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How to study a predator that only eats a few 
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to quantify feeding behaviours of rattlesnakes 
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Abstract 

Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species 
feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions 
of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies 
developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accel-
erometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free 
ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active 
vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of 
predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of 
viperid snakes (Crotalus spp.) and assess the transferability of classification models across those species.

Results We used open-source software to create species-specific models that classified locomotion, stillness, preda-
tory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost, 
reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely 
necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low 
transferability in our cross-species comparison.

Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical 
feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an ‘end-to-end’ template 
for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerom-
etry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity, 
and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing 
acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data 
are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat), 
general models could potentially be developed that have higher transferability.
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Background
A basic understanding of the natural history and ecologi-
cal role of a species often involves monitoring and meas-
uring the behaviours of individuals and establishing an 
activity budget [1, 2]. Activity budgets and behavioural 
profiles are particularly critical for understanding how 
individuals may respond to a changing environment, 
such as human-induced rapid shifts in temperature [3, 
4] and habitat quality [5, 6]. Traditionally, quantify-
ing activity budgets requires numerous hours of direct 
observation of individuals through methods such as scan 
sampling or focal sampling [7]. These direct observation 
methods have been applied to both free-ranging and cap-
tive animals across a wide variety of taxa [e.g., 8, 9, 10, 11, 
12, 13, 14, 15]. However, a number of constraints make 
direct observation infeasible for many species. Examples 
include species that are difficult to observe in their habi-
tat (e.g., dense forest, underground, turbid water, etc.), 
are only active at night, travel long distances in a short 
period of time, or are solitary predators, where simul-
taneous observation across a sample of individuals is 
impractical. In addition, human presence can drastically 
alter animal behaviour [16], and individuals may, there-
fore, not exhibit species-typical behaviour in the pres-
ence of human observers.

Recent innovations in animal-borne biologging tech-
nologies have provided novel approaches that help cir-
cumvent the problems associated with using direct 
observation to quantify behaviour [17]. The attachment 
of devices that continuously log acceleration values has 
been particularly useful for quantifying metrics of move-
ment and behavioral states, as many behaviors result in 
unique acceleration profiles that can be identified with 
high accuracy and precision through machine learning 
methods [19]. The miniaturization and affordability of 
animal-borne accelerometers has made this approach a 
key tool for characterizing behaviour of free-ranging ani-
mals. Ecologists initially began attaching accelerometers 
to marine mammals because of the challenges of direct 
observations on these organisms [18, 19]. Subsequently, 
terrestrial and freshwater ecologists have adopted this 
novel method and have been able to use animal-borne 
accelerometers to quantify activity budgets [e.g., 20, 21], 
frequencies of key behaviours [e.g., 22, 23], and energy 
expenditure [e.g., 21, 24]. Accelerometers are now being 
paired with other biologging devices such as acoustic 
recorders [25, 26] and global positioning systems [27] to 
provide even further insight into the activity budgets and 
behaviour of free-ranging animals and how they may dif-
fer across environmentally relevant conditions (e.g., pho-
toperiod, moon phase, seasonality, etc.).

Although accelerometry is becoming an integral 
and important tool to further understand behaviour, 

taxonomic representation in these studies is uneven. 
The majority of research has focused on larger-bodied 
mammals, birds, and marine taxa [19]. Because logisti-
cal details of how to best attach and configure devices 
are likely to differ greatly across groups, the widespread 
adoption of animal-borne accelerometry across different 
groups of organisms is facilitated by studies that docu-
ment best practices and provide details on overcoming 
methodological hurdles. For example, we know compara-
tively little concerning the detailed behavioural ecology 
of most snake species, despite the fact that this globally 
distributed group are often abundant predators that play 
vital roles in ecological communities. Some snake spe-
cies also have major impacts on both human health and 
medicine (snakebite envenoming has been recognized by 
the World Health Organization as a Neglected Tropical 
Disease), and others have invaded native ecosystems with 
devastating effects on local fauna [28–30]. Viperid snakes 
in particular represent an ideal group for investigating 
animal behaviour using accelerometry. Detailed studies 
of the behavioural ecology (specifically foraging ecology) 
of this group are difficult, because these snakes are cryp-
tic, rarely encountered, sensitive to human presence, and 
spend long periods of time hidden from view. Although 
some methodological approaches have been developed 
to study specific aspects of their foraging ecology (e.g., 
dietary analysis, fixed videography coupled with radio 
telemetry), none of these methods [31–35] allow for the 
quantification of key aspects of hunting behaviour and 
outcomes of predatory encounters.

