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Abstract 

Background Biologgers have contributed greatly to studies of animal movement, behaviours and physiology. 
Accelerometers, among the various on-board sensors of biologgers, have mainly been used for animal behaviour 
classification and energy expenditure estimation. However, a general principle for the combined sampling duration 
and frequency for different taxa is lacking. In this study, we evaluated whether Nyquist–Shannon sampling theorem 
applies to accelerometer-based classification of animal behaviour and energy expenditure approximation. To evalu-
ate the influence of accelerometer sampling frequency on behaviour classification, we annotated accelerometer 
data from seven European pied flycatchers (Ficedula hypoleuca) freely moving in aviaries. We also used simulated data 
to systematically evaluate the combined effect of sampling duration and sampling frequency on the performance 
of estimating signal frequency and amplitude.

Results We found that a sampling frequency higher than Nyquist frequency at 100 Hz was needed to classify fast, 
short-burst behavioural movements of pied flycatcher, such as swallowing food with a mean frequency of 28 Hz. In 
contrast, high frequency movements with longer durations such as flight could be characterized adequately using 
much lower sampling frequency of 12.5 Hz. To identify rapid transient prey catching manoeuvres within these flight 
bouts, again a high frequency sampling at 100 Hz was needed. For both the experimental data of the flycatchers 
and the simulated data, the combination of sampling frequency and sampling duration affected the accuracy of sig-
nal frequency and amplitude estimation. For long sampling durations, the sampling frequency equal to the Nyquist 
frequency was adequate for accurate signal frequency and amplitude estimation. Accuracy declined with decreas-
ing sampling duration, especially for signal amplitude estimation with up to 40% standard deviation of normalized 
amplitude difference. To accurately estimate signal amplitude at low sampling duration, a sampling frequency of four 
times the signal frequency was necessary (two times the Nyquist frequency).

Conclusions The appropriate sampling frequency of accelerometers depends on the objective of the specific study 
and the characteristics of the behaviour. For studies with no constraints on device battery and storage, a sampling 
frequency of at least two times the Nyquist frequency will achieve relative optimal representative of signal informa-
tion (i.e., frequency and amplitude). For classification and energy expenditure estimation of short-burst behaviours, 1.4 
times the Nyquist frequency of behaviour is required.
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Introduction
Animal ecology research has benefited from miniatur-
ized, energy efficient and multi-sensor biologgers [1, 
2], which allows researchers to track animals in space 
and time [3], while also characterizing behavioural and 
physiological properties [4, 5]. Accelerometers have been 
applied to behaviour classification and estimating energy 
expenditure from accelerometer data in free moving ani-
mals [6], ranging from small songbirds (e.g., [7]) to large 
mammals (e.g., [8]). Furthermore, researchers have inves-
tigated various protocols of accelerometer attachment 
and sampling settings. These efforts show that the perfor-
mance of both behavioural classification [9] and energy 
expenditure estimations [10] depends on accelerometer 
sampling frequency, window length for data analysis, 
and logger placement on the animal [11–14]. In addition, 
Garde et  al. [11] stressed the importance of accelerom-
eter calibration before logger attachment on animals.

Although biologging devices are becoming smaller and 
more energy efficient, constraints on device storage and 
battery capacity still exist. High sampling rates of accel-
erometer will cause faster battery drainage and faster 
filling of the memory. For example, Khan et al. [15] indi-
cated that sampling accelerometer data at 25  Hz would 
result in more than double the battery life compared with 
sampling at 100 Hz. Obviously, sampling at 100 Hz would 
fill the device memory four times faster than sampling 
at 25 Hz. On the other hand, a low sampling rate might 
cause loss of information. Therefore, researchers need to 
optimize accelerometer sampling rate based on their spe-
cific research aim.

To evaluate how accelerometer sampling frequency 
settings influence performance of animal behav-
iour classification and estimated energy expenditure, 
researchers have usually sampled accelerometer data 
at a relatively high frequency and gradually down-
sampled data from the original dataset. The perfor-
mance metrics of each sampling frequency were then 
compared to determine the critical frequencies for 
appropriate preservation of information. In general, 
improved accuracy of behaviour classification was 
achieved using relatively high sampling frequency. Lok 
et al. [16] found walking and food ingesting behaviours 
of Eurasian spoonbills (Platalea leucorodia) could be 
better classified using accelerometer data sampled at 
20 Hz compared with samples at 2, 5, and 10 Hz. Broell 
et al. [9] recommended using high frequency (> 30 Hz) 
accelerometer data for a bony fish, great sculpin 

