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Abstract 

Background In the context of rapid development of wind energy infrastructure, information on the flight height 
of birds is vital to assess their collision risk with wind turbines. GPS tags potentially represent a powerful tool to collect 
flight height data, yet GPS positions are associated with substantial vertical error. Here, we assessed to what extent 
high-frequency GPS tracking with fix intervals of 2–3 s (GPS remaining turned on between fixes), or barometric altim-
etry using air pressure loggers integrated in GPS tags, improved the accuracy of height data compared to standard 
low-frequency GPS tracking (fix interval ≥ 5 min; GPS turned off between fixes).

Results Using data from 10 GPS tag models from three manufacturers in a field setting (194 tags deployed on free-
living raptors), we estimated vertical accuracy based on periods when the birds were stationary on the ground (true 
height above ground was approximately zero), and the difference between GPS and barometric height in flight. In 
GPS height data, vertical accuracy was mainly driven by noise (little bias), while in barometric data, it was mostly 
affected by bias (little noise). In high-frequency GPS data, vertical accuracy was improved compared to low-frequency 
data in each tag model (mean absolute error (AE) reduced by 72% on average; range of mean AE 2–7 vs. 7–30 m). 
In barometric data, vertical accuracy did not differ between high- and low-frequency modes, with a bias of − 15 
to − 5 m and mean AE of 7–15 m in stationary positions. However, the median difference between GPS and baromet-
ric data was smaller in flight positions than in stationary positions, suggesting that the bias in barometric height data 
was smaller in flight. Finally, simulations showed that the remaining vertical error in barometric and high-frequency 
GPS data had little effect on flight height distributions and the proportion of positions within the collision risk height 
range, as opposed to the extensive noise found in low-frequency GPS data in some tag models.

Conclusions Barometric altimetry may provide more accurate height data than standard low-frequency GPS track-
ing, but it involves the risk of a systematic error. Currently, high-frequency GPS tracking provides highest vertical 
accuracy and may thus substantially advance the study of wind turbine collision risk in birds.
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Background
Flying animals have been shown to suffer mortality from 
collision with vertical human infrastructures [1, 2]. In 
particular, collisions of birds with wind turbines can 
have substantial negative population impacts [3, 4]. This 
problem is expected to increase in the near future as the 
number of wind turbines is going to grow worldwide to 
fulfil the targets for renewable energy production. There-
fore, there is an urgent need to quantify collision risk and 
identify effective mitigation measures reducing the num-
ber of casualties. However, this is currently hampered 
by a lack of accurate data on flight height. These are a 
prerequisite to reliably quantify the probability of flying 
within the collision risk height range and the avoidance 
of wind turbines in birds, two crucial components of col-
lision risk models [5, 6].

Earlier methods to study flight height of birds have 
been relatively inaccurate (visual observations; [7, 8]) or 
provided only short sequences of accurate data without 
bird determination at the species level (radar; [9, 10]). 
Individual-based tracking by animal-borne GPS track-
ing devices represents a promising source of flight height 
data over extended periods [11, 12]. However, GPS posi-
tions are associated with inherent horizontal and vertical 
error. The vertical error can be substantial (mean abso-
lute error up to 30 m [13]) and potentially bias the out-
comes of collision risk analyses [14]. Methods have been 
proposed to account for the error a posteriori within 
a modelling framework [12, 14]. However, these state-
space models require high levels of statistical expertise 
and computational capacities, and have therefore been 
little applied until now. Moreover, large errors increase 
the uncertainty around model outcomes, and particular 
behavioural aspects like the avoidance of wind turbines 
by birds require a high level of accuracy for individual 
data points. For these reasons, it remains critical to 
increase the vertical accuracy in the raw tracking data.

One possible approach to improve the three-dimen-
sional accuracy of GPS positions is to increase the GPS 
fix frequency [13, 15]. The highest accuracy is expected 
for positions obtained when the GPS module does not 
turn off between successive fixes (“continuous GPS 
mode”). This occurs when fixes are collected at a high 
frequency, typically when the time interval between 
successive GPS fixes is below 5–20 s, depending on the 
GPS tag model. In this scenario, on average more sat-
ellites are used per fix compared to standard low-fre-
quency GPS data collection, where the GPS module is 
turned off after every fix (“discrete GPS mode”). How-
ever, the extent of the accuracy improvement in the 
high-frequency mode and its consistency across differ-
ent tag models remains to be demonstrated. Moreover, 

a downside of high-frequency GPS tracking is that it is 
energy demanding, usually depleting the batteries of 
GPS tags within hours to days (depending on battery 
size and solar charging conditions).

A second possibility to increase the accuracy of flight 
height data is the use of barometers (air pressure sen-
sors), which are increasingly integrated into GPS tags. 
These sensors operate independently from the GPS 
regarding the height measurement (but still depend on 
the GPS to determine the horizontal position, neces-
sary to determine the height above ground). The meas-
ured air pressure is combined with local weather data 
in the barometric height formula to determine height 
[14, 16]. Advantages of barometric altimetry are that 
it is energy-efficient, barely increasing battery demand 
compared to GPS fixes without pressure measurement, 
and that, a priori, accuracy is not related to sampling 
frequency. However, barometers need to be calibrated 
and the barometric height calculation requires accurate 
local weather data. Moreover, the assumptions of the 
formula regarding the stratification of the atmosphere 
are not always met in practice [14]. Therefore, it is 
unclear how barometric altimetry performs under field 
conditions.