Quantifying behavioural data via attaching animal-
borne accelerometers to free-ranging individuals is the 
next step in advancing our knowledge of foraging ecology 
in viperids. Most species within this group are charac-
terized as ambush (i.e., sit-and-wait) predators and pro-
gress through a series of distinctive behavioural stages 
when capturing prey. A typical feeding event involves: 
(1) an initial search for an ambush site, (2) a prolonged 
wait while remaining cryptic, (3) the targeting, striking, 
and envenomation of any suitable prey that comes within 
range, (4) the release of envenomated prey to avoid retali-
atory attacks, (5) strike-induced chemosensory searching 
to locate the carcass of envenomated prey, and (6) swal-
lowing and digesting the prey item [reviewed 36]. Many 
of the behaviours exhibited by viperids during a feeding 
event are distinct, and could result in unique acceleration 
signatures that would enable us to quantify the frequency 
and outcome of predation events across a large sample 
of free-ranging snakes. Such data would represent the 
first comprehensive analysis of feeding behaviour within 
an ecologically critical and globally distributed group of 
predators. Previous work pioneering the use of low-fre-
quency accelerometers implanted into the body cavities 
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of Western Diamond-backed Rattlesnakes (Crotalus 
atrox), Burmese Pythons (Python bivittatus), and Tim-
ber Rattlesnakes (Crotalus horridus) illustrates the gen-
eral utility of this approach [37, 58, 64] and underscores 
the need to develop new attachment and analysis tech-
niques to quantify detailed behavioural profiles for these 
predators.

The computational burden imposed by high-resolution 
accelerometer data remains one of the most significant 
hurdles to effective use, particularly in validation stud-
ies on novel focal taxa [38–40]. Acceleration signatures 
for unique behaviours can be impacted by multiple fac-
tors, such as body size and the duration of the behav-
iour. Thus, it may not be appropriate to use behavioural 
classification models developed for one species (or even 
one population) on another similar species. However, it 
is plausible that a model developed on one species could 
have high transferability to another similar species if 
that species is comparable in body size and if they per-
form analogous behaviours. Accordingly, accelerometer 
studies must provide detailed step-wise procedures and, 
when possible, evaluate the potential for transferability 
of specific methods across similar focal taxa to stream-
line future applications. If using a single classification 
model across multiple species is possible, it should be 
prioritized, as it could simplify classification and increase 
the adoption of accelerometers to quantify behaviour of 
the taxa involved [41, 42]. Viperids are an ideal taxon for 
applying a single classification model across multiple spe-
cies, as many are similar in body size and go through the 
same distinct behavioural stages to capture prey. Thus, 
we hypothesized that computational models would show 
high transferability across congeneric viperid species 
(i.e., high recall, precision, and accuracy), and that future 
studies could forgo the labor-intensive task of simulating 
feeding events in captivity to develop adequate classifica-
tion models.

In this study, we used animal-borne accelerometry to 
develop behavioural classification models for key feeding 
behaviours of three species of viperids (Timber Rattle-
snakes (Crotalus horridus), Western Rattlesnakes (C. ore-
ganus), and Prairie Rattlesnakes (C. viridis) and assessed 
the transferability of these models across different spe-
cies. First, we developed a simple and cost-effective 
methodology to attach accelerometry devices anteriorly 
to a venomous snake. Our next objective was to develop 
and validate machine learning models that would allow 
us to accurately classify key feeding behaviours in all 
three species. Finally, we assessed the transferability of 
species-specific classification models via a cross-species 
comparison to evaluate the feasibility of building general 
classification models that would apply across a range of 
closely related species with similar behavioural profiles.

Methods
Captive validation
All rattlesnake species were collected from the wild using 
visual encounter surveys at different locations (C. hor-
ridus (n = 17) from Georgia; C. oreganus (n = 14) from 
Southern California; and C. viridis (n = 7) from Western 
Texas and Southwestern New Mexico) and transported 
to either Georgia College and State University (C. horri-
dus) or San Diego State University (C. oreganus and C. 
viridis).