(Myoxocephalus polyacanthocephalus), to detect short-
burst (i.e., only last a couple of movement cycles and 
over time scales of order 100  ms) behaviours such as 
feeding and escape events. For a study on a larger car-
tilaginous fish, lemon shark (Negaprion brevirostris), 
Hounslow et al. [17] found that short-burst behaviours 
(i.e., burst, chafe, and headshake) could be classified 
relatively well using accelerometer already at sampling 
frequency above 5  Hz. Walton et  al. [18] showed that 
behaviour classification for sheep (i.e., lying, walking, 
and standing) performed best using accelerometer data 
sampled at 32  Hz, although the performance gain on 
data sampled beyond 16 Hz was marginal. In contrast, 
when using accelerometer measurements for estimating 
animal field energy expenditure (e.g., overall dynamic 
body acceleration—ODBA), Halsey et  al. [10] sug-
gested using a low accelerometer sampling frequency 
(i.e., from 10 down to 0.2  Hz). The calculations of 
ODBA were consistent over a 5-min window of chick-
ens walking on a treadmill at 0.8 km  h−1. Other studies 
also found that amplitude related metrics from accel-
erometer data such as VeDBA (vector of dynamic body 
acceleration) can be a good approximation for energy 
expenditure approximation [19]. In addition, signal fre-
quency information from accelerometer data is one of 
the main determinants of aerodynamic power output 
of a flapping bird flight [20]. Although the above-men-
tioned studies evaluated the influence of accelerometer 
sampling frequency on animal behaviour classification 
and energy expenditure proxies, the choices of fre-
quency were often based on trial-and-error and did not 
include conclusions based on a systematic evaluation.

Various studies stress the importance of the Nyquist–
Shannon sampling theorem [21] in accelerometer data 
collection, which states that the sampling frequency 
should be at least twice the frequency of the fastest 
body movement essential to characterize that behaviour 
[1, 6, 22–24]. When the sampling frequency is lower 
than the Nyquist frequency, signal aliasing will cause a 
distortion effect on the original signal. However, none 
of these previous works explicitly tested this theorem in 
the context of their work on animal behaviour classifi-
cation or energy expenditure approximation. Therefore, 
several questions remain unanswered about this theo-
rem in the context of accelerometer-based research. 
For example, would samples at the exact Nyquist fre-
quency be adequate for behaviour classification and 
energy expenditure estimation? Or would oversampling 
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(i.e., higher than Nyquist frequency) provide additional 
value of increased accuracy?

The aim of this study was to evaluate the appropriate 
sampling frequency regarding the Nyquist–Shannon 
theorem with respect to behaviour classification and 
energy expenditure approximation using accelerometer 
data from freely moving birds. We collected acceler-
ometer data from European pied flycatchers (Ficedula 
hypoleuca) in aviaries to evaluate the influence of dif-
ferent sampling frequencies relative to the Nyquist 
frequency on behaviour classification results. We spe-
cifically analyzed flying and swallowing behaviours of 
pied flycatchers. The accelerometer data of flying were 
representative of long-endurance, rhythmic waveform 
patterns, whereas the accelerometer data of swallowing 
were representative of short-burst, abrupt waveform 
patterns. In addition, we used both flight accelerometer 
data from pied flycatchers and simulated data to evalu-
ate the influence of sampling frequency and window 
length used to derive two accelerometer data metrics: 
movement frequency (such as wingbeat frequency) and 
amplitude, which are important for energy expenditure 
approximation.

Materials and methods
The methods in this study consist of analyses on accel-
erometer data collected from captive pied flycatchers 
and simulated data (Fig. 1).

Experimental data collection and analysis
The accelerometer loggers used in this study were 
developed by the Electronics lab at the Department of 
Biology, Lund University, Sweden. The small loggers 
(18 × 9 × 2 mm, W × L × H) weighed 0.7 g and were pow-
ered by a zink-air button cell (A10, 100 mAh capacity). 
The accelerometer unit recorded three-axis accelerations 
(x-axis: lateral; y-axis: longitudinal; z-axis: vertical) with 
a sampling frequency at around 100 Hz, a measurement 
acceleration range of ± 8 g (where g = 9.81   ms−2), and an 
8-bit output resolution for each axis. As a result, the log-
gers had 256 output levels at a resolution of 0.063 g. The 
loggers had been programmed to start logging tri-axial 
acceleration at the next full hour after the hour from 
activation. Once logging had started the logger recorded 
data continuously for about 30 min, limited by on-board 
memory size that could hold approximately 175,000 indi-
vidual 3-axis recordings.

Experiments were performed with seven (pre-breed-
ing) male European pied flycatchers caught in the wild 
at Vombs fure, Lund, Sweden. The birds were caught 
when they inspected potential nest boxes using either 
mist nets or spring-loaded aluminium trap doors at the 
entrance hole inside the nest box. Each bird was weighed 
and ringed after being caught, and then transported 
to individual-based aviaries (measuring 5 × 3 × 2  m in 
length × width × height) at the Stensoffa field station 
(55°41′42″N, 13°26′50″E), approximately 8  km west 
of the catching site. During captivity, birds were given 

Fig. 1 Schematic of method
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food (i.e., mealworms) and water ad  libitum. The cap-
tive periods ranged from 3 to 7  days, with the majority 
being kept for 3–4 days. All birds were released back to 
the capture site after the experiments. The mean total 
mass of the logger and bird was 12.72  g. The capture 
and experimental protocols were approved by Malmö—
Lund University Animal Ethics Committee (Permit Nos. 
5.8.18-05926/2019 and 5.8.18-05284/2022).

