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Abstract 

Background Animal-borne telemetry instruments (tags) have greatly advanced our understanding of species that 
are challenging to observe. Recently, non-recoverable instruments attached to cetaceans have increased in use, but 
these devices have limitations in data transmission bandwidth. We analyze trade-offs in the longevity, resolution, and 
continuity of data records from non-recoverable satellite-linked tags on deep-diving Ziphius cavirostris in the context 
of a behavioral response study of acute noise exposure. We present one data collection programming scheme that 
balances resolution and continuity against longevity to address specific questions about the behavioral responses of 
animals to noise exposure in experimental contexts. We compare outputs between two programming regimes on 
a commercially available satellite-linked tag: (1) dive behavior summary defined by conductivity thresholds and (2) 
depth time-series at various temporal resolutions.

Results We found that time-series data vary from the more precisely defined dives from a dive summary record data 
stream by an acceptable error range for our application. We determined a 5-min time-series data stream collected 
for 14 days balanced resolution with longevity, achieving complete or nearly complete diving records in 6 out of 8 
deployments. We increased our data message reception rate several fold by employing a boat based data capture 
system. Finally, a tag deployed in a group concurrently with a high-resolution depth recorder showed high depth 
concordance.

Conclusions We present the conceptual framework and iterative process for matching telemetry tag programming 
to research questions that we used and which should be applicable to a wide range of studies. Although designing 
new hardware for our specific questions was not feasible at the time, we were able to optimize the sampling regime 
of a commercially available instrument to meet the needs of our research questions and proposed analyses. Never-
theless, for other study species or designs, the complicated intersection between animal behavior and bandwidth of 
telemetry systems can often create a severe mismatch among research questions, data collection, and analysis tools. 
More flexible programming and purpose-built instruments will increase the efficacy of these studies and increase the 
scientific yield relative to the inherently higher risk of invasive studies.
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Background
Satellite-linked bio-loggers (satellite tags) are an impor-
tant component of the marine telemetry toolbox in part 
because they can uplink data to a satellite during deploy-
ments, and in some cases in near real time, rather than 
waiting for recovery of archived data. For tags with an 
archival capability, limited resources, uncertain detach-
ment times, strong ocean currents, premature equipment 
failure, and battery life on radio beacons can all act to 
decrease the probability of device recovery. In fact, some 
tags deployed ballistically on cetaceans, such as those 
used in this study, lack any flotation to keep size and 
mass low, and therefore there is no expectation of recov-
ery of archives and only satellite transmitted data are 
retained. Archived data, however, tends to allow higher 
resolution than satellite transmitted data because of the 
bandwidth limitations of many current marine satellite-
linked tag systems, especially those that employ Argos [1, 
2]. There are at least two important types of bandwidth 
limitation we consider here. First, the maximum bit 
rate that satellite-linked tag systems can support is con-
strained by hardware on the tag (transmitting device) and 
on satellites (receivers) and further the total throughput 
of the system is limited by orbiting characteristics, geo-
graphic coverage, and number of satellite receivers. Sec-
ond, the behavior of the animal and device placement 
can be limiting factors [3]. In cetaceans, these limitations 
are often described by the frequency and duration of 
tag emergence into air, because successful uplinks occur 
only when the tag is out of water and a satellite is in radio 
range. Additionally, since some two-way communica-
tion satellite technologies are relatively slow compared to 
a surfacing event for a cetacean, many popular cetacean 
tags only have the ability for one-way communication 
meaning duplicate messages are often sent multiple times 
to ensure uplink since successful receipt is not determi-
nable by the tag. This limitation also therefore decreases 
throughput.

Due to these constraints as well as other technical con-
siderations in the manufacture of these devices, a vari-
ety of methods have been employed to maximize the 
amount of data obtained from non-recoverable satellite-
linked tags. Data can be compressed or summarized, 
duty cycled, and sampling rate and/or resolution can 
be lowered to better accommodate bandwidth restric-
tions [4, 5]. Instruments can be designed to archive data, 
then release, and float to the surface where they transmit 
at a higher rate free floating and not constrained by the 
animals diving behavior [6]. Finally, stations with anten-
nas and receivers affixed nearby to boats or on land can 
receive data directly from the instruments, ameliorating 
the limitations of poor satellite coverage by being avail-
able to collect data at times no satellites are available 

(for example, Argos Goniometer, Woods Hole Group, 
Bourne, Massachusetts, USA and Mote, Wildlife Com-
puters, Redmond, Washington, USA, [7]). Specific solu-
tions depend on the behavior of the species of interest, 
the logistics of deploying receiving stations, as well as the 
data needed to address research questions [8].