For each trial, an accelerometer (AXY-5, Technosmart 
Europe Srl., Rome, Italy) recording tri-axial acceleration 
values at 25  Hz was attached to the dorsum of individ-
ual rattlesnakes (C. horridus, C. oreganus, or C. viridis). 
Accelerometers were placed anteriorly on each individual 
at a distance of 25% of the snout vent length of the snake, 
so that the relative body placement was consistent across 
individuals. This allowed the three acceleration channels 
of the device to be placed so they represented the ani-
mal’s dorso-ventral axis (heave), the anterior–posterior 
axis (surge), and the lateral axis (sway). The devices were 
adhered to the snake via a transparent bandage material 
(3  M™ Tegaderm™; see Fig.  1) that covered the accel-
erometry device, but only adhered to a few of the scale 
rows lateral to the dorsal vertebrae. This was important 
to ensure that sufficient dermal elasticity was retained 
as prey items were ingested [59]. To stage a feeding 
trial, each study animal was placed into a custom arena 
(2 × 2  m) made of corrugated plastic or glass and video 
recorded with a stationary camera (PatrolMaster 1296P 
UHD Body Camera; Amcrest UltraHD Video Security 
System) recording at 60 frames per second placed above 
the arena. Immediately after a rattlesnake was placed into 
an arena, a defensive assay was performed, where person-
nel agitated the individual with a plush toy attached to 
a long pole to prompt defensive strike behaviours. After 
the defensive assay, snakes were allowed to acclimate to 
the arena for approximately 12  h before a feeding assay 
was conducted. For the feeding assay, rattlesnakes were 
video recorded as they were fed a mouse that was allowed 
to move freely into the arena (Mus musculus, their typi-
cal food in captivity). It was necessary to use live mice to 
replicate the feeding behaviors of free-ranging snakes as 
closely as possible, as past studies have shown that rat-
tlesnakes respond differently to live vs. euthanized prey 
items [65].

Following exploratory analyses of videos, we chose to 
group behaviours into four classes that appeared to result 
in distinct acceleration signatures and corresponded 
to critical phases of the feeding cycle: still, locomo-
tion, strike, and swallow (Table  1; Fig.  2). Behavioural 
scores were time-matched to accelerometer readings (to 
within 1  s) to generate annotated acceleration data sets 
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by recording a video of the exact time (using the Exact 
Time™ application by ©Neurovat, 2023) as the acceler-
ometry device began logging data (Technosmart devices 
emit a visible signal when powering on). We then also 
recorded the Exact Time™ (©Neurovat, 2023) at the 

outset of all videos recording animals wearing accelerom-
etry devices.

Behavioural classification algorithms
We used the open-access software AcceleRater to train 
classification algorithms based on our captive training 
data sets [38]. Because of the extreme differences in the 
durations of the strike and swallow behaviors (e.g., a typi-
cal strike is less than 1  s, while a swallowing event can 
last over 5 m) leading to complications with window size 
selection, we analyzed the data separately to identify 
striking and swallowing behaviors. Thus, we attempted 
to independently obtain the best model for (1) ‘strike’-
focused models, with strike, still, and locomotion as 
behavior classes; and (2) ‘swallow’-focused models, with 
swallow, still, and locomotion as behavior classes. In 
addition, because class imbalance can lead to inference 
issues when using machine-learning methods [60], all 
data sets were manually balanced, so that each behav-
ioural class had an equal number of samples relative to 
the behaviour that had the fewest samples from our 
captive trials (in all cases, this was either the behaviour 
swallow or strike). We then ran a linear support vector 
machine (SVM) [61], a decision tree [62], and a random 
forest [63] algorithm that either included all summary 
statistics available in AcceleRater (mean, standard devia-
tion, skewness, kurtosis, maximum, minimum, vector 
norm, covariance, Pearson correlation, dynamic body 
acceleration, overall dynamic body acceleration (ODBA), 
mean-diff, std-diff, wave amplitude, line crossings, 25 
percentile, 50 percentile, 75 percentile) or just the sum-
mary statistics of mean, standard deviation, and ODBA 
at window sizes of 3, 6, 12, 24, and 40 s for ‘swallow’ mod-
els, and window sizes of 0.4, 0.8, 1.2, and 1.6 s for ‘strike’ 
models. For each unique model and window size, we 
trained the model via a (50/50) train-test split, where a 
random 50% of the data were used to train each model 
and the remaining 50% of the data set was used to test the 
model.