Here, we performed an extensive field test of these 
two methods to increase the accuracy in flight height 
data in comparison to standard low-frequency GPS 
height data. Our study built on a GPS tracking data set 
of ca. 11 million positions obtained from 194 tags of 10 
models from three different manufacturers deployed on 
four raptor species in France and the Netherlands. Our 
main approach of quantifying vertical accuracy was 
based on stationary periods when the birds were posi-
tioned on the ground, providing a known true height 
above ground (i.e. approximately zero). First, we ana-
lysed the deviation of GPS and barometric height from 
true height for these stationary periods and assessed 
the consistency of the results among GPS tag models. 
Secondly, to extend the assessment from stationary 
periods to flight periods, we quantified the deviation 
between GPS and barometric height for both station-
ary and flight periods, providing an indirect measure of 
accuracy. Thirdly, we assessed the credibility of height 
profiles from high-frequency sampling and identified 
recurrent error patterns. Fourthly, we quantified the 
consequences of different levels of error for practical 
conservation-related questions, using the proportion of 
positions within the height range of wind turbine rotors 
as an example. Finally, we provided guidance on how 
to improve the vertical accuracy of tracking data from 
GPS tags against the background of the limitations of 
the different methods.
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Methods
Data collection
We used data from 194 solar-powered GPS tags which 
were deployed between 2009 and 2022 on 204 individuals 
of four raptor species: Montagu’s harrier Circus pygar-
gus, hen harrier C. cyaneus, marsh harrier C. aeruginosus 
and red kite Milvus milvus (Additional file 1: Table S1). 
Birds were captured during the breeding season as adults 
(n = 140) or as nestlings (n = 64) close to or on the nest in 
four study areas in France and the Netherlands (Cham-
pagne, Grand Est, Flevoland and Groningen; Additional 
file 1: Fig. S1).

In the Champagne, Flevoland and Groningen areas, 
the landscape is open and dominated by intensive arable 
farming, while in the Grand Est area, it is composed of a 
mixture of forests, pastures and arable fields. The Flevo-
land and Groningen areas are flat (standard deviation 
[SD] of elevation above sea level [a.s.l.]: 1.7 and 1.3  m; 
mean: − 3.1 m and − 4.5 m, respectively), whereas the ter-
rain in Champagne and especially in Grand Est is hillier 
(SD: 33.3 and 63.5 m; mean: 144.0 m and 311.2 m a.s.l.).

Ten different tag models from three manufacturers 
(Milsar, Ornitela, UvA-BiTS) were applied (Additional 
file  1: Table  S1), three of which included a baromet-
ric sensor. The Milsar and Ornitela tags transferred the 
recorded data remotely via the GSM network, whereas 
the data from UvA-BiTS tags were downloaded using 
a local antenna system [13]. GPS tags were mounted as 
backpacks using thoracic x-strap harnesses [17] made 
from Teflon ribbon. Tags weighed 9.7–24.3  g according 
to the species, representing on average 3.2% of individ-
ual body weight (median 2.9%; SD 1.1%; range 1.7–6.5%; 
n = 207 deployments). There were no indications of 
adverse tag effects; the tagged birds fulfilled their annual 
cycle and reproduced as expected.

In spring and summer, 5  min were used as GPS fix 
intervals as a basic setting during daytime, except for 
hen harriers in Champagne (15  min). During night, the 
interval was set to 1–4  h. For autumn and winter, peri-
ods of bad weather, and incubation periods in females, 
the interval was increased to 1–12  h to preserve bat-
tery voltage. In addition, high-frequency data were col-
lected using an interval of 3 s in Ornitela and UvA-BiTS 
tags and 1 s in Milsar tags. With the set interval of 1  s, 
Milsar tags collected GPS fixes at intervals of 2–3  s in 
practice. These GPS fix intervals were below the manu-
facturer-specific time thresholds for the continuous GPS 
mode (< 7 s for Ornitela, < 8 s for Milsar, < 16 s for UvA-
BiTS). High-frequency data were collected mostly during 
hourly blocks (1–2 h per day), and to a lesser extent using 
geofences defined around areas of interest (e.g. wind 
farms, fields with agri-environmental schemes). High- 
and low-frequency data were similarly distributed across 

years within tag models (Additional file  1: Fig. S2). In 
tags with barometric sensor, air pressure measurements 
were taken alongside every GPS fix. We distinguished 
four methods of height data collection, i.e. low-frequency 
GPS (discrete mode), high-frequency GPS (continuous 
mode), low-frequency barometric and high-frequency 
barometric.

