with peripheral devices, and how long the processor is 

Fig. 1 BitTag. Left image shows the top side of a BitTag with a 0.23 g, 
5.5 mA h battery. Right image shows a Pine Siskin (12–18 g) with tag. 
Tags are attached with a loop harness [39] constructed from elastic 
thread. Pine Siskin photo courtesy of Ben Vernasco

Processor

Low Iq
Devices

RTC

Always On

High Iq
Devices

Switched

Battery

Regulator

Power

Interface

Fig. 2 Generic tag architecture. Every tag has a processor, real-time 
clock (RTC), battery, and interface. In addition, tags have devices 
(e.g., sensors) with low quiescent current Iq which are continuously 
powered and may have high Iq devices which are powered only 
when in use. Depending upon battery chemistry, a tag may require 
voltage regulation
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active when it wakes. Measurement of actual energy con-
sumption over a variety of operating modes is a crucial 
step in tag development and a key topic discussed in this 
section.

BitTag
The operational concept of BitTag is simple; the tag 
contains an accelerometer that detects movement and, 
based upon the movement dynamics, determines if the 
subject animal is active. Each second BitTag generates a 
single bit of information—1 if the animal is active, 0 if it 
is not. These bits are aggregated (counted) over a meas-
urement period ranging from 1 s to 5 min; at the end of 
each aggregation period the counts are stored in non-vol-
atile memory. The choice of aggregation period depends 
upon the length of the experiment and is constrained by 
the amount of available storage—248 h for raw data (1 s 
“aggregation”) to 8660 h for 5 min aggregation.

The key component in the BitTag is an extremely low 
energy accelerometer—the ADXL362 [40]. This accel-
erometer has special activity detection hardware that 
samples acceleration along 3-axes at 6  Hz to determine 
transitions between active and inactive states. Briefly, an 
animal is active if it displays acceleration (changes) above 
a configured threshold, and it is inactive if its accelera-
tion (changes) remains below a configured threshold. 
The detection algorithm is illustrated in Fig. 3. This sen-
sor is remarkably efficient (300 nA), yet very effective at 
tracking bird activity which can result in large changes 
in acceleration. In a previous article, we discussed our 
method for selecting the various sensor thresholds [41].

The circuit (block diagram) for BitTag is illustrated in 
Fig. 4. The various components are connected by stand-
ard hardware interfaces—I2C for the RTC, SPI for the 

accelerometer, and SWD (serial wire debug) [42] for the 
external processor interface. In our architecture, the 
external RTC is used only as a reference signal (1  kHz) 
that drives the processor’s clock circuitry. This results in 
considerable energy savings over using the RTC’s clock 
circuitry due to the inherent inefficiency of using the I2C 
open-drain architecture to access the current time from 
the RTC. The battery circuit is designed to allow pow-
ering the tag (from the base) while charging. The small 
batteries used in our tags have strict charging current 
limitations; hence our design includes a Schottky diode 
(D) to isolate battery voltage ( Vbat ) from internal power 
( VCC ). Note that the processor reset circuit is isolated 
from external electrical noise via an NPN transistor (Q). 
Finally, the circuit includes various load and decoupling 
capacitors (illustrated as a single load capacitor—CL).

The interface to our tags, consisting of two SWD sig-
nals, reset, ground, Vcc and Vbat is accessed through an 
array of six test points. This is illustrated in Fig. 5 show-
ing both sides of a v6 BitTag. During use in an experi-
ment, these test points are insulated with  Kapton® tape. 
The tags are protected from moisture and dust by a 
urethane coating (MG Chemicals 4223) developed spe-
cifically for electronics The batteries are wrapped with 
 Kapton® tape and, after masking the testpoints, the entire 
assembly is submerged in the polyurethane. Finally the 
tags are allowed to air dry.

Base board
The base board for the tags, illustrated in Fig. 6, provides 
a USB bridge to the tag SWD interface, a configurable 
battery charger, and an interface to an optional external 
power source which can be used to accurately measure 
the dynamic current required by an operating tag. We 

Fig. 3 ADXL362 activity detector. Consider a tag with two states—
inactive and active. An inactive tag (a) remains inactive until it 
experiences acceleration greater than the “active threshold” (b). 
An active tag remains active until it remains within a configured 
acceleration range for a configured time (d). Notice that whenever an 
active tag exceeds the configured threshold, the center of the range 
moves (c, d)

Qreset

stm32l4
swd

RTC (rv-3028)

i2c1024Hz

adxl362

spiwake

+

−
B

Vbat

D

CL

V cc

Fig. 4 BitTag circuit. Circuit illustrating the major components of a 
BitTag including the processor (stm32l4), real-time clock (rv-3028) and 
accelerometer (adxl392). The processor reset pin is isolated from the 
interface with an NPN transistor (Q). Power is supplied by battery (B). 
The internal voltage ( VCC ) is separated from the battery voltage ( Vbat ) 
by a Schottky diode (D). Only a single load/decoupling capacitor ( CL ) 
is illustrated. Various passive devices and supply/ground signals to the 
block components omitted for clarity
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program and communicate with our tags through the 
base USB connector using existing open-source tools and 
libraries such as openocd and st-util [43, 44]. To accom-
modate these tools, our base firmware emulates the 
st-link protocol used by ST Microelectronics in their pro-
prietary programmers [44].

The tags are connected to the base (illustrated in Fig. 6) 
by an array of spring loaded “pogo-pins” (these contact 
the six test points illustrated in Fig. 5) and are supported 
by tag-specific 3D printed holders. The use of 3D print-
ing for these adapters makes it possible to prototype 
new tag designs at low cost. The base processor provides 

a “bridge” between the tag SWD interface and the host 
USB interface.

The tag base circuit, illustrated in Fig.  7, consists of a 
processor (STM32F042), a configurable battery charger, 
and signals to control the SWD programmer inter-
face. The standard charging circuit for the LiMnSi bat-
teries used in our tags consists of a voltage source and 
battery specific series resistor; our circuit provides 
manually configured switches to select the appropriate 
resistor. As mentioned, an important design considera-
tion is the ability to connect an external power supply 
(the LPM01A [45]) providing wide-range dynamic cur-
rent (power) monitoring. Our base automatically selects 
between the base-generated 3.3 V source and the exter-
nal source (VDD) to provide the tag power (Vcc). This 
is accomplished through a low-leakage analog switch 
(SW1A). During power measurement, the base proces-
sor is disconnected from the tag interface with analog 
switches SW2A and SW3A. The processor detects con-
nection to the external power source by monitoring 
VDD. When not connected externally, the processor 
monitors the tag battery voltage (Vbat) through an inter-
nal analog to digital converter (ADC).