We have been using several types of Argos-linked sat-
ellite telemetry tags to study the movements and behav-
ior of Ziphius cavirostris (family: Ziphiidae) off Cape 
Hatteras, North Carolina, USA [9, 10]. Here we focus 
on SPLASH10 tags (Wildlife Computers, Redmond, 
Washington, USA), which consist of a package of sen-
sors including pressure, temperature, and conductiv-
ity, and an onboard computer and storage system that 
records, processes, and archives data. These tags are 
commonly attached to cetaceans in configurations that 
prevent recovery of the tag and the full archived record. 
In such cases, returned sensor data are entirely in the 
form of programmable data streams that are uplinked to 
the Argos satellite system, where they can be downloaded 
and decoded. Additionally, geographic position can be 
estimated from uplinks to the Argos system using a Dop-
pler calculation. A very commonly utilized data stream 
consists of dive summary records (termed behavior  log 
in the tag programming software and data portal) for 
any dives which meet a predetermined threshold based 
on pressure, duration, and conductivity (user-definable 
within a certain range). Other gross metrics are avail-
able in data streams, for example depth histograms over 
a given time span (for example, daily). Finally, a true 
time-series of depths or temperatures can be recorded 
at one of five supported sampling periods and dynami-
cally calculated data resolution. Multiple data streams 
can be collected and transmitted concurrently with some 
limitations.

In our applications on Z. cavirostris, the surfacing 
behavior of the animals themselves creates a tremendous 
bandwidth bottleneck. The Argos system in use by these 
tags is limited to a maximum 32 bytes per data message 
(including any metadata) and, although several messages 
can be sent per minute, during typical ventilation behav-
ior generally only one message is sent each time the tag 
breaks the surface. While more messages can be sent if 
an animal is floating at the surface with the tag exposed, 
this is an uncommon behavior for this species in our 
location. In addition, given the polar orbit of Argos satel-
lites, at the latitude of our study site off the coast of Cape 
Hatteras, North Carolina (approx. 35–36° N), there is 
only about 9% temporal coverage. Z. cavirostris exhibit 
extremely long foraging dives (median: 59 min), shorter 
non-foraging dives (median: 19 min, and very short peri-
ods of ventilation during which they break the surface. 
The median duration of each ventilation period is only 
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2.2  min [10], during which time the animal will break 
the water’s surface multiple times. For these reasons, in 
our area on Z. cavirostris, we receive an average of only 
about 20–30 raw uplinks per day on Argos. Disregard-
ing corrupted data and status messages, often less than 
10 messages (including duplicates) are logged per day via 
satellite. Total number of transmits typically range in the 
hundreds per day and tend to stay below our user-defined 
daily limit of 450 or 470. These limits are imposed to 
avoid excessive battery usage if the animal’s behavior 
happens to present a tag at the surface for an extended 
period of time.

Recently, we have successfully instrumented several 
dozen Z. cavirostris as part of the Atlantic behavioral 
response study, an experiment to quantify behavioral 
responses to naval sonar signals. The aim of this behav-
ioral response study is to collect dive data before, during, 
and after known exposures to mid-frequency (3–4 kHz) 
active sonar signals using controlled exposure experi-
ments either from operational Navy vessel-based sources 
or a simulated source [11–13]. These exposures are acute, 
up to 1  h in duration, in select discrete time periods. 
We identified three key axes which represent trade-offs 
in satellite tag configuration when collecting dive data: 
continuity or the completeness or the number of gaps 
in the data record; data resolution as determined by 
the temporal and spatial sampling scheme; and longev-
ity or the overall data record length. We note that each 
of these axes can have multiple dimensions, but suggest 
this paradigm is useful for appreciating that the relative 
importance of these three general trade-offs depends on 
the research question(s) being addressed, and an equal 
maximization function may not always be desirable. For 
example, prior to the start of the behavioral response 
study off Cape Hatteras, we programmed satellite tags to 
prioritize longevity and data resolution for the purpose 
of exploratory data collection (Fig.  1) [10]. Specifically, 

we collected multiple data streams at relatively fine sam-
pling rates, and duty-cycled data collection to increase 
battery life and overall transmission length, which nec-
essarily introduced data gaps (decreasing data continu-
ity). In 2017, when the experimental phase of the study 
began, we wanted to determine whether mid-frequency 
active sonar disrupted deep foraging dives in known dis-
crete exposure conditions, so we chose settings that pri-
oritized longevity and continuity by collecting data only 
on foraging dives, at the cost of resolution. Thus, we 
employed a dive summary record only configuration, in 
which shallow dives were not recorded [5]. Later in 2018, 
we implemented a new programming scheme to address 
questions concerning potential behavioral responses 
across dive types and within dives using the time-series 
data stream. In this scheme, we sacrificed overall longev-
ity to produce a continuous record and a true time-series, 
centered around a known disturbance event of interest, 
over which response could be assessed. In this paper, we 
describe specific outcomes of implementing this new 
programming scheme to increase temporal resolution of 
depth data collection and data continuity at the cost of 
longevity, given bandwidth limitations of Argos services, 
our field location, and Z. cavirostris behavior.