Each flycatcher went through one experimental session 
inside their housing aviary, during which we recorded 
their behaviours using both a body-attached accelerom-
eter and a stereoscopic videography system (Fig. 2). The 
accelerometer logger was attached to the animal over 
their synsacrum using a leg-loop harness [25]. The vid-
eography system consisted of two high-speed cameras 
(GoPro Hero 4) positioned outside the aviary and ori-
ented such that they filmed the middle of the aviary arena 
at oblique angles from two sides. The cameras recorded 
videos at a temporal resolution of 90 frames-per-second 
with a spatial resolution of 1920 × 1080 pixels. The two 
cameras were synchronized within a maximum 5 ns time 
lag, using custom-made sync electronics, which consisted 
of a ‘Bastet’ with ‘MewPro 2’ for the master camera, and 
a ‘MewPro Cable’ for the slave camera (Orangkucing Lab, 
Tokyo, Japan).

At the start of the experiment, we manually started 
video recording and accelerometer logging. Pied fly-
catchers are insectivores that catch their insect prey on 
the wing, by rapidly taking off from a perch, perform a 
catching manoeuvre and then return to the perch [26]. 
During the experiment, we triggered in-flight prey catch-
ing behaviour by providing the animal with a mealworm 

suspended from a fishing line in the middle of the region-
of-interest filmed by the video system. If the bird would 
catch and eat the mealworm, we replaced it with a new 
one. Experiments and video recording continued for 
approximately 25  min. After each experimental session, 
the accelerometer logger was retrieved, and the data were 
downloaded.

Accelerometer and video data were synchronized by 
first using the times indicated by the GoPro cameras and 
the loggers (started at activation), followed with a more 
accurate synchronization based on identified activities of 
the birds (e.g., flight initiation after a period of inactiv-
ity). We then used the video data to categorize seven dif-
ferent behaviours (Table 1), including the high frequency 
behaviours of flying and food swallowing.

After the videography-based behaviour annotations, 
we used the R package ‘rabc’ [27] to develop a behav-
iour classification algorithm for characterizing the seven 

Fig. 2 Aviary experimental setup. A Accelerometer logger. B A pied flycatcher with logger by leg-loop harness. C Aviary abridged general view 
during an experiment

Table 1 Behaviour categories and descriptions

Behaviour category Description

Flying Flying, including in flights intervals when the bird 
folded wings against the body

Preening Preening feathers with beak

Food shaking Shaking the head to stun food item in the beak

Perching Sitting still on a perch

Swallowing Swallowing prey by moving the head back 
and forth to assist the process

Bill wiping Scratching the beak against the perch branch

Other All behaviours other than the categories listed 
above
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behaviour categories from the accelerometery data. For 
this, we used a fixed window length of 64 time steps 
(i.e., ~ 0.6  s duration) per behavioural segment, and we 
calculated 19 time domain features (i.e., mean, variance, 
standard deviation, minimum, maximum, range of each 
accelerometer axis, and ODBA from all three axes) using 
the function ‘calculate_feature_time’ for modelling. We 
excluded 15,354 segments of perching behaviour to keep 
the number of observations of this behaviour within the 
order of magnitude of the other behaviours. The model 
performance was evaluated by the function ‘plot_confu-
sion_matrix’ for each behaviour category, which deter-
mined the precision rate as precision = TP/(TP + FP) and 
recall rate as recall = TP/(TP + FN). Here, TP, FP and FN 
are the number of true positives, false positives, and false 
negatives, respectively. With the function ‘plot_confu-
sion_matrix’ we performed a stratified five-fold cross 
validation (i.e., samples were selected in the same pro-
portion) using a supervised machine learning model—
XGBoost [28]. The details of the functions and resulted 
machine learning classifier can be found in Yu and Klaas-
sen [27]. To evaluate the influence of sampling frequency 
on performance of behaviour classification, we subsam-
pled data from the original segments by taking every 
second, fourth and eighth datapoint from the original 
dataset, resulting in 50, 25, and 12.5 Hz as the sampling 
frequency of subsamples. We used the same functions 
and metrics to evaluate the performance of behaviour 
classification.

Each variable-length flight bout (i.e., from the start 
until the end of flight) was further annotated as either a 
prey catching event or a non-prey catching event. Prey 
catching flights were those in which the animal took 
off from its perch, performed an in-flight prey catch-
ing manoeuvre, and then returned to perching. This 
could occur when the bird caught the mealworm, when 
it caught a free-flying insect in the arena, or when it 
attempted to do so. All other flight bouts were character-
ized as non-catching events. Different from the fixed win-
dow length analysis on the seven behaviours (Table  1), 
the flight bouts had variable window lengths. Therefore, 
it was necessary to build another model for classification 
between prey catching and non-prey catching flights. We 
calculated a different set of 22 features of each acceler-
ometer axis (i.e., 66 features in total) of all flight bouts by 
functions from the ‘tsfeatures’ R package. The details of 
features calculation can be found in the Additional file 1: 
Table S1. To evaluate the influence of sampling frequency 
on the classification, we performed features calcula-
tion on three datasets; the original sample frequency of 
100 Hz and subsampled frequencies of around 50 Hz and 
25  Hz. We excluded the calculation of features for the 
subsampled frequency of 12.5  Hz, because in this case 

some features could not be calculated on the shortest 
flight bouts. After features calculation, we used the func-
tion ‘select_features’ from ‘rabc’ package to select the top 
five most important features of each dataset for this addi-
tional flight behaviour classification. Finally, we used the 
function ‘plot_confusion_matrix’ to compare the results 
between the three datasets (100  Hz, 50  Hz and 25  Hz), 
based on the recalls and precisions of prey catching and 
non-prey catching flights.