After removing positions outside of the defined study 
areas, the dataset comprised 10,777,644 positions with 
GPS height (2,881,769 from low-frequency and 7,895,875 
from high-frequency sampling) and 3,610,374 with 
barometric height (740,306 from low-frequency and 
2,870,068 from high-frequency sampling; Additional 
file 1: Table S1). The number of height data varied greatly 
between tags (range for GPS: 111 to 614,099 positions per 
tag; median: 21,574; mean: 55,555; range for barometric: 
3762–388,140; median: 55,086; mean: 97,578), mainly as 
a consequence of variation in the length of the data col-
lection period (range of the number of days with data per 
tag: 6–971; median: 125 d; mean: 196.6 d). For Montagu’s 
and marsh harriers (trans-Saharan migrants), all individ-
uals left the study areas in the non-breeding season, thus 
the dataset included only data from spring and summer. 
Also for hen harriers and red kites (partial migrants), the 
majority of individuals left the study areas in winter and 
for the remaining individuals fewer data could be col-
lected in autumn and winter due to low battery voltage.

Data processing
All data processing and analyses were performed in R 
4.0.3 [18]. We differentiated between stationary and flight 
positions based on the instantaneous GPS ground speed 
which is recorded alongside every GPS position. The dis-
tribution of speed values typically shows two modes (one 
representing stationary and one representing flight posi-
tions), and we used the antimode between the two modes 
as threshold ([19]; Additional file S1). The speed thresh-
old was determined for each combination of species and 
tag manufacturer, separately for low- and high-frequency 
data (1.81–3.83 m  s−1 and 0.85–1.86 m  s−1 for low- and 
high-frequency data, respectively).

The GPS height data obtained from the tags were 
heights above mean sea level (termed height a.s.l. here-
after), i.e. above geoid. However, when comparing height 
data from different sources, it is important to verify that 
the same geoid model is used and if not, apply corrections 
[14]. For Milsar and UvA-BiTS tags, the manufacturers 
indicated that EGM96 was used. For the Ornitela tags, it 
was possible to also obtain the height above ellipsoid, i.e. 
the raw height data above the WGS84 ellipsoid initially 
determined by the GPS module before application of a 
geoid model. This led us to notice that the geoid model 
applied in these tags was biased compared to EGM96 in 
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some study areas. Therefore, to obtain corrected height 
a.s.l. data, we used the height above ellipsoid data and 
applied the EGM96 geoid model with resolution of 0.25° 
[20]. By this correction, the height a.s.l. was offset by a 
mean of + 3.5  m for Flevoland, + 4.4  m for Groningen, 
0.0  m for Champagne and − 1.2  m for Grand Est. For 
Milsar and UvA-BiTS, it was not possible to obtain the 
height above ellipsoid data to apply the same test.

In Milsar tags, the GPS height data were internally and 
irreversibly truncated at sea level. Therefore, the low-
est recorded height above ground level (termed height 
a.g.l. hereafter; see below) in Milsar tags was − 197.5 m, 
whereas much lower values were obtained from the other 
tag models (Additional file 2: Table S3), likely leading to 
an underestimation of the vertical error in Milsar data.

The calculation of barometric height based on the 
pressure measurements of the tags was performed 
using the barometric formula describing the relation-
ship of air pressure with height above a reference level 
under different meteorological conditions [21]: 

z = −

T0

L ∗
 (1−

(

P
P0

)

−

LR0
g
) , where z is the height above 

the reference level, T0 is the temperature at reference 
height, L is the temperature lapse rate, P is the pres-
sure at height z (measured by the tag), P0 is the pres-
sure at reference height, R0 is the specific gas constant 
(287.05  J   K−1   kg−1) and g is the standard acceleration 
of free fall (9.81 m  s−1). We obtained data on T0, L and 
P0 from the global weather model ECMWF ERA5 with 
a temporal resolution of 1 h and a spatial resolution of 
0.25° [22, 23]. The tracking data were annotated with 
ERA5 data using the Environmental-Data Automated 
Track Annotation System (Env-Data) provided by 
Movebank [24], which included an interpolation of the 
ERA5 data to the timestamp and horizontal position 
of each GPS fix. The resulting height above the ERA5 
model surface was transformed into height a.s.l. (see 
Additional file 1 for details).

Both for GPS and barometric height, we transformed 
height a.s.l. into height a.g.l. by applying the European 
Digital Elevation Model (EU-DEM, v1.1) with a reso-
lution of 25 m [25]. EU-DEM is based on the EEG2008 
geoid, but the difference between EEG2008 and 
EGM96 (used in the GPS data and the weather model) 
was negligible for our study areas (mean absolute dif-
ference 0.12 m, maximum difference 0.65 m).

Identification of stationary positions on the ground
Our assessment of vertical accuracy was based on 
positions when the birds were stationary on the 
ground, as for these positions the true height a.g.l. was 
known. Note that in fact, the true height a.g.l. was not 
zero, but the height of the back of the bird where the 

tag was attached. However, as in our study species this 
difference was small (15–30  cm), we applied zero as 
true height. To identify these “ground positions”, two 
different approaches were adopted. For the three spe-
cies of harriers which are known to sit on the ground 
most of the time when being stationary, and for which 
the landscape in the study areas was relatively homo-
geneous with low occurrence of vertical structures 
(large-scale open agricultural areas), we used the digi-
tal national topographic maps BD TOPO for France 
[26] and TOP10NL for the Netherlands [27]. Posi-
tions at > 50  m from vertical structures (trees, hedge-
rows, buildings, electric pylons) were classified as 
ground positions (see Additional file 1 for details). The 
proportion of ground positions amongst stationary 
positions varied between 82.9 and 99.8% for the com-
binations of species and study area.