While, this new programming scheme used the exist-
ing onboard functionality of the tags, we were not aware 
of previous deployments in this specific configuration 
and so we deployed a provisional set of assessment tags 
that employed only time-series data to determine feasi-
bility of this approach. In this paper, we report our pro-
gramming optimization process within the context of a 
larger experimental study on behavior responses. We also 
discuss the efficacy of increasing bandwidth, a key limi-
tation of our instruments, by employing an Argos Goni-
ometer, a vessel-based UHF antenna and receiver system 
that intercepts radio transmissions from the tags. While 
many of our specific requirements and decisions were 

Fig. 1 A conceptual framework of the trade-offs in bandwidth and battery limited bio-logging instrument programming. We highlight three axes: 
temporal and spatial resolution of the data, longevity of the data stream (and battery), and continuity or completeness of the data record. Position 
of the icon indicates roughly the priority balance for each of three setting regimes discussed here: a exploratory settings with multiple data streams 
duty-cycled [10], b continuous dive summary records only [5], and c continuous time-series only
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particular to our project, we suggest that the general 
approach we took provides practical insights for match-
ing tag programming schema to specific research ques-
tions by considering general trade-offs, especially those 
driven primarily by bandwidth limitations.

Methods
Tag deployment and programming overview
The data used in this analysis were a subset of the satel-
lite tags deployed from 2014 to 2019 on Z. cavirostris. 
These instruments were satellite-linked depth-record-
ing SPLASH10-292 tags with the extended depth range 
option in the LIMPET configuration [14] deployed using 
a DAN-INJECT JM 25 pneumatic projector (DanWild 
LLC, Austin, Texas, USA). Tags (n = 16) were attached 
with two 6.8-cm surgical grade titanium darts with back-
ward-facing petals to the dorsal fin (n = 12), base of the 
dorsal fin (n = 2) or below the dorsal fin (n = 2).

We used two primary datasets in this analysis. The first 
dataset consists of 8 exploratory tags (01–08) deployed 
in 2014–2016 programmed to collect a variety of data 
streams including both dive summary records (termed 
behavior  log in the tag programming) and time-series 
data at a 2.5-min sampling period (Table  1). These tags 
were also configured to duty cycle for maximum longev-
ity (see Additional File 1: Table  S1 for details). Finally, 
data collected more than 48  h prior were deleted from 
the data message queue to prevent backlogs. The second 

dataset consists of 8 assessment tags (09–16) deployed in 
2018 with all optional data streams disabled, except for 
time-series depth measurements collected at a 5-min 
sampling period. These samples are packaged in to dis-
crete data messages containing information to decode 48 
depth samples (4  h worth). We programmed these tags 
to collect data only for the first 14  days of deployment, 
but to transmit data continuously for a total of 100 days 
(the maximum programmable setting which in our case 
was always longer than the life of the tag deployment; 
Table  1). As the Argos system also generates position 
estimates from these transmissions, location data are 
not interrupted. We chose 14 days because we estimated 
it would take approximately another 14 days to uplink a 
complete data record for a total of approximately 28 days. 
This total duration is similar both to the estimated bat-
tery life and our observed median instrument survival for 
SPLASH10-292 tags on this species [5, 10]. We deployed 
these tags as a specific test of the efficacy of this sampling 
scheme. We also used data from a single tag in the same 
configuration deployed in 2019 for the purposes of com-
parison with a higher resolution bio-logger deployed in 
the same group of animals (see below).

Assessment of exploratory tags
We compared metrics which we calculated from time-
series to those reported by the dive summary record data 
streams on our 8 exploratory tags where both of these 

Table 1 Telemetry tag deployment summary

Purpose refers to the main use of the tags in the present analysis. DTAG pressure sensor data were decimated to 25 Hz before analysis. Lifetime refers to the total 
transmission lifetime of the tag in days

ID Date Longitude Latitude Tag type Programming Purpose Lifetime

Tag01 2014-05-15 − 74.78 35.55 SPLASH10 Dive summary and time-series Exploratory 60.0

Tag02 2014-09-16 − 74.71 35.66 SPLASH10 Dive summary and time-series Exploratory 40.2

Tag03 2015-06-14 − 74.74 35.60 SPLASH10 Dive summary and time-series Exploratory 56.3

Tag04 2015-06-14 − 74.69 35.63 SPLASH10 Dive summary and time-series Exploratory 1.9

Tag05 2015-10-15 − 74.77 35.61 SPLASH10 Dive summary and time-series Exploratory 34.4

Tag06 2015-10-21 − 74.75 35.62 SPLASH10 Dive summary and time-series Exploratory 59.2

Tag07 2016-05-27 − 74.74 35.59 SPLASH10 Dive summary and time-series Exploratory 36.3

Tag08 2016-08-21 − 74.69 35.61 SPLASH10 Dive summary and time-series Exploratory 11.3