In addition to behavioural classification, we also tested 
how sampling frequency affects the estimation of met-
rics relevant for energy expenditure. Typically, energy 
expenditure estimates of animals using accelerometery 
is modelled based on tri-axial accelerometer data ampli-
tude [29]. For simplicity, we tested how sampling fre-
quency affects the accuracy of accelerometer amplitude 
estimation in flycatchers during flight, using the z-axis 
accelerometer data of all flight sequences (i.e., each 
with 64 time steps) recorded in the aviary experiments. 
For this, we systematically down sampled the recorded 
accelerometer data by factors of two, four, and eight. 
This resulted in four accelerometery time series, corre-
sponding to sample frequencies of 100 Hz (original base-
line data), 50 Hz, 25 Hz and 12.5 Hz. For each series, we 
determined the accelerometer data amplitude estimate as 
Aestimate =

1
n

∑
n

i=1 |az(i)|, where az is the z-axis acceler-
ometer data and n is the number of data points in the set.

We then evaluated the influence of window length and 
sampling frequency on the signal amplitude estimation 
for powered flight. For this we identified the powered 
flight sequences with relatively consistent active wingbeat 
cycles by selecting z-axis accelerometer data of all flight 
sequences based on two criteria: (1) the primary wing-
beat frequency should lay between 18 and 20 Hz [30]; (2) 
the standard deviation should be larger or equal to the 
75% quantile of all flight sequences. The second criterion 
guarantees that the wave contains mostly flapping flight. 
We then used linear interpolation on the selected time 
series to expand it to a resolution of 1600 Hz as the base-
line series (i.e., from the initial 64 to 1009 time steps). The 
first 900 time steps of each interpolated time series were 
used in the following test, which approximately contain 
ten wave cycles. We then systematically varied the win-
dow length (i.e., normalized window length W*sampling) 
from one to nine times the signal’s wave cycle, with 90 
time steps for each cycle. The initial point of each subset 
was set at the start of each wave cycle, and its end point 
was less or equal to the end point of the wave. For exam-
ple, when using nine times a wave cycle as W*sampling, two 
subsets were used for calculation per subsample series 
(i.e., one sample between wave cycles 1 to 9 and one 
between waves 2 and 10).
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We performed this window analysis using the series 
with signal normalized sample frequencies f*sampling = fsa

mpling/fsignal = 2.1 to 5, with increment of 0.1. For each of 
these subsets, we estimated the signal amplitude Aestimate , 
and the normalized difference between the estimated 
amplitude and the baseline amplitude as ΔA* = (Aestimate-
Abaseline)/Abaseline. Here, the baseline amplitude is the 
amplitude estimate at the maximum sampling frequency. 
For all combinations of sampling frequency and win-
dow length, we determined the mean value and stand-
ard deviation of the normalized amplitude difference, as 
they represent the accuracy and precision of the estimate, 
respectively.

Theoretical data simulation and analysis
We used a simulated sine wave to investigate in more 
detail the influence of the sampling frequency (relative 
to Nyquist frequency) on acquiring signal frequency 
and amplitude. The signal sine wave has a frequency 
of fsignal = 10  Hz and an amplitude Asignal = 1. The total 
wavelength is 800 data points (i.e., 80 datapoints for 
each sine wave cycle). The sine wave was denoted 
y = sin

(
2π fsignalx

)
, where x is between 0 and 1, with

�x = 1/800. We then sampled this signal at the seven 
frequency levels of fsampling = 6, 11, 21, 31, 41, 51 and 
61  Hz. We defined these seven cases using the signal-
normalized sampling frequency, defined as f*sampling = fs

ampling/fsignal = 0.6, 1.1, 2.1, 3.1, 4.1, 5.1 and 6.1. To avoid 
signal trapping, we chose all sampling frequencies to be 
1 Hz higher than the multiplication factors of the signal 
frequency (e.g., 11  Hz instead of 10  Hz). For example, 
if we had sampled at exactly 10 Hz, the resulting waves 
would all have constant values. For each sampling fre-
quency, the start of the sample was set at the first quarter 
of the first sine wave in the signal, which resulted in 21 
different commence points for each sample series.