Charging the LiMnSi batteries we use is a slow process 
requiring several days to reach full charge. Consequently, 
we have also developed a low-cost charger base (under 

Fig. 5 BitTags. Two sides of a BitTag illustrating the major 
components and the array of test points that are used to 
communicate with the tag. Scale is mm

Fig. 6 Base for tags. The tag base provides a USB interface between 
a host computer and tag. The tag is supported physically by a 3D 
printed base that can be modified for new tag designs. The base 
provides a battery charger that is configured with load resistors and 
an interface to an external power supply/current monitor. The base is 
isolated from the tag with low-leakage analog switches

Fig. 7 Tagbase circuit (simplified). The tag base consists of a 
processor (STM32F042), circuitry for a battery charger and SWD 
interface to the tag, and (optional) input from an external power 
source (LPM01A). Selection of the power source for the tag is 
controlled through an analog switch (SW1A). The processor 
can be isolated from the tag through a pair of analog switches 
(SW2A,SW3A). The external power source provides two power lines 
with programmable, but equal voltages—VDD and VOUT; the current 
through VOUT is measured. Voltage regulation and circuit protection 
components are elided
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$30) that can be connected together in groups of 4–5 to 
be powered from a single USB cable.

Custom tags
In order to facilitate the rapid prototyping of new tag 
designs and the evaluation of candidate sensors, we cre-
ated a development platform that combines the interfaces 
of our base board with the processor and RTC required 
for our tags. In Fig.  8, this platform is illustrated along 
with a basic “daughter” card that includes an AT25XE321 
flash memory and an adapter to support the large variety 
of sensor evaluation boards from ST Microelectronics. 
In addition, one commercial (top right) and one custom 
(bottom right) sensor evaluation board are illustrated 
supporting LPS27 pressure sensor (top right) that we 
use discuss in this article, and an OPT3002 light sen-
sor (bottom right) that we have used to prototype other 
tag designs. Most commercial sensors are supported by 
manufacturer or third party evaluation boards (so-called 
breakout boards). While the platform base required com-
mercial fabrication, the daughter card and OPT3002 
breakout boards were fabricated in house with basic sol-
dering equipment.

Software architecture
The majority of the engineering effort in developing 
BitTag was expended on software; however, by careful 
design of the tag firmware and communication architec-
ture that enables host software to control a tag through 
the tag base, we have greatly reduced the programming 
effort for creating new tags. Here, we briefly discuss the 
features of our software architecture and point out which 
components must change for custom tags. There are 

three major components to consider—the communica-
tion architecture, the tag firmware, and the host software 
(considered later in this article).

The system software for BitTags consists of firmware 
(the software running on the tags), a host library support-
ing communication with tags that are connected through 
a base, and various host applications utilizing this library 
including a configuration GUI, command-line tools for 
testing and commissioning tags, and a data visualization 
tool (not discussed in this paper).

The key software architecture decision in our system 
was to implement host/tag communication with a proto-
col defined using Google Protocol Buffers [46]. Protocol 
Buffers provides a well-defined interface description lan-
guage for “Messages” and a “wire” format for serializing 
those messages. We use Protocol Buffers messages both 
to control our tags and to transfer configuration param-
eters and data between the host and tags.

Our use of protocol buffers greatly simplified the prob-
lem of providing a coherent and extensible interface 
between tags and hosts. By compiling from common 
source—the message definitions—all aspects of shared 
data are kept coordinated. Further, Protocol Buffers pro-
vide a standard way to extend the message definitions 
without breaking backwards compatibility. Thus, we 
can add support for new tags by extending the message 
definitions (for example to support new sensor types), 
and extend the host tools to utilize these new definitions 
without “breaking” support for existing tags. This is par-
ticularly important where tags “in flight” may be in use 
for many months during which new tags or iterations of 
tag firmware may be introduced. For example, our mes-
sage definitions allow future tags to add configuration 
and logging messages for new types of sensors and data 
without breaking the ability of our host tools to con-
figure and access earlier generations of tags. Further-
more, the host software utilizes configuration messages 
received from a connected tag to determine its type and 
capabilities.

Host software is built using Google provided C++ 
libraries while protocol buffer support on the tags is real-
ized with Nanopb—a lightweight C language protocol 
buffer library [47]. The Protocol Buffer libraries make it 
easy to build software applications that can communicate 
with tags through our base hardware.

The set of messages in our communication protocol 
were designed to match the tag “life cycle” illustrated in 
Fig.  9 which corresponds to a simplified version of the 
state machine implementing the tag runtime firmware—
several states have been omitted in the interest of brevity. 
Notice that there are three categories of states—Erased, 
Active, and Completed. In the Erased states, no data or 
configuration is stored in non-volatile memory. The 

Fig. 8 Tag breakout board (left), daughter card (center), and sensors 
(right). The tag breakout board (left) provides all of the functionality 
of a tag baseboard along with the processor and RTC used in a tag. 
All of the processor’s free pins are brought to connectors enabling 
the creation of accurate tag prototypes with suitable daughter cards. 
In this figure, a daughter card (middle) with an external flash and 
connector is illustrated along with both a commercial sensor board 
(upper right) and a custom sensor board (lower right)
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Active states correspond to a tag that is configured or is 
actively collecting data. In these states, configuration, and 
event and data logs are stored in non-volatile memory. 
Finally, the Completed states are post-experiment in the 
sense that data collection has ceased by design, by exter-
nal command, or through an unrecoverable error (e.g., 
power brown-out). In the Completed states, the event 
and data logs from the last Active period are preserved in 
non-volatile memory.

In addition to organization by groups of states, our fig-
ure distinguishes between two types of state transitions. 
Internal transitions are shown as dashed arrows and tran-
sitions in response to an external request (message) are 
shown as solid arrows. Every communication between 
the host and tag is initiated by the host sending a request 
message to the tag and completed by the tag returning a 
acknowledgement message to the host. In the following, 
when a command is mentioned, it can be assumed to be 
realized by exchanging a pair of messages between the 
host and the tag.