Tag09 2018-05-24 − 74.78 35.69 SPLASH10 Time-series only Assessment 38.6

Tag10 2018-08-05 − 74.78 35.73 SPLASH10 Time-series only Assessment 34.2

Tag11 2018-08-05 − 74.78 35.72 SPLASH10 Time-series only Assessment 42.8

Tag12 2018-08-05 − 74.75 35.55 SPLASH10 Time-series only Assessment 43.4

Tag13 2018-08-06 − 74.78 35.48 SPLASH10 Time-series only Assessment 41.3

Tag14 2018-08-07 − 74.78 35.57 SPLASH10 Time-series only Assessment 43.3

Tag15 2018-08-07 − 74.78 35.56 SPLASH10 Time-series only Assessment 43.6

Tag16 2018-08-07 − 74.75 35.59 SPLASH10 Time-series only Assessment 57.2

Tag17 2019-07-30 − 74.73 35.54 SPLASH10 Time-series only DTAG comparison 24.9

Tag18 2019-08-06 − 74.75 35.58 DTAG n/a DTAG comparison 0.23
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data streams were at times running concurrently (Fig. 2, 
Table  1). This was to assess the degree to which these 
data streams were comparable. The dive summary record 
data stream reports dive duration, maximum depth, 
and dive shape using a conductivity sensor to define the 
beginning and end of dives when a candidate dive passes 
a minimum duration (30 s) and depth (50 m) threshold. 
Both maximum depth and a dive shape metric are calcu-
lated from a 1-Hz dive record with reported tolerance of 
1 m that is stored onboard the tag, but not transmitted 
to satellite. Three dive shapes are defined: square shaped 
dives were scored if greater than 50% of the dive was 
within 80% of the maximum depth, U-shaped dives were 
scored if between 20 and 50% of the dive was within 80% 
of the maximum depth, and V-shaped dives were scored 

if less than 20% of the dive was within 80% of the maxi-
mum depth [15]. Since the dive summary metrics are cal-
culated from much higher resolution input data than the 
series data we considered the dive summary record data 
stream as truth and compared it to calculated metrics 
from the time-series data stream.

We employed a simple algorithm to define dives and 
convert depth time-series data into a similar format 
as the dive summary record  data. In short, we flagged 
points where the first derivative of the time-series was 
crossing zero to determine points nearest a given sur-
facing. We used a depth filter of 50  m to exclude local 
maxima. While a filter of 50 m was mostly effective, we 
visually inspected the resultant dives against the origi-
nal time-series to correct any false negatives or positives. 

Fig. 2 A representation of two types of dive data streams collected concurrently on a single tag deployed on a Ziphius cavirostris. In gray is a 
pseudo-dive profile based on a dive summary record data stream which provides a maximum depth, start time, and end time for each dive. Note 
this is not a true dive profile as only maximum depth and general shape of the dive are indicated (see Methods for details). In black are time-series 
depths with reported error bands indicated by blue segments. Top panel shows the native resolution of time-series data for this deployment 
(period = 2.5 min), while the middle and bottom panel show resampled time-series data (period = 5.0, 7.5)
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To estimate dive durations, we interpolated to the sur-
face from the points nearest the surface using a vertical 
velocity of 1.4 m ⋅  s−1 based on the findings of Tyack and 
coauthors [16], who found that ascent and descent rates 
varied little for Z. cavirostris within several hundred 
meters of the surface. Maximum depth was estimated as 
the largest value recorded between the start and end of 
the dive. We calculated dive shape using the same cate-
gories as the dive summary record data stream with the 
time-series depth samples as input. In addition, we res-
ampled the time-series data from a 2.5-min period to a 
5.0- and 7.5-min period to investigate the impact of sam-
pling frequency (Fig.  2). We compared these converted 
time-series data sets to the dive summary record data on 
duration, depth, and shape that were recorded simultane-
ously on the tag.

We also compared depths from two different tag types 
deployed on different individuals in the same group in 
2019, as animals in the same group at the surface are 
known to maintain high levels of synchrony [17–20]. 
One of these tags was identical in type and program-
ming to our 2018 time-series only satellite tags; the other 
was a shorter-term bio-logger attached by suction cups 
(DTAG) archiving pressure at 250  Hz, processed and 
decimated to 25 Hz [21].

Additional data collected by UHF antenna
To aid in tracking and data collection we used an Argos 
Goniometer (henceforth Goniometer) to localize tagged 
whales and receive data from their transmitters. We 
developed a visualization software in the form of an R 
package to assist in real-time tracking of individual tags 
[22]. In addition, we used data messages downloaded 
by the Goniometer to supplement those data messages 
received only via satellite. We converted Goniometer-
received hexadecimal data into a format that could be 
inputted into Wildlife Computer’s message decoding util-
ities using a custom R function [23]. Goniometer effort 
was approximated using the time difference between the 
first and last reception of a tag on the instrument per 
field day. Goniometers were affixed to 1 or 2 vessels per 
day which may have been engaged in a variety of activi-
ties including dedicated searching for previously tagged 
individuals.

Assessment of time‑series only configured tag 
deployments
Time-series only assessment tags (n = 8) were pro-
grammed with a 5.0-min sampling period which was 
chosen to achieve the highest temporal resolution pos-
sible with the most completeness, while sacrificing some 
longevity of dive data compared to our exploratory tags. 
We measured the overall life of the tag from deployment 

to the final uplink, and the number of data messages 
successfully received by satellite from the 14  days of 
time-series collection, and the number of consecutive 
messages without a data gap.