We used the same methods as Clermont et al. [43] to 
identify which algorithm optimally classified behav-
iours. For each algorithm, a confusion matrix was built in 
AcceleRater that counted true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN). 

Fig. 1 A lateral (A) and dorsal (B) view of an accelerometer placed 
posteriorly from the snout at a distance of 25% of the snout-vent 
length of the snake and adhered via a transparent bandage material 
(3 M™ Tegaderm™)

Table 1 Description and function of four rattlesnake behaviours used for accelerometry classification

Behaviour Description Function

Still Not moving while coiled or stretched out Either in ambush or resting

Locomotion Any type of body locomotion other than strike or swallow Movement

Strike Fast extension of the anterior third of the body toward a target Envenomate a prey item or defense

Swallow Prey item passes through gullet underneath accelerometer Consumption
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Accuracy, precision, and recall for each behavioural class 
were calculated using these counts and are defined as fol-
lows (redrawn from Clermont et al. [43]). Accuracy is the 
proportion of correct classifications either into or out of 
a given behaviour category:

Precision is the proportion of classifications into a 
given behaviour category that were correct:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Precision =
TP

TP+ FP

Recall is the proportion of instances of a behaviour 
classification into the correct category:

Higher precision denotes fewer false positives and 
higher recall denotes fewer false negatives.

Cross‑species comparison: statistical analyses
To assess the transferability of algorithms trained on one 
rattlesnake species when tested on a different rattlesnake 
species exhibiting the same behaviour, we used the top per-
forming models from each species to annotate and label 
already known behaviours. If there was more than one 

Recall =
TP

TP+ FN

Fig. 2 Acceleration signatures of the sway (dark blue), heave (gray), and surge (light blue) axes for the behaviours still, locomotion, and strike at a 
2 s time burst, and for the behaviours still, locomotion, and swallow over a period of 5 min
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top model, we used the model that most consistently per-
formed well across each species. Thus, we were able to test 
how well the best performing ‘strike’ and ‘swallow’ mod-
els were able to correctly classify the same behaviours of 
other species using a factorial experimental design, where 
we tested (1) C. horridus on C. oreganus and C. viridis; (2) 
C. oreganus on C. horridus and C. viridis; and (3) C. viridis 
on C. horridus and C. oreganus. Subsequently, for each test, 
we calculated overall accuracy (or percent correctness) and 
the precision, recall, and F1-score of each behavioural class. 
The F1-score was calculated as follows:

F1 score =
2× Precision× Recall

Precision+ recall
.

Results
Behavioural classification using accelerometry data
The window sizes and classification algorithms that pre-
dicted the top model(s) for both ‘strike’ and ‘swallow’ 
models varied across species (Tables  2, 3; Additional 
file  1). For C. horridus the top performing algorithm 
for ‘swallow’ models was a random forest that included 
all summary statistics at a window size of 3  s (all three 
behaviours with accuracies > 81%) and there were multi-
ple top performing algorithms for ‘strike’ models, where 
all three behaviours had an accuracy, precision, and recall 
of 100% (Tables 2, 3). For C. oreganus, the top performing 
algorithm for ‘swallow’ models was a random forest that 
included all summary statistics at a window size of 6  s 
(all three behaviours with accuracies > 90%) and the top 
performing algorithm for ‘strike’ model was a random 
forest that included all summary statistics at a window 
size of 0.4  s (all three behaviours with accuracies > 98%; 

Table 2 Accuracy, precision, and recall for the top algorithm, window size, and summary statistics for Crotalus horridus, C. oreganus, 
and C. viridis. Behaviours included in these models were swallow, locomotion, and still

The weighted average across each behaviour is also denoted

RF random forest

Species Window size (s) Summary 
statistics

Algorithm Classification 
performance

Swallow Still Locomotion Weighted 
average

C. horridus 3 All RF Accuracy 90.83 83.11 81.54 85.16

Precision 87.12 81.61 66.57 78.43

Recall 85.38 67.41 81.23 78.00

C. oreganus 6 All RF Accuracy 93.62 99.57 94.04 95.74

Precision 90.06 98.69 92.31 93.69

Recall 91.19 100.00 90.00 93.73

C. viridis 3 All RF Accuracy 88.2 97.35 89.79 91.78

Precision 88.32 94.3 81.12 87.91

Recall 74.2 97.95 90.79 87.65

Table 3 Accuracy, precision, and recall for the top algorithm, window size, and summary statistics for Crotalus horridus, C. oreganus, 
and C. viridis 