Contrary to the harriers, red kites are known to 
perch on trees or other vertical structures most of 
the time when stationary. Moreover, the landscape in 
the red kite study area was more heterogeneous with 
more vertical structures (more interspersed trees, 
hedgerows and forests; more field margins with fence 
poles), which were only partially included in the digi-
tal national geographic maps. Therefore, we applied 
a more restrictive approach by classifying the perch-
ing habitat manually by visual inspection of satellite 
images. We identified continuous stationary periods 
during daytime consisting of ≥ 2 subsequent positions 
in low-frequency and 20 positions in high-frequency 
data, with < 50 m between subsequent positions. Peri-
ods were defined as ground periods if all positions 
were on agricultural fields and if the mean coordinates 
were > 20 m away from any vertical structures or field 
margins visible in the satellite image. (Note that the 
more restrictive classification approach allowed to 
reduce the threshold distance compared to the har-
rier case.) Out of the 2400 inspected periods (random 
sample), 15.7% were classified as ground periods, com-
prising 31,948 individual positions (8.8% of the classi-
fied positions).

Estimation of vertical accuracy and comparison 
between methods and tag models
Conceptually, we considered the error in the height 
data from stationary position on the ground on three 
levels, i.e. trueness, precision and accuracy [28]. True-
ness refers to the deviation of the average of the meas-
ured values from a reference value (bias or systematic 
error), which we described using the deviation of the 
mean, and the median, from the true height, i.e. zero. 
Precision refers to the deviation of individual meas-
urements from the average (noise or random error), 
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which we described using the mean, median and 95% 
quantile of absolute error (AE) and the root mean 
square error (RMSE), all with the median as refer-
ence. Accuracy refers to the combination of precision 
and trueness, i.e. the deviation of individual measure-
ments from the true value, which we described using 
the same parameters as for precision, but with the true 
height, i.e. zero, as reference.

To reduce temporal auto-correlation in the high-fre-
quency data for the statistical analyses, we subsampled 
the tracking data to a minimum interval of 5  min. As 
positions at the beginning of high-frequency blocks 
and short stationary periods were overrepresented in 
the subsampled data and these had higher than aver-
age vertical error, we removed the first minute of every 
high-frequency block and stationary periods consisting 
of < 5 subsequent positions before subsampling to pre-
vent bias.

To statistically compare vertical accuracy on the 
three levels across methods and tag models, we applied 
hierarchical bootstrapping [29]. We chose this non-
parametric method to estimate confidence intervals 
because the distributions of the height data had very 
long tails (see Results), which prevented the use of 
parametric methods like linear models (residual dis-
tributions remained unsatisfactory after log or Box–
Cox transformation of the response variable). For each 
of the 26 combinations of method and tag model, we 
resampled at the first hierarchical level (individual 
tags) with replacement, and then without replacement 
at the second hierarchical level (individual height data 
within each resampled tag) following Ren et al. [29]. In 
this way, 1,000 bootstrap replicates were constructed 
for each combination for six parameters of interest, 
i.e. mean and median error with true height as refer-
ence (trueness), mean and median absolute error with 
median height as reference (precision), and mean and 
median absolute error with true height as reference 
(accuracy). We used the mean and the range between 
the 2.5% and 97.5% quantiles across the replicates as 
estimate and confidence interval. We considered differ-
ences between groups to be significant when the confi-
dence intervals did not overlap.

Visual inspections of high‑frequency tracking data
To assess the credibility of height profiles in high-fre-
quency tracks across stationary and flight positions, 
and to identify potential error patterns, we carried out 
visual inspections of individual high-frequency tracks. A 
graph of height a.g.l. over time was produced for every 
track of at least 100 consecutive high-frequency positions 
(n = 9993 high-frequency tracks).

Effect of error on flight height distributions and proportion 
of positions at collision risk height range based 
on simulations
To assess the effect of error on flight height distribu-
tions and derived flight parameters relevant for conser-
vation, we performed simulations by adding different 
levels of bias or noise to two example flight height dis-
tributions from high-frequency GPS data, from red kites 
in Grand Est (tag model OT-25) and from marsh harri-
ers in Groningen (tag models 4C.L and 6C.L; Additional 
file  1: Table  S1). As an example of a derived parameter, 
we used the proportion of positions at the height range 
of wind turbine rotors, which is a commonly used input 
parameter in collision risk assessments [30, 31]. We 
applied 50–200  m a.g.l. as collision risk height range 
(CRHR), representing the height range of the rotors of 
most modern wind turbines. Concerning the proportion 
of positions within the CRHR, the two example data-
sets represented the extremes among our study species, 
with 37.4% of positions within the CRHR in the red kites 
data, compared to 4.2% in the marsh harrier data (dis-
tribution modes around 22 and 1  m a.g.l., respectively; 
Additional file 3: Fig. S8). Note that the flight height data 
used here are not free of error, but it is sufficiently small 
(see Results) not to be problematic for this illustrative 
purpose.