The initial state after commissioning and erasure is 
Idle. An experiment (biological or during tag develop-
ment) is initiated by the host from Idle, by configuring 
the tag with a Start() command. From the Configured 
state the tag enters the Running state once the configured 
start time has been reached. In Running the tag actively 
collects data; a tag may hibernate for a configured hiber-
nation period during which all data collection ceases. The 
fundamental difference between Hibernation and Run-
ning is that in the former, all sensors are powered down 
and the tag enters the lowest possible power (dormant) 
state while in the latter the tag is either quiescent (wait-
ing for an event) or the processor is actively running. In 
the case of BitTag, hibernation utilizes approximately 1/4 
the power of active data collection and hence may enable 

lighter tags to operate over significantly longer periods at 
the expense of continuous data collection.

The Start() command takes a configuration object 
(providing scheduling, sensor configuration, and other 
inputs) as a parameter. In execution, this configura-
tion object (a Protocol Buffer message) is transferred to 
the tag; when the tag evaluates the Start() command, 
it records the configuration and enters the Configured 
state. It is possible to abort execution of a tag by issuing a 
Stop() command.

Under ordinary conditions, a tag remains active until 
an end condition is met. This can be a configured end 
time, exhaustion of available data storage, or exhaustion 
of available energy. In each of these cases, the tag will 
enter Finish. The tag is returned from a completed state 
to Idle via an external Erase() command which erases 
any stored data.

The Test() command initiates internal self-test routines 
that check the basic functionality of sensors and other 
components. Pre-flight testing is especially important 
for tags because of the high opportunity cost of a multi-
month experiment. As an example, the ADXL362 accel-
erometer has a known issue that can occur if its power is 
not properly cycled (for example when attaching batter-
ies to tags). This issue is detected with the test routines 
in BitTag.

Several additional commands are available for access-
ing saved data and status logs, for determining the tag 
state and configuration, and for synchronizing the RTC.

Communication
Communication with the tags is realized through a sim-
ple request/acknowledge protocol that is implemented 
on top of the ARM debug interface using protocol buffer 
messages. Briefly, each of the procedures described previ-
ously (e.g., Start()), is implemented by sending a request 

Active

Completed

Erased

Idle Configured Running

Finished

Hibernating
Start()

Test()

Stop() Stop()

Erase()

Stop()

Fig. 9 Tag life cycle (simplified). The tag firmware is organized around this (simplified) state machine. The key life phases are Erased (no data or 
configuration are stored), Active (tag is configured for data collection), and Completed (data collection has ceased). State transitions initiated by the 
host are illustrated with solid arrows. Tag-initiated state transitions are illustrated with dashed arrows
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message to the tag and waiting for an acknowledgment 
message. The Req(uest) message is defined in Fig. 10. A 
request message contains one of the various choices. For 
example, the current tag state is requested with a request 
containing an (empty) get_status message and the cur-
rent configuration is requested with an (empty) get_con-
fig message. Some request messages are non-empty. For 
example, the start request carries a Config message, 
which includes all of the information necessary to con-
figure a tag such as start/stop times, hibernation periods, 
sensor and data logging configuration. The current sys-
tem and data logs can be requested with the log message.

In the protocol buffer language message fields have 
unique numerical identifiers (here, the integers 1–9). 
These numbers play an important role in encoding and 
decoding messages. Furthermore, (sub)-messages can 
be defined as new types and their contents embedded 
in other messages. An important characteristic of the 
encoding/decoding process for protocol messages is that 
unknown fields are ignored; the consequence of this is 
that messages in our application can be extended with 
new fields to support new types of tags without breaking 
backwards compatibility with existing tags.

The dual of the request message is the acknowledg-
ment which may return a variety of information from 
tag status to data logs. While the details have been 
omitted in this paper, there are a few key ideas that 
enable support of new tag types. Because sensor con-
figuration is unique to each tag type, the Config mes-
sage must be extended with new fields or sub-messages 
to support new sensors. To support new log data types, 
the acknowledgment messages are extended with new 
log data fields. These changes can be accomplished 
while maintaining backwards compatibility—new host 
software can support earlier tag types—and without 
requiring tag firmware to support message fields that 

are irrelevant to the tag. This extensibility is built in to 
the protocol buffers implementation. Furthermore, the 
host software can determine, by reading the tag infor-
mation and configuration, with what type of tag it is 
communicating and hence can dynamically customize 
the host interface to support that tag type.

Tag software
The tag software is organized around two threads—a 
main thread that implements the state machine illus-
trated in Fig. 9, which wakes periodically and performs 
data collection/recording tasks, and a communication 
thread that is active only when the tag is connected 
to a host though a tag base. As discussed previously, 
host software communicates with the tag using pro-
tocol buffer messages. These messages are sent to and 
received from the tag by writing to and reading from 
a reserved memory area utilizing the ARM SWD hard-
ware interface. The communication thread is awoken 
by an interrupt routine triggered through the SWD 
interface.

The main thread spends most of its life sleeping, with 
the processor in a extremely low-power standby state. 
The processor wakes from standby whenever an RTC 
alarm occurs or an external sensor (e.g., the accelerom-
eter in a BitTag) triggers a wakeup event through one of 
the dedicated wakeup pins. Recovering from standby in a 
STM32L4xx processor is somewhat complex because the 
wakeup event appears, to the software, as a reset event 
and because, by default, the only preserved state is a set 
of backup registers associated with the processor’s RTC. 
Whenever the processor wakes, the main thread per-
forms the following tasks: 

1. Initialize the real-time operating system.
2. Determine the wakeup event cause.
3. Determine the current time.
4. Execute the state machine.
5. Return to standby mode.

The core logic associated with data collection and log-
ging is associated with the “Run” state, which is necessar-
ily different for each tag architecture. In the BitTag, the 
actions taken in this state include: 

1. Determine if accelerometer is active.
2. Record activity in backup register holding current 

aggregation data.
3. At aggregation boundaries write to persistent stor-

age.