Behaviours included in these models were strike, locomotion, and still. The weighted average across each behaviour is also denoted

RF random forest

Species Window size (s) Summary 
statistics

Algorithm Classification 
performance

Strike Still Locomotion Weighted average

C. horridus 0.4 All RF Accuracy 100.00 100.00 100.00 100.00

Precision 100.00 100.00 100.00 100.00

Recall 100.00 100.00 100.00 100.00

C. oreganus 0.4 All RF Accuracy 99.45 100.00 99.45 99.64

Precision 100.00 100.00 98.25 99.42

Recall 98.39 100.00 100.00 99.46

C. viridis 0.4 All RF Accuracy 97.87 100.00 97.87 98.58

Precision 100.00 100.00 94.12 98.04

Recall 93.33 100.00 100.00 97.78
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Tables 2, 3). For C. viridis, the top performing algorithm 
for ‘swallow’ models was a random forest that included 
all summary statistics at a window size of 3  s (all three 
behaviours with accuracies > 88%) and there were two 
top performing algorithms for ‘strike’ models, where all 
three behaviours had an accuracy, precision, and recall of 
100% (Tables 2, 3). Thus, for each species we were able to 
develop models that performed well and correctly classi-
fied our behaviours of interest.

Cross‑species validation
The overall accuracy, and the precision, recall, and F1-
scores of each behavioural class varied across species 
tests for ‘swallow’ and ‘strike’ models (Tables  4, 5). The 
top cross-species ‘swallow’ model (random forest model 
developed using C. viridis data and tested on C. ore-
ganus) had an overall accuracy of only 58%. Across all 
‘swallow’ models, locomotion behaviour was classified 
correctly most frequently, but was still often confused 
with swallow (Table  4; Additional file  2) The top cross-
species ‘strike’ model (random forest model created using 
C. viridis data and tested on C. oreganus) had an overall 
accuracy of 73%. In general, cross-species ‘strike’ mod-
els were able to classify strikes correctly, but performed 
poorly at discerning still and locomotion from strike 
(Table 5; Additional file 2).

Discussion
Our results indicate that high-frequency acceleration 
data logged from an anteriorly adhered device has defi-
nite potential for quantifying key feeding behaviours 
in taxa of predators that have proven difficult to study 
using direct behavioural observation. Using acceler-
ometry data to characterize species-typical hunting 
behaviours in viperid snakes, we were able to create 
species-specific models that classified the behaviours 
strike, swallow, locomotion, and remaining still with 
high precision, accuracy, and recall. The high success 
rates of our preliminary models show that using this 
technique could have strong ecological relevance in 
future studies and open up new opportunities for quan-
tifying behaviour across viperids and other snakes. In 
addition, we identified a low cost, reliable, non-invasive 
attachment method for accelerometry devices to be 
placed anteriorly on snakes, as is likely necessary for 
accurately classifying distinct behaviours in these spe-
cies. However, species-specific models had low trans-
ferability in our cross-species comparison. Thus, it 
may be necessary to develop and validate classification 
models within the same species to avoid any species-
specific differences in behaviour or body size variance 
that could affect acceleration data. Our study also took 
place in a captive environment, and additional field 

Table 4 Overall accuracy (i.e., percent correctness) of each test and precision, recall, and F1-scores for each behavioural classification 
when applying top swallow algorithm for each species of Crotalus to the two other species

The top algorithm, window size, summary statistics, and weighted averages are also denoted