To clearly separate the effect of precision (noise) and 
trueness (bias), we applied both types of error sepa-
rately. For bias, we applied both the mean error found for 
each combination of tag model and method in this study 
based on stationary positions on the ground (26 val-
ues; Additional file 2: Table S3), and a theoretical range 
of bias between − 20 and 20 m with increments of 1 m. 
These levels of bias were added to the flight positions as 
a constant.

Regarding noise, first, we applied the empirical error 
distributions found in the 10 tag models, with the median 
per combination of tag model and method as reference 
(“precision”), on the two flight height distributions. We 
added an error randomly drawn from the error distri-
butions to each flight position. Secondly, we applied 
theoretical error distributions to illustrate the effect of 
gradually increasing error. We applied exponential dis-
tributions for the AE F(x) = �e−�x with rate param-
eter � =

1

x where x (i.e. mean AE) was varied between 
1 and 40  m (increments of 1  m), and normal distribu-
tions with standard deviation varying between 1 and 
50 m (increments of 1 m), corresponding to a mean AE 
of 0.8–39.9 m. The range of mean AE for the theoretical 
distributions was chosen so that it covered the range of 
mean AE in relation to the median in the empirical dis-
tributions (1.3–29.5 m; see Results), with some extension 
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towards higher values which could be present in GPS tag 
model not studied here. Note that the exponential error 
distributions generally matched the empirical error dis-
tributions better than the normal distributions. For each 
flight position, we added or subtracted a randomly drawn 
value from the exponential or normal error distribu-
tions (random choice of algebraic sign in the exponential 
distributions).

For both empirical and theoretical error distributions, 
we plotted the relative increase of the proportion of posi-
tions within the CRHR, compared to the baseline where 
no additional error was applied, against the mean abso-
lute error of the error distributions.

Results
Estimation of vertical accuracy based on stationary periods
Overall, the distributions of error around true height 
from stationary positions on the ground showed a clear 
mode (Fig. 1). The medians of the recorded height a.g.l. 
were close to zero in the GPS data (− 3.8 to 4.3 m), while 
barometric height data had a reduced trueness with 
median height a.g.l. between − 15.0 and − 4.9 m (Fig. 2; 
Additional file 2: Table S3). Trueness did not differ signifi-
cantly between low- and high-frequency sampling within 
GPS or barometric data in most tag models (Fig. 2).

By contrast, there was a much higher variation in preci-
sion (error around median height) in low-frequency GPS 
data between tag models, with median AE ranging from 
2.6 to 17.4  m (mean across tag models ± SD 6.3 ± 4.6), 
compared to high-frequency GPS data (range of median 
AE 1.0–4.0 m; mean 2.4 ± 1.0) and to both low- and high-
frequency barometric data (range of median AE 2.8–4.2 

[mean 3.5 ± 0.7] and 2.3–3.5  m [mean 2.9 ± 0.6], respec-
tively). Most importantly, in low-frequency GPS data, 
the median AE around the median was on average 2.6 
times larger than in high-frequency GPS data (median 
2.3; range 1.5–6.2). In barometric data, regardless the 
sampling frequency, precision was similar to high-fre-
quency GPS data or slightly higher (Fig.  2; Additional 
file 2: Table S3). Large outliers with absolute height above 
median > 50 m occurred regularly in low-frequency GPS 
data (on average 6.6% of positions; range 0.3–17.4%), 
whereas these were much scarcer in high-frequency GPS 
data (mean 0.4%; range 0.0–1.5%), and nearly absent in 
barometric data (mean 0.1%; range 0.0–0.2%; Additional 
file  2: Table  S5). In every tag model, the mean AE was 
higher than the median AE, especially in low-frequency 
GPS data, reflecting the long tails of the AE distributions. 
Therefore, differences between low- and high-frequency 
GPS data increased when considering mean instead of 
median AE (mean AE in low-frequency data on average 
8.1 times larger than in high-frequency data; median 3.8; 
range 2.0–19.9; Additional file 3: Fig. S3).

Also regarding overall accuracy, low-frequency GPS 
data had larger errors (with true height as reference) than 
high-frequency GPS data in all tag models. Median AE 
ranged from 3.3 to 18.9  m in low-frequency GPS data 
(mean 6.8 ± 4.8 m), and from 1.2 to 4.0 in high-frequency 
data (mean 2.9 ± 0.9 m; median AE on average 2.4 times 
larger in low-frequency data; median 1.9; range 1.4–6.5). 
Mean AE ranged from 7.4 to 29.9  m in low-frequency 
GPS data (mean 18.9 ± 18.9  m), and from 1.5 to 7.0 in 
high-frequency data (mean 3.9 ± 1.7 m; mean AE on aver-
age 6.6 times larger in low-frequency data; median 3.4; 