Data validation
We checked for mechanical or software failures in our 
data streams. Status messages periodically report the 
pressure transducer reading at a presumed zero depth 
(when the conductivity sensor reads dry). We used these 
readings and manual inspections of the dive record to 
identify periods of excessive pressure transducer drift 
or failure. We defined unacceptably high pressure trans-
ducer drift as two or more consecutive absolute value 
zero depth readings of greater than 10 m [24]. When data 
were flagged for drift, dive or depth data were not ana-
lyzed past the last known good status message, but other 
types of information such as locations and number of 
receptions were retained.

All analyses were carried out in the R programming 
language version 3.6.2 [25]. R packages colorspace 1.4–
1, ggplot2 3.2.1, reshape2 1.4.3 and R.matlab 3.6.2 were 
used in visualizations [26–29].

Results
Assessment of exploratory tags
We extracted a total of 645 dives from the 2.5-min sam-
pling period time-series data, compared to 598 and 457 
for the 5.0- and 7.5-min sampling periods, respectively 
(n = 8 tags in all cases). Mean difference between time-
series extracted dive duration and the dive summary 
derived dive duration (error) increased as sampling 
period increased, although the maximum error was 
similar (Table 2). Most dive duration errors were within 
the theoretical maximum of twice the sampling period 
(Fig.  3). Time-series data tended to underestimate 

Table 2 Mean absolute value differences among time-series 
data and concurrently collected dive summary records derived 
from the 8 exploratory tags

Dive summary records include a dive duration calculated from submergence to 
emergence in air (as measured by a conductivity sensor) and maximum depth of 
each dive (as measured from an onboard pressure transducer sampled at 1 Hz). 
Time-series data were recorded at a 2.5-min sampling period and resampled to 
5.0- and 7.5-min periods. Values in brackets indicate ranges

2.5 min period 5.0 min period 7.5 min period

n dives extracted 645 598 457

Duration (s) 69 (0–1338) 182 (0–1589) 293 (0–1589)

Depth (m), all dives 30 (1–147) 34 (1–147) 43 (1–234)

Depth (m), 
dives < 33 min

18 (1–95) 21 (1–101) 27 (1–152)

Depth (m), 
dives > 33 min

81 (2–147) 82 (16–147) 83 (16–234)
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to concurrently collected dive summary records derived from conductivity sensor detected dives. a–f Show the distributions of the difference in 
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maximum depth, probably due to short forays to depths 
missed by the relatively coarse sampling. The linear 
effect seen at deeper depths is probably due to the 
encoding algorithm the tag uses (see a more detailed 
description of this algorithm in the discussion). Mean 
depth error increased only very slightly with increas-
ing sampling period, but the maximum depth error 
increased more substantially (Table 2). Correct assign-
ment of dive shape also decreased with increasing 
sampling period from approximately 76% correct at 
2.5 min to 65% and 63% at 5.0 and 7.5 min, respectively. 
V-shaped dives were the most often miscategorized by 
the time-series data, but this type of dive was also the 
rarest. Square-shaped dives were the best identified at 
76–79% correct for all sampling periods (Fig. 3).

We also compared dive depths between the two 
whales tagged in the same group, which we expected 
to be highly synchronous. One of the pair was tagged 
with a high-resolution DTAG and the other with a 
time-series programmed (5-min period) SPLASH10 
tag (Fig.  4). DTAG depth calibration error was 2.3  m. 
Depths were highly correlated between the two instru-
ments (n = 56 samples, R2 = 0.99) with a mean depth 
difference of 30  m. Note that this difference includes 
both measurement error (from both tags), as well as 
any difference in the behavior of the two animals.

Assessment deployments of time‑series tags
We deployed eight time-series only tags to assess the per-
formance of this setting regime. We programmed these 
tags to collect 14 days of dive data, before transitioning 
to a transmit-only phase. One tag was deployed below 
the dorsal fin and never successfully transmitted any data 
(Tag10). A second tag suffered an unknown malfunction, 
apparently restarting at random intervals, which dimin-
ished the amount of transmitted data (Tag14). A third 
tag (Tag13) apparently experienced a reset about 37 days 
after deployment which had little impact on the tag per-
formance. Of the 6 tags which functioned nominally for 
an extended period of time, 2 experienced significant 
pressure transducer drift, resulting in truncation of the 
reliable data. These tags could still be assessed for data 
completion and transmission statistics because these 
aspects of tag performance were unaffected by the pres-
sure transducer malfunction.

From the 6 tags that uplinked data, there were 3 data 
gaps across 3 different tags. Two of these gaps were 8 h (2 
data messages), while the last was only 4 h (1 data mes-
sage). Most data messages were received by satellite or 
by both satellite and Goniometer. There was a general 
pattern that the very first messages were almost always 
received successfully as the tag’s message queue was 
relatively empty at the beginning of the deployment, but 
data gaps otherwise occurred throughout the rest of the 
record. Most individual data messages were received sev-
eral times, although all but one tag had at least one mes-
sage only received once (see Additional File 2: Fig. S1 for 
details). Goniometer effort (time between reception of 
first and last Goniometer message) totaled approximately 
212 h over 31 days for our first vessel and approximately 
178 h over 26 days for our second vessel. Seven dive data 
messages (across 3 tags) were only received via Goniom-
eter in the field (Fig.  5). The Goniometer also received 
additional status messages which did not reach satellites, 
although there was a higher rate of corrupt messages 
received in the field via the Goniometer than via satellite 
(Fig.  6). Daily rate of successfully decoded Goniometer 
messages was approximately 5 to 25 times greater than 
from satellite, while the corrupt rate ranged from 9 to 36 
times greater.