From each sampled time series, we then determined 
the signal frequency estimate festimate and the signal 
amplitude estimate Aestimate. We calculated the frequency 
estimate using a fast Fourier transfer function (‘fft’ in R). 
To characterize the signal amplitude dynamics, we calcu-
lated the signal amplitude estimate as Aestimate =

1
n

n∑

i=1

|xi| 

with n as the number of datapoints.
The influence of window length and frequency on 

the signal amplitude estimation was evaluated using an 
approach similar to the one used for the flycatcher analy-
sis. In each tested series, we systematically varied the 
window length (i.e., W*sampling) from one to nine times 
the signal’s sine wave cycle. The initial point of each sub-
set window was set at the start of each sine wave cycle, 
and its end point was less or equal to the end point of 
the simulated sine wave. We performed this window 

analysis using the series with normalized sample fre-
quencies f*sampling = 2.1–6 with increment of 0.1. For each 
sampling frequency, the start of the sample was set at the 
first quarter of the first sine wave in the signal. For each 
case, we estimated the normalized amplitude difference 
ΔA*. From each pair of subsampled frequency and win-
dow length, we determined the mean value and stand-
ard deviation of the normalized amplitude difference, as 
they represent the accuracy and precision of the estimate, 
respectively.

In accelerometer applications, the recorded data are 
unlikely to be pure sine waves without any noise. There-
fore, we did two additional simulations to include noise 
and higher frequency component in the analysis. We 
added white noise with signal-to-noise ratio of 10 to 
the original simulated sine wave for the noise simula-
tion. For the higher frequency component simulation, we 
added the second harmonic of the sine wave signal to the 
data. The amplitude of higher harmonics generally scales 
inversely with the square of the harmonics number [31], 
and thus we set the second harmonic amplitude to 1/4 of 
the signal amplitude. Furthermore, we added a harmonic 
phase shift of π/3. Thus, the resulting acceleration signal 
with second harmonic equals a = asignal + aharmonic2, with 
aharmonic2 = Aharmonic2 sin(2πfharmonic2 x + π/3), where fhar-

monic2 = 2 fsignal and Aharmonic2 = 1/4 Asignal. The influence 
of window length and frequency on the signal ampli-
tude estimation were also tested on these two simulated 
waves.

Results
Accelerometery, behaviour and sampling frequency
In total, we performed aviary-based experiments with 
seven wild-caught pied flycatchers (i.e., one experiment 
for each bird), resulting in 160  min of combined video 
and accelerometer data. From the video recordings, 
we annotated 18,061 even-length segments according 
to seven behaviour categories. By excluding the 15,354 
perching segments, 2707 segments were used in the fol-
lowing analysis. The seven annotated behaviours were 
flying (N = 1016 segments), preening (N = 94 segments), 
food shaking (N = 180 segments), perching (N = 1000 
segments), swallowing (N = 131 segments), bill wiping 
(N = 39 segments), and other (N = 247 segments). Among 
the flight sequences (i.e., flight bouts with uneven time 
steps), we identified 51 flights as prey catching flights 
and 205 as non-catching flights. The flights had variable 
lengths that ranged from 25 to 388 timesteps (i.e., around 
0.25–3.88 s).

Visual assessment of the down sampled data for flying 
and swallowing highlights interesting trends. The accel-
erations during flight are dominated by the wingbeat 
frequency of 18 ± 3.6 Hz (calculated from all z-direction 
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accelerometer data of flying by ‘fft’ function). This signal 
is strongest in the y- and z-directions (ay and az), whereas 
sideways accelerations (ax) remain small (Fig.  3a). Sub-
samples at 50  Hz were above the Nyquist frequency of 
flying (i.e., approximately 36  Hz). The individual wave 
cycles due to each wing flapping cycle remained clearly 
distinguishable, although local maxima and minima 
of several cycles were missing. For sample frequencies 
below the Nyquist frequency of flying, at 25 and 12.5 Hz, 
the details of each wave cycle were lost, which is known 
as signal aliasing [32]. Nevertheless, the signal maxima 
and minima were roughly retained, but only when sam-
pling duration is long enough.

For the food swallowing behaviour (Fig.  3b), the 
accelerations mostly occur in the y-direction (approxi-
mately aligned with the body axis), at a primary fre-
quency of 28 ± 9.4  Hz (calculated from all y-direction 
accelerometer data of swallowing using the ‘fft’ func-
tion). Therefore, subsamples at 50  Hz were already 

below the Nyquist frequency of swallowing (~ 56  Hz), 
resulting in signal aliasing. Unlike for the signals from 
flying, the acceleration peaks (maxima and minima) for 
swallowing were lost for both the 25  Hz and 12.5  Hz 
sampling frequencies, also when the complete swallow-
ing action was sampled.

Precision and recall values were used as the metrics 
to evaluate machine learning classifier performance on 
behaviour classification using different sampling fre-
quencies (Fig. 4). Interestingly, the precision and recall 
values of flying and perching behaviours were very close 
on all 4 sampling frequencies (flying: recall 97.9–98.8%, 
precision 94.5–96.1%; perching: recall 93.1–94.2%, pre-
cision 95.5–96.6%). The other five behaviour categories 
(i.e., preening, food shaking, swallowing, bill wiping 
and other) generally show a similar trend of precision 
and recall values, with higher sampling frequency 
resulting in improved performance. This performance 
trend was especially prominent for food shaking and 

Fig. 3 Example time-series waveform plots for tri-axial accelerometer data (marked by ax: lateral movement, ay: longitudinal movements, and az: 
vertical movement) of flying (A), and swallowing behaviour (B). Grey lines are original raw data sampled at 100 Hz. Black lines are waveforms 
subsampled at 50, 25, and 12.5 Hz. Vertical scale bars in the 50 Hz panel of A and B show scale in number of g units (1 g = 9.8 m/s2)
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swallowing. Similarly, the classifiers performed better 
on prey catching flights when using high sampling fre-
quency (Fig. 5).