RF random forest

Species model Tested species Window size (s) Summary 
statistics

Algorithm Classification 
performance

Swallow Still Locomotion Weighted 
average

Overall 
accuracy

C. horridus C. oreganus 3 All RF Precision 0.51 0.42 0.73 0.55 0.47

Recall 0.50 0.76 0.16 0.47

F1-score 0.51 0.54 0.27 0.44

C. horridus C. viridis 3 All RF Precision 0.50 0.53 0.66 0.56 0.54

Recall 0.56 0.68 0.39 0.54

F1-score 0.53 0.6 0.49 0.54

C. oreganus C. horridus 6 All RF Precision 0.64 0.87 0.46 0.66 0.53

Recall 0.91 0.07 0.62 0.53

F1-score 0.61 0.12 0.63 0.46

C. oreganus C. viridis 6 All RF Precision 0.45 1.00 0.57 0.67 0.51

Recall 0.73 0.00 0.79 0.51

F1-score 0.56 0.01 0.67 0.41

C. viridis C. horridus 3 All RF Precision 0.37 0.50 0.37 0.49 0.42

Recall 0.83 0.18 0.25 0.42

F1-score 0.51 0.26 0.36 0.38

C. viridis C. oreganus 3 All RF Precision 0.47 0.71 0.66 0.61 0.58

Recall 0.46 0.61 0.68 0.58

F1-score 0.55 0.66 0.54 0.58
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validation sampling may be necessary to build models 
applicable to free-ranging snakes.

Species‑specific models
For all three species (C. horridus, C. oreganus, and C. 
viridis), we created a model selection framework to 
determine the top performing models that could clas-
sify swallow and strike behaviours, alongside both still 
and locomotion. We used what we deemed as biologi-
cally relevant window sizes for each separate ‘swallow’ 
and ‘strike’ model to determine the top performing 
model. Furthermore, we tested three different supervised 
machine-learning algorithms across varying biologically 
relevant window sizes, providing a general framework 
within AcceleRater to find a top performing model. For 
our results, the best performing algorithms were almost 
all random forests, which was unsurprising, as it is typi-
cally the approach with the highest success rate in other 
studies using supervised machine-learning algorithms 
to classify animal behaviour [27, 43–45]. However, some 
studies are beginning to explore unsupervised machine-
learning algorithms (e.g., ‘deep learning’; [39, 46–48]) 
which could benefit the classification of animal behavior 
using acceleration data in the future. Nonetheless, our 

top performing ‘strike’ and ‘swallow’ models had high 
accuracy, precision, and recall within all three species.

For all three species, the behaviour class strike had very 
high accuracy (> 97%), precision (all models = 100%), and 
recall (> 93%). This was expected, as rattlesnake strikes 
are extremely fast and have a short duration, thus it was 
predictable that a machine-learning algorithm could 
develop a model able to classify the behaviour strike from 
still and locomotion. Furthermore, the behaviour class 
swallow also had high accuracy (> 88%), precision (> 87%), 
and recall (> 74%) across all three species. This behaviour, 
which represents the movement of the body when a prey 
item passes down the esophagus towards the stomach of 
the animal and underneath the dorsally attached accel-
erometer, represents a key step in studying feeding ecol-
ogy in free-ranging snakes. Past studies of viperid feeding 
ecology have quantified feeding behaviors in free-rang-
ing snakes using a combination of radio tracking and 
fixed videography to assemble large data sets on ambush 
behaviour, quantification of site residence times, prey 
encounter rates, and strike success rates [31–35]. How-
ever, because viperid snakes almost always release struck 
prey after envenomation, videography studies have not 
been able to estimate the actual frequency of successful 
feeding events, given that the swallowing of prey or fail-
ure to locate prey items almost always occurs once the 

Table 5 Overall accuracy (i.e., percent correctness) of each test and the precision, recall, and F1-scores for each behavioural 
classification when applying top strike algorithm for each species of Crotalus to the two other species

The top algorithm, window size, summary statistics, and weighted averages are also denoted