Discussion
Skin-piercing LIMPET configured telemetry tags are 
more invasive than many other possible data collec-
tion techniques and their deployment involves risk 
both to animal subjects and researchers [8]. Further, 
experimental behavioral response studies are by design 
invasive as a potentially harmful stimulus is introduced 

Fig. 4 Comparison of dive depths between a satellite tag configured 
to collect time-series depth data and a DTAG deployed on different 
individuals in the same group. Top panel shows depth comparison 
with the broken line indicating 1:1 and gray segments indicating the 
reported error range for time-series reported depths. Bottom panels 
show the DTAG dive profile (Tag18) overlaid with 5.0-min time-series 
depth sampling from the satellite tag (Tag17)
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into the animals’ environment. Therefore every effort 
must be made to maximize the quantity and quality of 
data while minimizing impact and using the smallest 
possible number of animals. To those ends, this paper 
details the framework we used to match data collec-
tion to study questions, including when those questions 
evolved during the course of a single project.

Sampling rate and data record length
We chose a 5-min sampling period for time-series to 
maximize the temporal length of data, while reducing 
depth aliasing effects and minimizing data gaps due 
to limited uplink bandwidth. At the 5-min sampling 
period, we estimate about twice as many data messages 
are generated per day than can be uplinked to satel-
lite. We solved this problem by truncating data collec-
tion to 14 days, and then transitioning the tags to cease 
dive data collection but continue transmitting for up to 
100 days (the maximum), enabling the tag to uplink the 
backlog of messages.

Relying on a post-data collection period to com-
plete data transmissions also creates the risk that a 
tag could fail before the data uploading is complete. 
Our sampling length of 14 days was largely dictated by 
this concern. This total duration fell within the calcu-
lated battery life of the instrument, given our program-
ming, and commensurate with average deployment life 
observed in our study area [10]. In addition, 14  days 
was sufficient to conduct experimental treatments 
including adequate baseline and post-exposure periods 
given that experimental treatments were targeted for 
the middle of this period.

We were able to show high depth concordance in a 
single instance where one of our tags programmed in 
this manner was deployed in a group with another ani-
mal instrumented with a higher-resolution archival tag 
(Fig.  4). Though diving behavior can be very synchro-
nous in Z. cavirostris, there is evidence that groups split 
at the bottom of long dives, so data from separately 
tagged individuals must be considered cautiously [17–
20]. Additional examples and doubly tagged individuals 
would provide more reliable data on this point, but our 
current evidence is consistent with a fair representation 
of overall dive patterns.

This sampling scheme was in part only viable for 
our experimental questions because the study species, 
Z. cavirostris, perform long deep dives, thus alleviat-
ing some of the depth and temporal resolution limita-
tions of this tagging system and programming regime. 
To answer similar questions about shallower, shorter 
or faster diving species or to answer questions about 
very small changes in depth, higher sampling rates and 
depth resolution would have been necessary. For some 
species and questions, an entirely different instrument 
may be necessary. Nevertheless, the iterative approach 
to considering trade-offs we outline is applicable to 
those situations and would provide guidance on select-
ing the best data streams and programming details fit 
for a particular experiment or inquiry.

Fig. 5 Time-series message reception for 8 assessment tags in the 
time-series only programming configuration. Each block represents 
48 time-series data points (= 4 h of data at our sampling period 
of 5 min). Colors denote if a message was received in the field 
only (via Argos Goniometer), from the Argos satellite system only 
or from both sources. Only successfully decoded messages are 
included in this plot. Tag10 never transmitted a successfully decoded 
time-series message. Note that total length of record varies as tags 
are programmed to record for 14 calendar days as opposed to exactly 
336 h. Malfunctioning tags (Tag12, 14) were truncated to 14 days for 
comparison purposes

Fig. 6 Comparison of tag message capture rate between the Argos 
satellite system (sat) and Argos Goniometer (field) for 8 assessment 
tags in a time-series programming configuration. The proportion 
of messages successfully decoded indicated by darker bars. Rates 
were calculated using the time from the first message received from 
a particular tag on a given day to the last message received that 
day. Tag11 was omitted from the field calculation, since it was only 
in reception range for a short period during deployment and not 
revisited
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Additional data collected by UHF antenna
To decrease the risks of not receiving data packages 
via satellites associated with this programming regime, 
we utilized a Goniometer to download additional data. 
Fortunately, by the end of our test deployments almost 
all messages that were obtained with the Goniometer 
had also been successfully received via satellite trans-
mission, but the Goniometer provided additional secu-
rity by collecting the most crucial messages (concurrent 
in time to the experimental exposures) before they were 
received by satellite and therefore guarding against 
potential future tag failure. Near real-time monitoring 
of received messages from experimental animals was 
possible in the field, which enabled strategic sampling 
to fill prioritized gaps and increased our ability to cap-
ture complete records by staying with an animal longer 
or moving on to other priority animals after highest 
priority messages were captured. Vessels with extended 
endurance (overnight capabilities) can greatly increase 
the potential data reception bandwidth, allowing for 
finer scale sampling or longer duration of sampling. 
These types of benefits have also been demonstrated in 
field sites with suitable land stations nearby [7].