Fig. 10 Request message definition
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More generally, the run state can be defined by the fol-
lowing steps: 

1. Read sensors.
2. Log data.

When we create a new tag, the firmware that implements 
the tag lifecycle is retained. Only the code that corre-
sponds to configuration, data collection and logging, and 
log retrieval must be specialized to support new sensors 
or new data collection strategies.

Similarly, the communication thread code is common 
across tag types with extensions as needed to support 
retrieving new data log messages and reading/writing 
new configuration information.

Host software
The host software consists of a code library that provides 
a procedural interface to a tag and applications that use 
this library. These applications include a graphical user 
interface intended to be used by researchers who need 
to configure tags and download collected data, and com-
mand-line applications that can be used to test tags and 
configure them from stored configuration files. The host 
library is written in C++ and provides a tag object model 
that allows software to use a procedural interface for tag 
access.

Consider again the state diagram describing the tag 
“lifecycle” (Fig. 9) and notice the state transitions labeled 
Test(), Start(config), Stop(), and Erase(). These corre-
spond directly to methods of the tag C++ class which is 
used to build host software.

Additional methods support attaching/detaching from 
tags (through the tag base) and accessing data logs. We 
leverage this interface both for the graphical interface 
and for command-line tools to test and commission tags. 
The example in Fig.  11 illustrates the simplicity of this 
interface for creating custom command-line tools—in 
this case to set and check the RTC for short-term drift. 
The first step is to Attach to the tag (through a base con-
nected by USB). Once the tag is attached, its real-time 
clock can be set (based upon the host clock). In this 
example, the host sleeps for 2  s and then reads the tag 
status which includes its current RTC value in millisec-
onds. Finally, the test program computes the clock drift. 

While this may appear a useless exercise, it can detect 
whether the tag RTC is misconfigured or not running.

The primary tool for configuring tags and accessing 
their data is a graphical interface, qtmonitor. All of the 
functions of qtmonitor can also be accessed through 
command-line tools which simplifies the tasks for bulk 
configuration and bulk testing. The qtmonitor applica-
tion, provides the ability to gather metadata about a tag 
(for example, its hardware and firmware revisions), to 
read and write configurations used in experiments, to 
synchronize the on-board clock, and to access tag data 
post-experiment. The monitor screen, illustrated in 
Fig.  12, includes a number of tabs—“Tag State”, “Con-
figure”, and “Error Log”—to access various features. The 
Tag State tab provides status information about the tag, 
control functions, and information about the tag. The 
status information includes the current execution state 
(in this case Idle), battery voltage, and current RTC error. 
Tag information includes details about both the tag hard-
ware and firmware including the processor unique iden-
tifier (UUID) and the location and version of the software 
build. This tab is also used to initiate internal tests and 
access data from completed experiments. The “Error 
Log” provides basic debugging information in the event 
of application errors.

The configuration tab (Fig. 13) includes three sub-tabs 
for defining the data collection schedule, data format (for 
BitTag, the aggregation period), and sensor (ADXL362) 
configuration. The configuration tab for BitTag supports 
a single sensor—the ADXL362. This configuration tab 
defines a number of parameters including the sample 
rate, dynamic range, and activity detection parameters. 
This configuration tab is only displayed for tags with the 
ADXL362 sensor.

Our system software architecture has made it possible 
for us to extend qtmonitor to support other tag designs 
with different sensors without requiring significant 

Fig. 11 Example host application
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redesign. The qtmonitor application configures itself, 
based upon information obtained by querying a con-
nected tag, to display the appropriate configuration tabs.

Energy and power
Accurate energy and power estimation for our tags 
requires active measurement of the various operating 
modes. The datasheets for the various devices provide 
architectural guidance, but are not sufficiently accu-
rate for predicting tag lifetime or for determining peak 
power requirements. Furthermore, achieving the lowest 
energy utilization requires significant firmware tuning. 
For example, we minimized the cost of waking up from 
processor standby by optimizing the firmware initializa-
tion code. Power measurement is an ongoing part of our 
software development process—we iterate the firmware 
design based upon power measurements. In addition, 
relatively small configuration errors (for example in pro-
cessor pin initialization or sensor initialization) can lead 
to significant excess power usage which would be difficult 
to diagnose without accurate  power measurement.

Consider the power requirements for the key com-
ponents of BitTag illustrated in Table  2. The BitTag 
firmware uses the processor in two operating modes—
Standby when the tag (or bird) is idle and Run when 
changes in activity occur. Similarly, the ADXL362 
accelerometer has several relevant operating modes—
Standby when the tag is idle, Activity Detection when 
waiting for a significant change in acceleration, and 
Sampling when acceleration exceeds programmed 

Fig. 12 qtmonitor main tab. Main tab for monitor program. The tag 
information section is metadata provided from the tag including 
information about the hardware and the firmware including the 
specific software revision from the Git repository. The status section 
provides current status information including tag state, test results, 
voltage, and real-time clock error. The control section allows 
execution of self-tests (for an idle tag), halting a running tag, and 
erasing a completed tag. The Tag Attach section enables attaching/
detaching the base from a tag. Finally, for a completed tag, the data 
section enables data download

Fig. 13 qtmonitor adxl362 configuration tab. The BitTag 
configuration provides a number of options for the ADXL362 
accelerometer. The most important configurations are the 
activity detector thresholds and inactivity delay. In addition, the 
accelerometer sample rate (when active) can be configured along 
with the range. These configurations are provided to enable support 
for custom firmware—in the case of BitTag the defaults are generally 
accepted

Table 2 Power requirements of key components at 2.5V

Component Power Mode

STM32L432 725 µW Run at 2 MHz

622 nW Standby with external 32 kHz signal

805 nW Standby with external 32 kHz crystal

ADXL362 25 nW Standby

675 nW Activity detection

4.5 µW Sampling at 50 Hz

RV-3028 112 nW Normal operation
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thresholds. Notice that the specification for proces-
sor Standby power depends upon the source (and fre-
quency) of the reference signal. Furthermore, the cost 
of driving an external signal is not included. Surpris-
ingly, the designs presented in this paper require only 
525  nW with the external RTC because we drive the 
processor with a 1-kHz signal rather than the 32-kHz 
signal described in the datasheet. Finally, understand-
ing the power required for a tag requires knowing the 
relative time spent in the various operating modes.