RF random forest

Species model Tested species Window size (s) Summary 
statistics

Algorithm Classification 
performance

Strike Still Locomotion Weighted 
average

Overall 
accuracy

C. horridus C. oreganus 0.4 All RF Precision 1.00 0.38 0.49 0.62 0.63

Recall 0.88 0.02 1.00 0.63

F1-score 0.93 0.05 0.65 0.54

C. horridus C. viridis 0.4 All RF Precision 1.00 0.00 0.45 0.48 0.55

Recall 0.73 0.00 0.91 0.55

F1-score 0.85 0.00 0.60 0.48

C. oreganus C. horridus 0.4 All RF Precision 0.4 0.00 0.78 0.39 0.46

Recall 1.00 0.00 0.39 0.46

F1-score 0.57 0.00 0.52 0.36

C. oreganus C. viridis 0.4 All RF Precision 0.34 0.00 0.89 0.41 0.36

Recall 0.99 0.00 0.09 0.36

F1-score 0.51 0.00 0.16 0.22

C. viridis C. horridus 0.4 All RF Precision 0.75 0.00 0.60 0.45 0.67

Recall 1.00 0.00 1.00 0.67

F1-score 0.86 0.00 0.75 0.54

C. viridis C. oreganus 0.4 All RF Precision 1.00 0.56 0.93 0.83 0.73

Recall 0.98 1.00 0.21 0.73

F1-score 0.99 0.72 0.35 0.68



Page 9 of 12Hanscom et al. Animal Biotelemetry           (2023) 11:20  

animals have left the video frame. Our study indicates 
that validated machine-learning models applied to accel-
erometry data sets from free-ranging snakes should be 
able to accurately estimate the true number of prey items 
ingested by snakes. We suspect that swallowing is ame-
nable to accurate classification, because it involves a pat-
tern of upward movement on the accelerometer that is 
likely rare and should most often occur in temporal prox-
imity to a strike. Nevertheless, additional validation may 
be necessary before applying our models to free-ranging 
snakes, as we only tested individuals feeding on a nar-
row size range of prey. Although the mice we used in our 
study are representative of the ‘typical’ prey size taken by 
these individuals in nature, free-ranging viperids swallow 
a range of carcass sizes [49–51] and a more accurate vali-
dation set might need to include an equivalent range of 
prey size.

The behaviour classes locomotion and still were 
included in each ‘strike’ and ‘swallow’ model. In all cases, 
our top performing models classified both behavioural 
classes locomotion and still with high accuracy, preci-
sion, and recall (Tables  2, 3). Thus, our accurate classi-
fication of behaviours involved in feeding events across 
these three viperid species is similar to the performance 
reached with other predator species [25, 27, 43, 52].

Accelerometer attachment
In addition to developing models to predict behaviours 
involved with foraging ecology in viperids, we describe 
a non-invasive procedure for attaching accelerometers 
anteriorly to viperids and potentially other small ver-
tebrates as well (e.g., other snakes, lizards, etc.). Many 
feeding behaviour movements involve only the head and 
upper body, so attaching the accelerometer close to the 
head is probably necessary for the success of this tech-
nique. For example, feeding strikes may involve a rapid 
forward surge of the head and neck region, with the 
lower body remaining more or less still [53], and prey 
passing through the gullet are then held in the stomach 
for a prolonged digestion period, making it unlikely that 
lower regions of the body exhibit unique acceleration 
patterns for either striking or swallowing behaviours.

We investigated several ways to attach accelerometers, 
but found that attaching the accelerometer via a trans-
parent bandage material (3 M™ Tegaderm™) on the dor-
sum with the leading edge at 25% SVL was the simplest 
and most effective technique. Although being close to 
the head is desirable for accelerometer attachment, the 
degree to which devices can be attached anteriorly is 
also limited by the size of the device relative to the snake. 
Snakes ingest comparatively large prey items relative to 
their head and body size, and the elastic skin of their 
anterior body must be able to expand during ingestion. A 

device attached to the dorsum with adhesive tape should 
only adhere to the few scale rows lateral to the vertebrae, 
lest it interfere with the snake’s ability to ingest large 
prey. All three of our species tested were broadly similar 
in body size, with adults ~ 600–1100 mm in SVL, and we 
found that attaching devices at 25% SVL did not interfere 
with normal movement or feeding behaviours. However, 
we suspect this attachment methodology may need to be 
modified for smaller-bodied snakes.

Although we recognize the use of an adhesive band-
age is a short-term attachment method (snakes generally 
shed the device during each ecdysis cycle), high-fre-
quency accelerometry on relatively small-bodied ver-
tebrates is inherently limited in duration. Devices small 
enough for external attachment (our customized AXY-5; 
Technosmart Europe Srl., Rome, Italy) were configured 
as flat rectangular packages (32 L × 10 W × 8 H mm) and 
could collect ~ 30 days of data at a sampling frequency of 
25 Hz. Preliminary field tests of our technique attaching 
devices to free-ranging C. viridis have found that devices 
generally remain attached for the entire 30-day battery 
life of the device, although detachments are frequent 
enough that we adhere a 0.5 g micro-VHF transmitter to 
the accelerometer, so that we can recover any devices that 
detach (RJH, JLH, and RWC, pers. observation). We also 
caution that the success of this technique may be some-
what species-specific; in the current study, we qualita-
tively noted significant variation in adherence of devices 
among species, with C. viridis and C. oreganus retain-
ing devices for long periods of time, whereas devices 
attached to C. horridus detached much more readily 
during both captive and field tests (DLD, AFT, and MLT, 
pers. observation).