Fig. 1 Distributions of the recorded heights above ground level from stationary positions on the ground for each tag model and method. The lines 
connect the proportions of positions per height class of 5 m (central class centred around zero). Height data < − 50 and > 50 m a.g.l. not shown. Prop. 
proportion, LF low frequency, HF high frequency
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range 1.6–19.0; Additional file  2: Table  S3). The differ-
ence between high- and low-frequency GPS data was sig-
nificant in all cases (except for one tag model for median 
AE; Fig. 2, Additional file 3: Fig. S3). In barometric data, 
accuracy did not differ between high- and low-frequency 
data in any tag model (Fig.  2, Additional file  3: Fig. 
S3). Median AE varied between 6.4 and 15.0  m (mean 
10.2 ± 3.3 m) and mean AE between 6.8 and 15.2 m (mean 
11.3 ± 3.2  m). The results for barometric height data in 
comparison to high- and low-frequency GPS data were 
mixed among tag models, with barometric data being 
less accurate (based on median AE) than low-frequency 
GPS in OT-20, similarly accurate than low-frequency 
GPS in OT-15 and intermediate between low- and high-
frequency GPS in OT-25 (Fig. 2).

Difference between GPS and barometric height
For stationary positions, regardless of sampling fre-
quency, the difference between GPS and baromet-
ric height was on average larger than zero (range of 
median difference: 4.9–16.4  m; Fig.  3, Additional file  2: 
Table  S6), i.e. barometric height was on average lower 
than GPS height. However, the median difference was 
smaller or even slightly negative for flight positions 
(range of median difference: − 1.1 to 7.6  m; Fig.  3). The 
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median difference also changed with (barometric) height 
a.g.l. in low-frequency data, becoming negative in posi-
tions > 0–40 m a.g.l. in two of the three tag models, indi-
cating that barometric height was on average higher than 
GPS height (Fig.  4; see Additional file  3: Fig. S4–S6 for 
graphs showing the entire height range and data from the 
other two tag models). In absolute terms, the difference 
between GPS and barometric height data was smallest in 
high-frequency flight positions (range of median absolute 
difference: 4.6–8.1 m; compared to 8.0–16.5 m in station-
ary high-frequency positions and 11.6–21.6 m in low-fre-
quency positions; Additional file 2: Table S6).

In line with the differences found between GPS and 
barometric height data in flight, the flight height distri-
butions based on barometric data appeared to be shifted 
by a few metres compared to those from high-frequency 
GPS data in two of the tag models, whereas the shapes 
of the distributions were similar (Fig. 5, Additional file 3: 
Fig. S9). By contrast, in low-frequency GPS data, the 
flight height distributions differed remarkably from those 
of the three other methods by being flattened out, show-
ing a less pronounced peak.

Description of high‑frequency tracking data 
including recurrent error patterns
Overall, high-frequency tracks from all tag models 
showed realistic flight movements, in line with flight 
patterns expected for our study species. Thermal ascent 

flights were easily discernible by zig-zag patterns in 
the horizontal plane, and commonly alternated with 
descending gliding flights (Fig. 6b). The height sequences 
of barometric height and GPS height were generally very 
close to each other (Fig. 6c, Additional file 3: Fig. S7).

Nevertheless, we identified three recurrent error pat-
terns in GPS height data from high-frequency tracks, 
with variable frequency across the three tag manufac-
turers. First, GPS height often showed a quick increase 
or decrease at the beginning of a high-frequency bout. 
When barometric data were available, this frequently 
coincided with a conspicuous offset of the GPS height 
compared to the barometric height which disappeared 
usually within 30–60 s (Fig. 6c, Additional file 3: Fig. S7c-
d). Secondly, gradual drifting of GPS height during sta-
tionary periods was observed in Ornitela tags, mainly at 
a scale < 30 m (Fig. 6c, Additional file 3: Fig. S7b). Thirdly, 
height data from Milsar tags included “spikes”, i.e. indi-
vidual and easily discernible outliers, normally at a 
scale < 50 m (typically 20–50 spikes per hour; Fig. 6d).

The pattern of changes in the difference between GPS 
and barometric height in relation to movement (sta-
tionary vs. flight) was also observed during the visual 
inspection of high-frequency tracks, with abrupt changes 
coinciding with the moments of take-off and landing 
(Additional file 3: Fig. S7d).
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Effect of error on flight height distributions and proportion 
of positions at collision risk height range based 
on simulations
When applying additional bias to flight height data of red 
kites and marsh harriers, the effect on the proportion of 
positions within the CRHR was similar in both species 
(Fig. 7). The levels of bias found in the different GPS tag 
models in this study in stationary positions lead to a rela-
tive change of the proportion at risk height of − 22.1% 
to + 8.3% in red kites, and − 24.2% to + 9.0% in marsh 
harriers.