The z-axis accelerometer data of all flying segments (az, 
N = 1016) were used for amplitude estimation (Fig.  6). 
Although the amplitude estimates of each subsample 
series were not significantly different from the raw data 
at 100 Hz (Paired t-test: 50 Hz, t = 0.05, p = 0.95; 25 Hz, 
t = − 1.19, p = 0.24; 12.5  Hz, t = − 1.91, p = 0.06), but the 
variation increases at lower sampling frequencies as 
shown by the scatter of the points, particularly in the 
12.5 Hz panel (Fig. 6).

Fifty-two segments of z-axis accelerometer data of all 
flight sequences were selected for the analysis of how the 

amplitude estimation is influenced by window length and 
frequency collectively (Fig.  7). Here, we used the mean 
and standard deviation of the normalized amplitude dif-
ference ΔA* (Fig. 7a, b, respectively) as estimates of the 
amplitude estimation accuracy and precision, respec-
tively. The normalized mean values of ΔA* are surpris-
ingly small, as they remain close to zero throughout 
almost the complete parametric space of sampling fre-
quency and window length (Fig. 7a). Only at the lowest 
tested sampling frequency (~ Nyquist frequency) the 
mean ΔA* goes up, but only to values less than 0.03 (3% 
of baseline amplitude). This shows that the amplitude 
estimation accuracy is unbiased, even for short win-
dow lengths at sampling frequencies above the Nyquist 

Fig. 4 Recall versus precision dot plots for seven behaviour categories with different sampling frequencies. Note that the dots of flying 
and perching are densely clustered because the recall and precision values from different sampling frequencies are close

Fig. 5 Recall versus precision dot plots for non-prey catching and prey catching with different sampling frequencies
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frequency. The standard deviation of ΔA* varies much 
more with window length and normalized sample fre-
quency (Fig.  7b). At sampling frequencies of more than 
three times the wingbeat frequency, the standard devia-
tion is already significant, especially for low window 
lengths. Strikingly, at the combination of the smallest 
window length and lowest tested sampling frequency 
(~ Nyquist frequency), the standard deviation increases 
to half the baseline amplitude. This shows that the ampli-
tude estimation precision is much more sensitive to the 
sampling frequency and window length, to the point 
that amplitude estimations cannot be trusted anymore. 
Therefore, to achieve proper amplitude estimation preci-
sion the window length should be greater than two times 
the signal duration, and normalized sample frequency 
should be larger than 3.1 (Fig. 7b).

Simulating and modelling of how sampling frequency 
affects signal estimation
A simulated sine wave with signal frequency of fsig-

nal = 10  Hz and sampling frequency of 800  Hz was used 
in the simulated data analysis. Normalized sample fre-
quency of 0.6, 1.1, 2.1, 3.1, 4.1, 5.1 and 6.1 were used. 
With higher sampling frequency, the waveform plots 
were closer to the original simulated sine wave (Fig. 8a). 

We can observe the signal aliasing effect at frequencies 
of the subsamples lower than Nyquist frequency (i.e., 
plots of f_0.6 and f_1.1 in Fig.  8a). Also, the main fre-
quency of normalized samples at 0.6 and 1.1 could not 
match the original signal frequency at 10  Hz (Fig.  8b). 
With sampling frequency equal to or higher than Nyquist 
frequency (i.e., 2.1 and higher), the frequency informa-
tion of the original signal could be retained (Fig. 8b). The 
amplitude estimation of each subsample series was close 
to the value of the original sine wave (Fig. 8c). However, 
the deviation increased with the decreasing of sampling 
frequency from 2.1 to 0.6 in Fig. 8c.

Furthermore, similar to the results from the flight 
sequences of the pied flycatchers (Fig. 7), small normal-
ized mean values (Fig.  9d–f) indicated the estimations 
of amplitude were unbiased, and the amplitude estima-
tion from simulated data was also influenced by the 
window length and frequency jointly (Fig. 9g–i). With a 
window length between 1 to 6 and a sampling frequency 
close to the normalized frequency of 2.1, the amplitude 
estimation had large variation from the true amplitude. 
With higher sampling frequencies, the amplitude esti-
mations were less influenced by window length. Com-
pared to the original sine wave, amplitude estimation had 
larger variation on the sine wave with white noise added 

Fig. 6 Amplitude estimations of z-axis accelerometer data of all flying segments from seven pied flycatchers. Comparison between the mean 
amplitude at different subsampled frequencies on the y-axis and the empirical measured amplitude (at 100 Hz) on the x-axis. The grey diagonal line 
in each panel shows the 1:1 ratio
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(i.e., compare Fig.  9h with Fig.  9g). Adding the second 
harmonic as ‘noise’ to the sine wave signal data had a 
stronger effect than the white noise (Fig. 9c, f, i vs. Fig-
ure 9b, e, h). The signal estimation precision was affected 
relatively little, but the estimation accuracy was reduced 
particularly close to the normalized frequency of ~ 2.8 
(Fig.  9i). A similar reduction in estimation accuracy 
was observed for the pied flycatcher experimental data 
(Fig.  7b), suggesting that in both cases higher harmon-
ics might cause this phase locked reduction in estimation 
accuracy.