Our tag designs and base support a range of small bat-
teries with capacities of 18–99 J (Table 3). Although Bit-
Tag is designed to operate with any of these batteries, we 
have only used the three larger devices in animal experi-
ments. BitTag has operated in experiments lasting 10–11 
months with 0.47 g batteries and in experiments lasting 3 
months with 0.13 g batteries.

There are two key energy-related measurements neces-
sary for tag development—average current and peak cur-
rent. The former is necessary to estimate tag lifetime with 
a given battery, while the latter is necessary to design reli-
able circuits. The small batteries that are suitable for our 
tags can deliver limited peak current which necessitates 
additional load capacitors to deliver high peak current for 
sensing and writing flash.

Peak current capacity of a battery is limited by its inter-
nal impedance ( � ). For example, the external flash we use 
has peak currents of 3.4 mA; with the MS518, which has 
internal impedance of 90 � , this would result in a 0.3 V 
drop without capacitors sized to deliver the necessary 
peak currents. Accurately sizing these capacitors is cru-
cial to minimizing leakage currents while bounding volt-
age ‘drop” during peak power events. Excessive voltage 
drop can result in processor shutdown.

The dynamic range of power requirements in our tags 
is roughly 5 orders of magnitude—200 nA-10 mA—and 
involves peak power events as brief as 50 µ s. In order to 
accurately measure power requirements, we need a cur-
rent monitor with both a high sample rate and a large 
dynamic range. We designed our tag bases to accept 
connection to the X-Nucleo-LPM01A—an inexpen-
sive (under $100) programmable voltage source that 
can make dynamic power measurements  with currents 

ranging from 100 nA to 50 mA at 100 kHz sample rates 
with a claimed 2% accuracy [45].

For example, the STM32L432 datasheet predicts that a 
64-bit flash write takes 80–90 microseconds and requires 
3.4  mA (average current). Figure  14 illustrates a com-
plete log-write sequence (two 64-bit writes) from proces-
sor wake up to return to standby. Although the current 
during the write pulses (to the extreme right) appears 
somewhat lower than predicted, the overall behavior is 
consistent with the datasheet estimate. Notice also the 
small current spike that occurs at the transition from 
Standby to running. The datasheet predicts a 1.23  mA 
spike for 20 µ s during this transition—this is at the limit 
for the 100 kHz sample rate of our measurement board.

In estimating peak power requirements, we utilize a 
feature of the LPM01A software that integrates current 
(and energy) over time; for example, the average cur-
rent in the illustrated example was 424 µ A and the total 
energy was 2.74 µ J at 2.5  V and the pair of flash writes 
required 1 µ J energy or 0.4 µ C charge ( 1µJ/2.5 V ). We 
can compute the load capacitance required to support 
these writes for a given voltage drop limit using the 
equation:

(where charge is q and voltage is V). For a maximum 0.1V 
drop, the required load capacitor is then

Capacitance =
q

V
,

4 µF =

0.4 µC

0.1V
.

Table 3 Seiko small Li–Mn batteries [48]

Type Size (mm) Weight (g) Capacity 
(mA h)

Capacity (J) �

MS414GE 4.8 × 1.4 0.08 2.0 18 100

MS518SE 5.8 × 1.8 0.13 3.4 30.6 90

MS621FE 6.8 × 2.1 0.23 5.5 49.5 80

MS920SE 9.5 × 2.1 0.47 11 99 35

Fig. 14 BitTag log write power. Power measurement for a single 
“wake” cycle with three current peaks. This cycle includes a 
peak due to processor exit from standby, and two peaks due to 
successive 64-bit flash writes. While awake, the processor averages 
approximately 400 μA. Flash writes, while brief (80–90 µs), have high 
peak currents
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In practice, the capacitor capacity must be increased to 
compensate for physical effects such degradation with 
temperature and DC load; all of the batteries in Table 3 
are capable of delivering peak currents of 1  mA with 
0.1 V drop which reduces the required capacitance. Bit-
Tag has 5 µ F total load capacitance.

Results
BitTag
More than 400 BitTags have been used in a variety of 
experiments with both captive and free animals over 
a 3-year period. During that time there have been two 
major hardware releases—V4/V5 and V6/V7; the former 
used the RV-8803 RTC and the latter the RV-3028 RTC. 
BitTags are remarkably inexpensive to build—in batches 
of 100–160 this has averaged $30/tag including battery. 
Similarly, the support hardware—bases for programming 
and charging average less than $50/base.

An example of the data that BitTag collects is displayed 
as an actogram [15] in Fig 15 tracking the activity of an 
American Robin over 10 months and clearly illustrate 
a long flight on November 19 (UTC), 2021 with several 
return flights in March 2022. The figure includes both the 
long-term data and detailed data from the period sur-
rounding November 19.

We have provided BitTags to several researchers 
studying a variety of species with both captive and free-
range animals. At Indiana University, Devraj Singh has 
deployed nearly 200 tags on Dark-eyed juncos in aviar-
ies for several extended experiments relating to circadian 

rhythm. These experiments used two distinct populations 
of juncos kept in indoor aviaries with varying light con-
ditions monitored over a period of 18 months (with tags 
replaced at 6-month intervals.) Alex Jahn has deployed 
more than 40 tags on free American robins to study 
their activity patterns over the year. Robins in Indiana 
are partially migratory (some migrate and some do not), 
and Jahn was able to determine their activity budgets 
throughout the year and found that robins will, at times, 
migrate at night (Fig. 15).

At Washington State, Heather Watts has deployed Bit-
Tags on two species of small songbirds—Pine Siskins and 
Red Crossbills—to collect behavioral data on wild-caught 
birds housed in large outdoor aviaries under semi-natu-
ralistic conditions.

Tim Greives and Emily Elderbrock at North Dakota 
State have deployed tags on captive juncos in Fargo North 
Dakota to quantify daily activity and its relationship with 
physiological measures. They have deployed tags on free-
living Great Tits in Bavaria, Germany over multiple years 
to track behavior over their breeding season.

Victor Cueto has deployed 20 tags on free-living 
White-crested Elanea in Argentina collecting data over 
a full migration cycle with 0.5  g tags programmed to 
hibernate between 2-month windows centered on the 
expected migration dates.