When applying additional noise, the flight height dis-
tributions were flattened out with less pronounced peaks 
(Additional file 3: Fig. S8), similarly to the empirical flight 
height distributions based on low-frequency GPS data 
(Fig.  5). The proportion of positions within the CRHR 
generally increased with increasing additional noise 
(Fig. 7). The effect of noise depended on the flight height 
distribution of the considered species. In marsh harriers 
(steep flight height distribution with low mode; Addi-
tional file 3: Fig. S8), the proportion of positions within 
the CRHR was overestimated by > 50% in six out of ten 
applied empirical error distributions from low-frequency 
GPS data, with a maximum of 209.5% (Fig.  7). By con-
trast, in red kites showing a flatter flight height distribu-
tion with mode closer to the CRHR compared to marsh 
harriers, the proportion within the CRHR was only over-
estimated by up to 12.0%.

Discussion
Based on a data set consisting of ca. 11 million GPS posi-
tions collected using 194 tags of 10 GPS models from 
three manufacturers, we found substantial differences in 
accuracy between different methods of collecting height 
data (low-frequency GPS, high-frequency GPS, low-fre-
quency barometric, high-frequency barometric). In GPS 
data, the vertical error consisted mainly of noise rather 
than bias, whereas the barometric data mainly suffered 
from bias, with relatively little noise. Notably, overall 
accuracy was improved in high-frequency (continuous-
mode) compared to low-frequency (discrete-mode) GPS 
height data. In barometric data, vertical accuracy was 
intermediate in stationary positions, but likely the bias 
was smaller in flight.

Importantly, using simulations based on our empirical 
data, we showed that the degree of error found in low-
frequency GPS data can significantly bias the outcomes 
of practical applications of the data in some conditions. 
More specifically, noise in the height data can lead to a 
significant increase of the proportion of positions within 
the collision risk height range (CRHR). This would in 
turn lead to an important overestimation of wind tur-
bine collision mortality when implemented in collision 
risk models [6]. In other words, this confirmed that the 
low accuracy in low-frequency GPS data can be a genu-
ine problem in the study of collision risk of birds with 

Fig. 5 Flight height distributions of marsh harriers and red kites based on either GPS or barometric height data from OT-20 and OT-25 GPS tags 
collected using either low- (LF) or high-frequency (HF) sampling (height classes of 5 m). Note different scales of the y-axis between panels. Height 
data < − 30 m and > 200 m above ground level (a.g.l.) not shown
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wind turbines and other vertical human infrastructures. 
By contrast, the effect of the remaining error in high-fre-
quency GPS data and barometric data on the proportion 
of positions within the CRHR was small.

Accuracy in GPS height
We found that GPS height data were more accurate in the 
high-frequency (continuous) mode than in the standard 
low-frequency (discrete) mode in all the considered tag 
models. This can be explained by an increased number 

of satellites used for the GPS fixes in the high-frequency 
mode (about twice as many satellites used per fix com-
pared to the low-frequency mode; mean ± SD 12.4 ± 3.3 
vs. 6.5 ± 2.0; Additional file 3: Fig. S10). The notable dif-
ferences which we found in the accuracy of GPS height 
data between tag models, especially in low-frequency 
GPS data (range of mean AE 7.4–29.9  m), might partly 
be due to technical differences in the GPS modules used 
in the tags, like the application of additional global navi-
gation satellite systems (GNSS) in addition to GPS (e.g. 
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GPS + GLONASS in Ornitela tags as opposed to GPS 
only in Milsar tags) or different internal settings (for 
example regarding time-to-fix). The year of data collec-
tion could also affect the positional accuracy of GPS data, 
as over the years, more satellites have been added to the 
orbit. However, in our case, there has only been a slight 
increase of the number of satellites over the years (Addi-
tional file 3: Fig. S10).

There is also a large variation among results on verti-
cal accuracy of GPS tags reported in earlier studies, and 
our results generally fell within these ranges. In low-
frequency sampling, Bouten et  al. [13] reported a mean 
AE in relation to true height of 20.8–26.3 m with 10-min 
intervals and 4.0  m with 1-min intervals, while Péron 
et al. [14] indicated a mean AE of 27 m with 1-min inter-
vals, Acácio et  al. [15] of 9.7  m with 60  min and 5.0  m 
with 1-min intervals and Heuck et  al. [16] a 95% quan-
tile of AE of 33 m (compared to 20–161 m in our data; 
Additional file  2: Table  S4). Note that we did not con-
sider differences in accuracy between different intervals 
in low-frequency GPS tracking here, as opposed to some 
of the studies cited. Regarding high-frequency GPS data, 
reference data are scarce, but Bouten et al. [13] reported 
mean AE of 1.4–2.8  m with 6-s intervals (compared to 
1.5–7.0  m in our data) and Thaxter et  al. [32] whisker 
ranges of 11–14  m with 10  s intervals (compared to 
8–33 m in our data; Additional file 2: Table S4).