Discussion
This study aimed to evaluate how to apply the Nyquist–
Shannon sampling theorem to accelerometer sampling 
frequency for accurate animal behaviour classification 
and energy expenditure estimation. In general, the per-
formance of machine learning classifiers improved when 
using higher sampling frequency, especially on short-
burst behaviours such as food shaking and swallowing 
of pied flycatchers. For detailed behaviour classification 
(i.e., prey catching and non-prey catching within the fly-
ing category), sampling frequencies higher than Nyquist 

frequency performed better. Using simulated sine wave 
data and accelerometer data of pied flycatchers, we dem-
onstrated that with higher sampling frequency than the 
Nyquist frequency (i.e., two times Nyquist frequency) the 
amplitude values were better representatives of the origi-
nal signal.

When using a sampling frequency higher than the 
Nyquist frequency for behaviour classification, more 
information from the original signal can be retained. 
For example, the swallowing behaviour was clear on 
the y-axis accelerometer data using 100  Hz because the 
sampling frequency was around 3.6 times the move-
ment frequency of swallowing. With sampling frequency 
equal to and lower than 50  Hz (i.e., 1.8 times the fre-
quency of swallowing), signal aliasing caused failure to 
detect details of this behaviour. Consequently, the clas-
sifiers with sampling frequencies at 50, 25, and 12.5  Hz 
had lower recall and precision rates than using 100  Hz. 
Similarly, 100  Hz was around 5 times the flapping fre-
quency of flycatchers, which resulted in better classifica-
tion performance in prey catching and non-prey catching 
classification than models using 50 Hz or lower (i.e., 2.5 
times the frequency of flapping and lower). When per-
forming flycatching, a bird generally had more short-
burst manoeuvres, of which more information could be 
retained when using a high sampling frequency. Other 
studies also found that higher sampling frequency could 
improve behaviour classification model accuracy (e.g., [9, 
33]). However, in some cases the improvement was lim-
ited for some behaviours (e.g., standing and lying behav-
iours of sheep in [18]). One possible reason was that the 
sampling frequency may already be more than two times 
the Nyquist frequency. Therefore, very limited informa-
tion gain could be achieved using an even higher sam-
pling frequency.

Although a high sampling frequency could benefit clas-
sification of short-burst movements, this was not always 
necessary. The choice of sampling frequency depends on 
the aim of the study. In this study, we demonstrated that 
even with 12.5 Hz sampling frequency the classification 
of flying and perching remained at high precision and 
recall values, although 12.5 Hz was much lower than the 
Nyquist frequency of flying pied flycatchers. Assuming 
we combined behaviours other than flying and perching 
(i.e., preening, food shaking, swallowing, bill wiping and 
other) into one category of “active behaviours”, the behav-
iour classification model for the three categories would 
have had good performance of all categories, which has 
already been applied in studies tracking songbirds for 
long-term research using on-board accelerometer data 
reductions (e.g., [34–37]). Because flying has high inten-
sity and perching has almost zero intensity, the data could 
retain the relatively high and low intensity information 

Fig. 7 Evaluation of the influence of normalized window length 
(W*sampling) and normalized sampling frequency (f*sampling) 
on the precision and accuracy of the amplitude estimation, 
of the selected z-axis accelerometer data of flying pied flycatchers. 
A We quantified the estimation precision using the mean 
of the normalized amplitude difference between signal and estimate 
(ΔA*). B We quantified the equivalent estimation accuracy using 
the standard deviation (SD) of ΔA*



Page 11 of 14Yu et al. Animal Biotelemetry           (2023) 11:28  

even with sampling frequency lower than the Nyquist 
frequency.

The simulated data at Nyquist frequency could retain 
the frequency information well (Fig. 8b). Higher sampling 
frequency than the Nyquist frequency (i.e., two times 
Nyquist frequency) also retained the amplitude infor-
mation well, either for mean amplitude across multiple 
movement cycles or the amplitude information of each 
movement cycle. In this study, the swallowing behav-
iours of pied flycatchers were short burst (Fig. 3b). These 
behaviours are similar to the simulated sine wave case 
with normalized window lengths close to one (Fig.  9). 
The simulations without and with 10% white noise added 
to the signal (Fig. 9a, d, g and Fig. 9b, e, h, respectively) 
suggest that a normalized frequency of at least 2.8 (i.e., 
1.4 times Nyquist frequency) should be chosen to guar-
antee stable amplitude estimation. The results of the 
simulations with the second harmonic included in the 
signal (Fig. 9c, f, i) suggest that the normalized frequency 
should be even higher, especially when proper estimation 
accuracy is needed (Fig. 9i).