Energy and power measurements
The energy requirements for a BitTag depend both 

upon the hardware and firmware designs, and upon 
dynamic characteristics of animal behavior because the 

Fig. 15 American Robin migration. This figure contains two components—an inset actogram displaying the activity of an American Robin over 10 
months and detailed activity and temperature data for 5 days centered on November 20, 2021. Rows in the actogram contain 48 h of activity data 
(the percentage of a sample bucket that the animal was active) and rows are stepped by 24 h. Thus each day appears twice—first on the right of 
the actogram and then on the left of the next row. The primarily light regions of the actogram correspond to night and the primarily dark regions 
correspond to day. The activity detail includes both the activity level (the fraction of the integration period in which the animal was active), and 
the processor temperature. Note that during the night of November 19 (UTC) the animal made an extended flight. During this flight, the processor 
temperature declined. Also shown on the actogram is nocturnal activity during March 3–5, 2022
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tags require more energy when activity is detected than 
when idle. Thus, predicting the energy requirements of 
a biological experiment depends both upon measur-
able quantities—the power requirements of a hardware/
firmware combination in various operating modes—and 
estimates, of how long we expect a tag to remain in each 
operating state based upon past experimental data. In the 
following, we show how we estimate tag energy require-
ments, and discuss results from biological experiments 
that may be useful in predicting tag lifetime in a future 
experiment.

In our firmware, there is normally a single active thread 
whose lifecycle has three purposes. First, it determines 
the cause of a wakeup event and then it performs any 
required actions such as reading the sensor state and 
writing data logs. Finally, it returns to the Standby state. 
The possible wakeup events are either an RTC alarm or 
an external input (e.g., the accelerometer activity state).

BitTags with the RV-3028 RTC have power consump-
tion in various operating modes ranging from 525  nW 
to 4.5 µ W. For example, the ADXL362 has a low-energy 
sleep state that requires about 260 nA while sampling at 
6 Hz. When activity is detected, the accelerometer wakes 
and samples at a higher data rate requiring 1.8-2.4 µ A 
depending upon sample rate. In addition, wake/sleep 
transitions trigger the processor to wake. The processor 
wake cost is 330 µ A for 1.8 ms (the energy for this event 
is 1.5 µ J at 2.5 V).

In computing energy requirements we consider two 
effects—the steady-state cost of operating in various low-
energy states, and the cost of high-energy events (e.g., 
waking the processor to handle an event). The energy/
power for a BitTag V6 are shown in Table 4. The Idle cur-
rent corresponds to the cost of hibernation, while ADXL 
Sleep and Awake distinguish the two operating modes of 
the accelerometer when the animal is inactive or active. 
There are two types of events of interest—those that 
wake the processor due to a sensor or RTC event, and 
those that involve logging to internal flash.

Activity data from over 500,000 h averaged 8.2% activ-
ity with a peak of roughly 15%. To understand how these 
data can be used to predict the energy requirements of 
an experiment, consider the following. BitTags wake 

once/minute to summarize data and, in long experi-
ments, twice/hour to log data. Suppose the animal is 
active 15% (our experimental data suggest this is con-
servative for juncos) and every active second causes two 
wakeup events (again, conservative). The average current, 
neglecting the wake events for the moment, is:

Every second, we expect 0.3 events of 1.5 µJ:

The log events are so infrequent that they can be ignored 
in this estimate. In this scenario, the tag uses on average 
2.06 µ W; with a 5.5  mA h battery, we expect a lifetime 
of 6675 h (278 days). In experiments with American rob-
ins, Alex Jahn has achieved over 8000 h (limited by data 
capacity) using an 11 mA h battery.

In order to enable long experiments with small batter-
ies, our tags have a hibernation state during which no 
data are collected. In this state, requiring 525  nW, the 
sensors are shut down and the tag wakes once per hour to 
determine if data collection should resume. Hibernation 
requires 1/4 the power of active data collection and can 
be used, for example, to target data collection to the few 
months surrounding migration. Victor Cuerto recently 
retrieved two 0.48  g BitTags with 3.2  mA h batteries 
that collected activity data on White Crested Eleania 
and which ran for 9 months with a 5-month hibernation 
period separating two 2-month migration windows.

Reliability
Over time we have made minor revisions to improve 

reliability. Overall reliability has steadily improved with 
both changes to the coatings and software modifications 
to enable graceful recovery from more types of unex-
pected events. An early 60-day experiment with captive 
animals had a tag failure rate of 23% while a recent exper-
iment with free animals had a 15% failure rate over 90 
days. The majority of failures are partial—the tag aborted 
data collection due to an unexpected event, but the data 
up to failure remain readable.

The reliability of BitTag has improved significantly 
since the first biological experiments performed in 2019. 
Improvements can be attributed to three major factors—
small hardware design changes, evolution of the coatings, 
and, significant changes to the tag firmware. For exam-
ple, the first 20 tags, used with captive animals, suffered 
8 failures in which the tags stopped collecting data prior 
to the end of the experiment. In contrast, a recent experi-
ment with free Great Tits lasting 1200 h had a failure rate 
of 3/20 and an experiment with captive Pine Siskins last-
ing 2200 h had a failure rate of 3/20.

The most significant reliability improvement has been 
due to changes in passivation (coatings). We initially used 

0.85 ∗ 1.1 µW + 0.15 ∗ 4.5 µW = 1.61 µW .

0.3 ∗ 1.5 µJ ∗ S = 0.45 µW .

Table 4 BitTag energy/power usage

State Event Power Energy

Idle 525 nW

ADXL sleep 1.1 µW

ADXL awake (50 hz) 4.5 µW

Wake event 1.5 µJ

Log event 2.8 µJ
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a silicone coating that proved to be too soft—the coating 
contained a fluorescent dye that allowed us to determine 
that the coating had failed due to abrasion. We subse-
quently switched to a more durable polyurethane coat-
ing. In addition, more recent tags have been deployed 
with polyimide tape wrapping the batteries to provide 
additional electrical insulation.

The firmware for first generation BitTags deployed in 
experiments did not utilize the protocol buffer-based 
architecture described in this paper. Along with the new 
communication model, significant improvements have 
been made to enable recovery from transient errors 
and to provide more comprehensive self-tests in order 
to ensure that tags are functioning properly before 
deployment.