Iterative approach
Although we have focused on data resolution, longev-
ity, and continuity, there are many other important 
factors to consider when deploying tags. These con-
siderations include: weighing the risk of harm to the 
animal with the value of data collected [8, 30, 31]; the 
cost and time expenditure in deployment and analysis; 
how sample size is affected by programming regimes 
[32]; the appropriateness of data to biological questions 
[33]; species behavior; and the probability of success in 
achieving the experimental objectives during critical 
data collection periods.

One possible downside to tailoring tag program-
ming regimes to each question or experiment is the 
complication of creating non-comparable datasets. For 
instance, if tags are deployed in the context of a long-
term study, year-to-year comparisons may be of inter-
est. For that reason, it is often more beneficial to collect 
data in a fashion such that it can be compared to his-
torical samples, even as new questions and protocols 
are added to a project. In our case, the exploratory data 
collection paradigm was not suitable to meet the spe-
cific experimental objectives from the Atlantic behavio-
ral response study, given the short temporal (up to 1 h) 
nature of experimental treatments [5].

Assessment time‑series data
Onboard data processing can increase the efficiency of 
bio-logging devices, especially on those which trans-
mit data with bandwidth limited systems. For instance, 
when using the dive summary records to capture only 
long foraging dives, each data message comprises 
approximately 9  h of Z. cavirostris behavior depend-
ing on the diving rate. In contrast, a time-series data 
stream set to a 5.0-min sampling period only comprises 
4 h of data in a message and is dive rate independent. 
For species or applications where finer sampling is 
needed, this would be further reduced. In return, how-
ever, a true time-series even at relatively coarse depth 
resolution allows the calculation of activity budgets and 
summary statistics based on depth, spectral densities, 
custom shape parameters, and other vertical movement 
parameters. These data are also well suited for more 
sophisticated continuous time behavioral modeling 
(for example, [34, 35]). Again, our ability to recover 
this type of information from a relatively coarse diving 
time-series depends on the long deep dives of Z. cavi-
rostris and sampling rate and depth resolution would 
need to be considered for other species and applica-
tions and of course can be incorporated into models 
in a straight forward manner. Importantly, even in this 
species, shorter dives under this sampling scheme can 
be extremely aliased or completely obliterated and so 
careful consideration must be made when attempting 
to back out dive-by-dive metrics. If absolute dive dura-
tions are paramount for an analysis then another type 
of data stream or instrument would be needed. Addi-
tionally, shape as calculated in the dive summary record 
data stream seems to be unreliable for some classes. 
Nevertheless, we note that the time-series allows for 
different types of shape analysis, which may be as rel-
evant or more to diving behavior.

A further benefit of the time-series data in our case was 
that depth measurements were closely linked to a real-
time clock, which was in contrast to the more tempo-
rally imprecise records in the dive summary record data 
stream (start time is only measured to the minute). In the 
time-series, any concurrent tags sample almost simul-
taneously, allowing for direct comparison of the diving 
behavior of animals tagged within and between groups 
or, as we have shown here, even between different instru-
ment types.

Another major consideration in our experiment was 
the depth resolution loss in the time-series only con-
figuration. The lower depth resolution in the time-series 
was partially compensated by the fact that multiple 
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depths were sampled during each dive, as opposed to a 
single depth in the dive summary record data stream 
(maximum depth) albeit at a finer resolution, but this 
could be an important consideration depending on the 
application.

Species‑specific behavior
The sampling resolution and depth accuracy to resolve, 
for example, individual dives are highly taxon-dependent, 
as is the degree to which the animal’s diving behavior cre-
ates bandwidth bottlenecks. Z. cavirostris create a signifi-
cant bandwidth bottleneck by virtue of the small amount 
of time they spend at the surface, but the fact that their 
dives tend to be long and deep offsets this challenge by 
permitting the use of coarser sampling resolutions. Even 
the shorter dives of Z. cavirostris average 19 min [10], so 
a sampling period of 5 min does not typically cause alias-
ing, which could obscure dive events in the time-series 
record. Considering the sample period alone, it should 
be possible to detect any dive of 10 min or greater. Due 
to the limitations in depth accuracy and variation in dive 
shape, however, short and shallow dives may sometimes 
be unobserved. As the shorter dives of Z. cavirostris also 
tend to be relatively deep (> 100 m), this is not typically a 
problem for this species. In comparison, in the sympat-
ric population of short-finned pilot whales (Globicephala 
macrorhynchus), the maximum recorded dive duration is 
26 min and dives are typically shallower than for Z. cavi-
rostris with a maximum recorded depth of 1360 m [9, 36]. 
Therefore, a 5-min sampling period would be insufficient 
to capture the same percentage of dives for this popula-
tion. In fact, for some applications this type of tag may 
not deliver suitable data at all for more shallowly diving 
species.