The amplitude information was important for behav-
ioural and energetic studies of short-burst behaviours 
such as “pounce-buck” of pumas [38] or feeding and 
escape activities of the great sculpin [9]. In other cases, 
both frequency and amplitude information were neces-
sary for capturing wingbeat kinematics and estimating 

power required to fly [20]. Also, higher sampling fre-
quency could result in more accurate amplitude estima-
tion, which was shown by a lower scatter condition of the 
experimental data and low range around true mean value 
of the simulated data.

The effect of window length on the calculation of mean 
amplitude with different sampling frequencies indicated 
that if the window length was long (i.e., > 10 movement 
cycles), lower sampling frequency could yield similar 
mean amplitude values as the ones with high sampling 
frequency. This effect could explain the findings by Hal-
sey et al. [10] that with a 5-min window for ODBA cal-
culation, even sampling frequency as low as 0.2 Hz could 
remain at a similar level as the ones calculated from 
10  Hz. One should be cautious when using accelerom-
eters to study wild animals since many species have vari-
able behaviours within short time intervals. The choice of 
sampling frequency and time window for energy expend-
iture approximation should be carefully adjusted to suit 
different study species and purposes.

In addition, there was a difference between the experi-
mental data (Fig. 7b) and simulated data (Fig. 9g) around 
the normalized sample frequency of 2.8, where the devia-
tions of amplitude estimation were large on experimental 
data with short window length. However, when adding a 
second harmonic to the simulated signal, the high vari-
ation also appeared around the normalized sample 

Fig. 8 Sine wave simulations (i.e., Y = sin(X)) and the frequency and amplitude plots. A Waveforms of the original simulated sine wave (grey 
lines) and subsampled waveforms from 0.6 to 6.1 (annotated by f_0.6 to f_6.1) times the frequency of the original sine wave at 10 Hz. The 
initial points of subsample series within each frequency panel were chosen at 1, 5, 9, 13, 17, and 21 within the first quarter of the first sine wave 
for demonstration purpose. B Boxplot of main frequency calculated from each subsample series. The frequency of the original simulated sine wave 
is marked by the grey line. C Boxplot of mean amplitude calculated from each subsample series. The mean amplitude of the original simulated sine 
wave is marked by the grey line



Page 12 of 14Yu et al. Animal Biotelemetry           (2023) 11:28 

frequency of 2.8 (Fig. 9i). Our spectral analysis of z-axis 
flight accelerometer data indicated that a similar second 
harmonic is also present in most flight data (Additional 
file  2: Fig. S1). Similar waveform patterns could also be 
found on the accelerometer measurement of pigeon 
flight [20]. The large variation around normalized sample 
frequency of 2.8 was probably caused by signal aliasing 
effect of the high frequency component. This suggested 
that a choice of high sampling frequency (i.e., two times 
Nyquist frequency) could well mitigate the aliasing effect.

The drawbacks of choosing a high sampling frequency 
of an accelerometer are high battery energy consumption 
and high storage requirement, which would both limit 
the duration of sampling. To reduce energy consumption 

and hence battery lifespan, one strategy is to use adaptive 
sampling settings, where high sampling frequency would 
only be used for high frequency movements when neces-
sary (e.g., [39]), while sample frequency is reduced when 
the animal is inactive. To reduce the storage, on-board 
data processing can reduce data volume for longer meas-
urement periods, either by processing of raw accelerom-
eter data into representative features (e.g., [40]) or by 
applying a machine learning classifier directly on-board 
(e.g., [41]). In addition, for new study species without 
prior knowledge of the movement frequencies of differ-
ent behaviours, a pilot study using a high sampling fre-
quency would be necessary for the exploration of the full 
potentials using accelerometery.

Fig. 9 Evaluation of the influence of normalized window length and normalized sample frequency on the precision and accuracy of the signal 
amplitude estimation, for simulated sine wave data with and without artificial noise added. A–C The simulated sine wave without noise added (A), 
with white noise (B), and with the second harmonic added as noise (C). D–I The effect of normalized sampling frequency (f*sampling) and normalized 
sampling window length (W*sampling) on the signal amplitude estimation. D–F We quantified the estimation precision using the mean 
of the normalized amplitude difference between signal and estimate (ΔA*), for the sine wave without noise, with white noise, and with the second 
harmonic, respectively. G–I we quantified the equivalent estimation accuracy using the standard deviation of ΔA*, for the sine wave without noise, 
with white noise, and with the second harmonic, respectively
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Concluding remarks
Based on the analyses and findings from this study, we 
give three recommendations for different study objec-
tives. First, in biologging devices with no memory and 
battery constraints, we recommend using at least two 
times Nyquist frequency to achieve relative optimal 
representation of signal information (i.e., frequency and 
amplitude). In addition, this choice will mitigate the 
influence of unexpected high frequency signals, which 
could be twice the movement frequency of behaviours 
(e.g., flying in this study). Second, for classification and 
energy expenditure estimation of short-burst behav-
iours, 1.4 times the Nyquist frequency of behaviour 
is required. Third, in studies only interested in energy 
expenditure approximations using accelerometer data, 
we suggest using at least the Nyquist frequency of the 
movement frequency of the behaviour for a stable cal-
culation of the signal amplitude.
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