Cross‑species comparison
Although accelerometry models are typically developed 
and tested within a species, several other research groups 
have also noted the potential utility of cross-species mod-
eling [42, 54–57]. Previous studies have shown both high 
and low transferability of models across similar species, 
but when more complicated behaviours are included, 
the models typically have low transferability. For exam-
ple, Dickinson et al. [57] examined model transferability 
of a captive phylogenetically similar species and captive 
conspecifics (surrogate species) in Caprids for calibrat-
ing behavioural classification of 11 different behaviours 
and found low model transferability (< 55%). However, 
the possibility of cross-species models is still important 
to assess, because the use of a previously developed and 
validated model could save researchers extensive time 
and effort in creating a unique validation data set when 
a suitable one already exists. For instance, Auge et  al. 
[42] found high model transferability across two species 
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of freshwater turtles, where accelerometry was coupled 
with water sensing technology to classify activity states. 
Therefore, a general model could be useful in many dif-
ferent scenarios, including instances when behavioural 
categories are broad (e.g., moving vs. still), free-ranging 
animals are difficult to record, or the target species is 
especially cryptic and difficult to find.

Despite highly accurate species-specific models, we 
found low transferability of all of our top performing 
models across species. Overall accuracy ranged from 
42–58% to 36–73% for ‘swallow’ and ‘strike’ models, 
respectively. Across all ‘swallow’ models, we found that 
locomotion was classified correctly most frequently, but 
still was often confused with swallow (Table 4; Additional 
file  2). This may be because the behavioural class swal-
low is similar to still, where the accelerometer remains 
motionless until the prey item passes down the esopha-
gus and underneath the accelerometer, presumably forc-
ing the accelerometer upwards. Broadly, cross-species 
‘strike’ models were able to classify strikes correctly, but 
performed poorly at discerning still and locomotion from 
strikes (Table 5; Additional file 2). Although it is unclear 
why the transferability of ‘strike’ models was low, it is 
possible that there was too much variation in body size 
across the three species, or that snake strikes are more 
variable in duration and acceleration than is apparent 
from direct observation. However, it is important to note 
that the C. viridis ‘strike’ model had a reasonably accurate 
transferability of 67% and 73% overall accuracy on C. hor-
ridus and C. oreganus, respectively. Consequently, a data 
set that includes a larger sample of individuals across 
more variable body sizes may increase overall transfera-
bility among species. Although we are still uncertain why 
models were not generalizable across species, we think it 
is unlikely that different rattlesnake species differ funda-
mentally from one another in the kinematics of their vari-
ous feeding behaviors, and that generalizable models may 
be achieved by building larger validation data sets that 
incorporate a broader range of snake sizes and move-
ment contexts (i.e., including movements of free-ranging 
individuals through natural habitats, rather than relying 
solely upon captive individuals). Such data sets should be 
able to train models that can recognize the broader range 
of variation present in behavioral classifications. We also 
suggest that future approaches should experiment with 
machine-learning algorithms that use more complex 
and involved training methods (such as over-sampling, 
under-sampling, moving/sliding window sizes, etc.).

Conclusions
Overall, our study demonstrates the strong potential for 
using accelerometry to document critical feeding behav-
iours in snakes that are difficult to observe directly. Many 

snakes are extreme low-energy specialists, and may only 
feed once every few months—a pattern that has generally 
stymied attempts to fully document predation behaviours 
for most species. Furthermore, we provide an ‘end-
to-end’ template for identifying important behaviours 
involved in the foraging ecology of viperids using tri-axial 
accelerometry. We highlight a method of attachment of 
accelerometers, a technique to simulate feeding events in 
captivity, and a model selection procedure using biologi-
cally relevant window sizes in an open-access software 
for analyzing acceleration data. Although we were unable 
to obtain a generalized model across congeneric species, 
we believe this goal is still feasible if more data are incor-
porated from a broader range of movement and feeding 
contexts, including snakes with more varied body sizes 
moving in more naturalistic settings. This goal is impor-
tant for driving more widespread adoption of acceler-
ometry tools within particular taxonomic groups, as 
researchers starting with a general viperid feeding model 
could spend much less effort in validation, and more 
effort in characterizing movement and behavior under 
varied ecological contexts that would lead to rich com-
parative data sets.
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