Tag failure and limitations
We experienced multiple instrument failures during the 
deployments of the time-series assessment tags. Three of 
the 8 tags suffered catastrophic failures rendering most 
of the return data unusable (a fourth tag was deployed 
too low on the animal to break the surface and transmit 
data messages). Such equipment failures are unavoid-
able in small-run electronics, especially when exposed 
to extreme conditions at or beyond their tolerances such 
as those deployed on deep-diving cetaceans, but failure 
rate must also be incorporated into the risk assessment of 
any programming scheme and, indeed, any tagging pro-
gram [8]. In this case, early failure could lead to dramatic 
reductions in completeness of the data record, so we took 
steps to mitigate this using the Goniometer.

Design limitations in our chosen instruments also 
impacted our data even when tags were functioning to 
specification. For example, the depth resolution of the 

time-series data in SPLASH10 tags is dynamically cal-
culated from the maximum recorded depth (transmitted 
at some resolution itself ) for a 1, 2, 4, or 8 h data block 
(corresponding to the different sampling period options). 
Depths are split into 16 bins, which are narrower at shal-
low depths and wider near the maximum depth. This 
encoding is convenient since each depth point can be 
stored as just 4 bits, but can also cause complications 
in modeling as the resolution is constantly changing. In 
addition, the manufacturer declined to share the exact 
encoding algorithm, which further hampers efforts to 
produce consistent and reproducible analyses. There are 
other drawbacks in the dive summary record data stream, 
such as a lack of precision in the recorded timestamp of 
data messages (presumably to save bandwidth). The limi-
tations mentioned here are device specific, but all instru-
ments involve trade-offs in data collection choices, and 
these examples serve to highlight the general need to 
consider downstream data analysis before data collection 
especially in high risk projects and/or invasive protocols.

Future development
There is a clear need for more flexible and/or purpose-
built bio-logging instruments to answer many of the cur-
rent and pressing questions in large marine vertebrate 
research, especially within the context of experimental 
behavioral response studies (for example, [2]). Newer 
satellite systems such as the upcoming Kinéis constella-
tion (CLS and the French Space Agency) or the currently 
stalled Icarus Initiative’s space instrument may also help 
alleviate some of the current problems but will of course 
require parallel hardware development. In addition, there 
are specific requirements for instruments that are pushed 
to extreme environments, such as the significant pres-
sure ranges visited by beaked whales. Hardware develop-
ment is very expensive and, therefore, not always feasible, 
although in the case of deep-diving cetaceans at conser-
vation risk, such research would be advantageous.

In our study, new hardware development was not pos-
sible, but we were able to tailor the sampling regimes 
of existing instruments available to us to better fit our 
requirements. Through this process it became clear 
more flexible and transparent hardware and software 
are needed. Additional control to set sampling rates and 
regimes could lead to more creative solutions in difficult 
bio-logging problems that would in turn enable data col-
lection for a greater array of biological and applied con-
servation questions. Open source instruments could be 
a solution to creating accessible, flexible platforms for 
asking these questions consistently, transparently, and 
reproducibly and indeed these types of devices are on 
the rise (for example, [37]). This route will require strong 
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partnerships between engineers and biologists (for exam-
ple, [38]), and significant and ongoing commitment from 
funders.

Final recommendations
Lessons from our deployment and programming strate-
gies should be generalizable to similar problems in other 
taxa and contribute to a growing literature on best prac-
tices in bio-telemetry. Our recommendations are to fol-
low the logical thought process of any complex field 
experiment with specific objectives and constraints: start 
with the research questions, design analyses to address 
specific components, and optimize data collection for 
those analyses and questions. Trialing data collection 
methods with pilot data or real deployments provides 
added value and allows for protocol refinement. Extensive 
testing, as presented here, is expensive and sometimes 
infeasible given the constraints of research budgets and 
the objectives of applied studies. Our funders allowed us 
to strategically and systematically evaluate tag settings 
to determine optimal solutions to best meet the spe-
cific research objectives of long-term studies of baseline 
behavior and behavioral responses of whales to sonar in 
our study site. The level of testing described here may 
not always be desirable and must be weighed with the 
potential impacts of an invasive instrumentation and the 
overall risk of a project. Computer simulations and bench 
tests are viable alternatives, but the intersection of animal 
behavior, weather, deployment location, and satellite cov-
erage can be difficult to model or reproduce in the lab. 
A hybrid approach using simulation or modeling based 
on similar species and deployments can also increase the 
likelihood of success in field tests. Together these sugges-
tions can serve to maximize scientific yield while seeking 
to minimize risk and impact to the study subjects.
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