Custom pressure tag
In order to demonstrate the flexibility of our system 
architecture, we designed a novel tag with a pressure sen-
sor (PresTag) and a large capacity (4 MB) external mem-
ory. The addition of this memory enables a new family 
of tags capable of storing finer grained data than BitTag. 
Although the pandemic-related semiconductor shortage 
has precluded building prototypes, we used the prototyp-
ing platform illustrated in Fig. 8 to fully develop the host 
and tag software and to measure power requirements.

Pressure sensors have been shown to have great utility 
in understanding the behavior of birds during migration. 
For example, [24] demonstrated that by comparing pres-
sure measurements over time it is feasible to determine 
which animals from a given site migrate together, [37] 
demonstrated that one can reliably use pressure measure-
ments to determine when animals are migrating, and [49] 
determined that small animals may fly above 5000  ms 
during migration. Recently, [26] developed a method to 
combine pressure sensor data with global weather data 
to accurately predict location. A sub-gram pressure tag 
has previously been developed, but with significantly less 
storage (1/100) and greater power requirements (10x) 
than PresTag [5].

The PresTag circuit, illustrated in Fig.  16 replaces the 
accelerometer of BitTag with a low-energy waterproof 
pressure sensor (LPS27) and adds a unique wide-voltage, 
low-power 4MB flash memory (AT25XE321). In con-
trast with the ADXL362 accelerometer, the LPS27 has a 
relatively high (0.9 µ A) Iq and hence power to the sensor 
is controlled through a processor I/O pin. The LPS27 is 
extremely accurate (0.5 hPa absolute accuracy, 0.025 hPa 
relative accuracy) and sensitive—as configured in the 
PresTag, the data collected have 1/32  hPa resolution. 
This allows tracking changes in altitude of approximately 
0.25 m—in order to compute absolute altitude knowledge 
of the local barometric pressure is required.

PresTag was designed to record pressure and tempera-
ture (16 bits each) at a configurable period. In addition, a 
block header consisting of timestamp, processor voltage, 
and processor temperature is stored every 30 periods. 
The external flash memory can store 32768 blocks (273 h 
at 1 sample/s; 683 days as 1 sample/min). We measured 
the energy consumption of our design using our devel-
opment platform with an STEVAL-MKI213 pressure sen-
sor board from ST Microelectronics (we modified the 
board by removing a 10 µ F capacitor). We used the STM-
32CubeMonPwr [50] tool to measure energy consump-
tion over extended periods at various sample rates. The 
average currents and predicted tag life times are illus-
trated in Table  5. With a 120  s sample period, PresTag 
uses less than 1/10 the power of the Shipley design sam-
pling once per day (0.81 µ W vs. 8.5 µ W) with the ability 
to store 100 times as much data [5].

We completed the PresTag board design—a 3D model 
is illustrated in Fig.  17. We chose to design this board 
with exactly the same outline as BitTag so that we can 
accurately estimate its mass. The BitTag board is a 
4-layer, 0.6  mm substrate; for PresTag we switched to a 
2-layer board which makes it feasible to build on 0.4 mm 
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Fig. 16 Pressure tag circuit. The major architectural differences 
between the pressure tag and BitTag are the different sensors and 
the addition of a large (4 MB) NOR flash memory (at25xe). Due to 
additional energy requirements of the external flash relative to 
internal flash the net load capacitance ( CL ) required is significantly 
higher 23 µ F vs. 5 µ F. Diode D enables charging battery B while Vcc 
is connected. Bipolar transistor Q provides isolation for the processor 
reset line. Note that power to the pressure sensor (lps27) is provided 
by a processor I/O pin. Supply and ground signals to major blocks 
and various passive components are elided for clarity

Table 5 PresTag lifetime in days with various batteries (* 
indicates memory limited)

Period Power ( µW) MS414GE MS518SE MS621FE MS920SE

10 s 4.38 47 81 113* 113*

30 s 1.18 115 195 316 341*

60 s 1.15 181 308 498 682*

120 s 0.81 256 435 705 1364*



Page 15 of 18Brown et al. Animal Biotelemetry           (2023) 11:19  

substrate using the same low-cost fabricators we have 
used for BitTag. The expected mass with coatings for the 
four batteries in Table 3 ranges from 0.4 g (MS414GE) to 
0.83 g (MS920SE).

As discussed previously, peak power consumption 
is also a significant design consideration because of the 
relatively high impedance of the small batteries we use. 
In the case of PresTag, peak currents occur during writes 
to flash. The firmware for PresTag was designed to write 
to flash in 2-byte blocks and to sleep between writes to 
allow load capacitors to recharge. Using our development 
platform, we determined that the energy required for a 
single 2-byte write is 4 µ J. At 2.5 V, the charge required 
for this write is 1.6µ C. Delivering this charge with a 0.1 V 
drop requires a 16 µ F capacitor. To meet this require-
ment, we included a 22 µ F load capacitor in the PresTag 
design. The capacitor chosen has a minimum specified 
insulation resistance of 22  M� and hence a maximum 
leakage current of 114 nA. At a 60-s sample period, this 
results in a 20% reduction in the expected tag lifetimes 
illustrated in Table 5.

As mentioned previously, hardware design represents a 
small part of the engineering effort required to develop 
a new tag. In developing PresTag, we extended the host 
software libraries and leveraged the tag firmware design. 
Protocol changes consisted of adding a single configura-
tion parameter—the sample period—and adding a new 
data log message type. Modifications to the host library 
and qtmonitor required fewer than 100 lines of code. 
Modifications to the protocol required fewer than 20 
lines of code. The new tag firmware required fewer than 
1200 lines of new code including drivers for flash and the 
pressure sensor. Thus, the majority of software engineer-
ing effort was dedicated to the tag firmware with rela-
tively little effort necessary to support the new tag on the 
host software.

Discussion
We have presented the architecture of a tag system to 
enable the design and deployment of sub-g, sub-µ A 
data loggers and discussed the detailed design of two 
tags—BitTag, an activity logger that has been used in 
several extended experiments; and PresTag, a prototype 

pressure (altitude) measurement tag capable of stor-
ing pressure data 1/min for a year at less than 0.6  g. 
Throughout this paper we have focused on three related 
design constraints—mass, energy, and power.

The designs we presented are the result of considera-
ble optimization of both hardware and software. Hard-
ware optimizations include our use of an external RTC 
in a hybrid configuration, capacity sizing of load capac-
itors to satisfy peak power requirements, limited use of 
power-hungry communication (I2C), and the use of I/O 
pins to power sensors. Software optimizations include 
tuning the use of initialized memory, the embedded 
operating system, and substituting low-power wait 
states for active polling of sensors. In addition, we uti-
lized our power monitoring tools to find and eliminate 
unexpected  power usage.

Our initial tag designs utilized an external crystal to 
provide a reference signal to the processor RTC. We 
found this to be extremely unreliable—low-power crys-
tal circuits are very sensitive to stray capacitance (e.g., 
contact with a living organism)—sensitive to tempera-
ture changes, and difficult to calibrate. By switching to 
a hermetically sealed external RTC we resolved all these 
issues with significantly reduced power. While the RTC 
components we use are extremely efficient, the hard-
ware protocol used to communicate with them, I2C, 
is not. I2C utilizes open-drain signaling which is both 
slow and consumes significant power through pull-up 
resistors. By switching to a hybrid model—the  exter-
nal RTC providing a calibrated 1  kHz reference signal 
to the processor RTC, we greatly reduced the power 
requirements.

As we have shown, the energy required by a tag 
depends upon both upon the power requirements of its 
various states (e.g., sleeping or running) and the time 
spent in those states. Average power requirements can 
be optimized by minimizing the running time. Using 
dynamic power information from our power measure-
ment board, we significantly optimized the length of a 
wakeup event by tuning the tag software. For example, we 
eliminated the use of “initialized memory” including the 
task stack and local variables, and optimized the initiali-
zation of the tag operating system. These optimizations 
included modifying the linker script to create an unini-
tialized memory segment, restructuring the tag software 
to utilize this memory segment, and changing the operat-
ing system configuration to optimize startup time. Simi-
larly, the operating system used for our tags is, by default, 
configured to utilize DMA for external I/O transfers; by 
careful measurement, we found that it requires fewer 
processor cycles (and hence energy) to use non-DMA 
I/O transfers for SPI for the short transfers required by 
our tags.

Fig. 17 PresTag 3D model
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Developing the software to configure and access a new 
sensor can be challenging and provides additional oppor-
tunities for optimization. For example, the “normal” 
way to use an LPS27 pressure sensor is to leave it always 
powered; however, the “power-down” state of an LPS27 
requires 0.9 µ A which is too high for our tag designs. 
Thus, we use a processor I/O pin to provide power. When 
the device is first powered, it undergoes a startup pro-
cess in which internal trimming parameters are loaded 
into the sensor registers. This startup process takes 
4.5  ms. The device also has several different conversion 
options—“low-noise”, which takes approximately 13.2 ms 
and “low-current”, which takes approximately 4.7 ms. The 
ususal approach to handling sensor sampling times is to 
poll them periodically, but polling takes energy; there-
fore, our designs simply wait for a suitably long period for 
the operation to be guaranteed to reach completion. To 
accommodate these relatively long periods which the tag 
is essentially idle, we implemented a mode for the operat-
ing system to support processor “Stop mode”.

As we discussed previously, a key hardware design con-
sideration is the sizing of load capacitors because, if too 
large, they waste energy through current leakage and if 
too small, they allow excessive voltage drop. Properly 
sizing load capacitors is only a piece of the design prob-
lem; after a peak power event it is necessary to provide 
load capacitors with sufficient time to recharge before 
subsequent peak power events. Providing this time is 
a software tuning problem. To illustrate how our sys-
tem architecture enables solving this tuning problem, 
consider Fig.  18. There are several peak power events 
including powering the pressure sensor (LPS27), power 
up the external flash memory, and writing data to flash. 
In our design, we write flash in 2-byte chunks (the size 

of pressure or temperature data). Notice that between 
peak power events there are long idle periods; these are 
realized using the processor Stop mode which, in prin-
ciple, consumes approximately 1 µ A (in practice other 
components are powered and hence consuming energy). 
Choosing the length of these idle periods is yet another 
optimization task.

We have referred several times in this paper to excess 
power usage resulting from misconfigured pins. Pin con-
figuration for the STM32 processors can be quite com-
plex with options for pull-up and pull-down resistors, 
analog inputs, and connection of pins to external devices. 
Furthermore, during processor standby, I/O pins “float” 
unless explicitly connected to a pull-up or pull-down 
resistor through a separate configuration mechanism for 
the standby state. Thus pins can be misconfigured dur-
ing standby, while running, and while accessing external 
devices. Our power monitor board has helped us find 
and correct misconfigurations during all three opera-
tional phases.

Our tag design system includes a novel prototype 
board that enables the design and testing of candidate 
tag architectures using readily available sensor evalua-
tion boards. It was this prototyping board that we used 
to design our PresTag which, due to the pandemic semi-
conductor shortage, we have not been able to build. We 
have also used this same platform to evaluate candidate 
designs utilizing a variety of other sensors including a 
pressure sensors (LPS22, LPS27, LPS33), accelerometers 
(ADXL362, AIS2DW12, LIS2DTW12), magnetometers 
(MMC5633), and light sensors (OPT3002). It is conveni-
ent to be able to evaluate multiple sensors of the same 
type because there are frequently differences in the on-
board processing available (e.g., activity detection) and 
because the datasheets rarely provide peak power data 
which is especially important with the batteries we use. 
For example, magnetometers require high peak currents, 
but the datasheets generally provide only average cur-
rents at a given measurement rate.

All of the hardware designs and associated software 
are available as open-source and all of the host software 
compiles on and for Windows, OS X, and Linux. All of 
the hardware designs utilize open-source tools (KiCad 
[51] for circuit boards, openSCAD [52] for 3D printed 
adapters) that operate on all three platforms.

The repository for our designs includes extensive 
documentation on building and using the hardware and 
software associated with this project. In addition to the 
designs presented, we have built prototypes for several 
other tags utilizing light sensors, magnetometers, and 
several accelerometers suitable for collecting movement 
data beyond simple activity. Thus, the system architec-
ture presented is widely applicable to the creation and 

Fig. 18 Pressure/temperature collection cycle with PresTag. A full 
data collection cycle with PresTag including powering the pressure 
sensor (LPS27), sampling pressure and temperature, and writing the 
data to external flash
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deployment of ultralight low-energy data loggers built 
with a variety of sensors.
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