Visual inspection of height profiles of high-frequency 
tracks indicated some recurrent error patterns in the 
high-frequency GPS height data (accuracy time lag at the 
beginning of high-frequency sequences, spikes, drift in 
stationary periods). However, these concerned only a rel-
atively small proportion of positions, or stationary posi-
tions only. The error arising from the accuracy time lag 
and spikes could be reduced with relatively simple meth-
ods. For example, applying a moving average with a win-
dow of nine data points to the high-frequency GPS data 
of Milsar GsmTag-U9 tags reduced the 95% quantile of 
AE from 13.1 to 10.7 m (Additional file 4). The accuracy 
time lag has been also reported in earlier studies, where 
it was found to last 10–35  s [33, 34]. This problem can 
be solved by removing the first part of high-frequency 
sequences (Additional file  4). The finding of increasing 
accuracy within the first portion of high-frequency GPS 
sequences is in opposition to the suggestion that there 
could be a constant initial error that is maintained during 
the entire high-frequency sequence [14].

Accuracy in barometric height and pathways 
for improvement
Our results on vertical accuracy in barometric height 
data were mixed. On the one hand, in stationary posi-
tions, barometric height had a substantial bias compared 
to true height. On the other hand, the closeness of GPS 

−20 −10 0 10 20

−4
0

−2
0

0
20

40

Median error (m)

R
el

. c
ha

ng
e 

of
 p

ro
p.

 w
ith

in
 C

R
H

R
 (%

)

Trueness (bias)

MaH
RK
GPS
Baro
Theo.

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

Mean absolute error (m)

Precision (noise)

GPS LF
GPS HF
Baro LF
Baro HF
Expon.
Normal

Fig. 7 Relative change of the proportion of positions within the collision risk height range (50–200 m) in marsh harriers (black) and red kites (red) 
when applying different degrees of bias (trueness) or noise (precision) to the height data. Points represent empirical error distributions found 
in different GPS tag models in either GPS or barometric height data from either low-frequency or high-frequency sampling. Lines represent 
gradually increasing bias for trueness and increasing noise based on theoretical error distributions (exponential or normal) for precision. Expon. 
exponential, MaH marsh harrier, RK red kite, Baro barometric, LF low-frequency, HF high-frequency



Page 12 of 16Schaub et al. Animal Biotelemetry           (2023) 11:31 

and barometric height in high-frequency data (Figs.  4, 
6) and the similarity between flight height distribu-
tions obtained from high-frequency GPS and baromet-
ric data (Fig. 5) suggest that the accuracy of barometric 
height data for flight positions is relatively high, and that 
it indeed represents an improvement compared to low-
frequency GPS data.

It has been described earlier that the vertical error 
in barometric height data consists to a large extent of a 
bias related to weather conditions and calibration, as 
opposed to the error dominated by random noise in the 
GPS height data [14, 16]. This implies also the absence of 
extreme outliers in the barometric height data (this study, 
[16]). As in our data, the bias in barometric height data 
from stationary positions reported by Heuck et  al. [16] 
was negative (median of -22.6  m). Regarding the preci-
sion in barometric height data, Heuck et al. [16] reported 
a 95% quantile of AE in relation to median height of only 
1.3 m in barometric data in a stationary experiment (tags 
not deployed on birds), compared to 9.5–26.5  m in our 
data. With drone experiments, Lato et  al. [35] found a 
mean vertical error of only 1.6 m in barometric data and 
Péron et al. [14] reported a RMSE of 22 m between baro-
metric and GPS height for low-frequency data. The lat-
ter is also considerably lower than the RMSE between the 
two types of data in our study (43–92  m). These differ-
ences could be explained by the longer time span during 
which our data were collected, implying a wider range of 
weather conditions in which air pressure was measured. 
Moreover, we cannot exclude that the increased error in 
barometric height data in our study resulted from the fact 
that we evaluated accuracy in a field setting, with tags 
deployed on free-living birds. For example, there might 
be effects of heat radiation of the birds, moisture or dirt 
on the pressure readings.

An important aspect of our results which has, to our 
knowledge, not been described earlier is that the differ-
ence between GPS height and barometric height differed 
systematically between stationary and flight positions. 
Possibly, the difference could be due to an effect of move-
ment on the air pressure measurement, which could be 
related to differences in wind speed and temperature 
between moving and stationary states, or the fact that 
often the tag is partially covered by feathers when the 
birds are stationary, possibly impairing the measure-
ments. The difference between stationary and flight posi-
tions implies that a correction of the barometric height 
data based on stationary tests [16] might not be optimal 
for flight positions. Moreover, the difference between 
GPS height and barometric height changed along the 
height gradient in low-frequency data, with barometric 
height on average exceeding GPS height for recorded 
barometric heights > 0–40  m a.g.l. This could be caused 

by an altitudinal bias in the barometric height data. How-
ever, if this was the case, we would expect this pattern 
to be also present in high-frequency data. We could not 
exactly retrace how the altitudinal pattern arose, but the 
comparison of flight height distributions obtained from 
the different methods (Fig. 7) suggested that the distribu-
tions based on barometric data both from low- and high-
frequency sampling were shifted by an approximately 
constant offset compared to high-frequency GPS data, 
at least within the height range relevant for wind turbine 
collision risk (below 300 m). Therefore, a correction offset 
based on the mean difference between GPS height and 
barometric height in flight positions could be a way of 
aligning barometric and GPS height data. However, mean 
GPS height during flight might not be free of bias either 
[35]. Experiments with drones might help to verify if this 
correction approach is indeed effective, but note that also 
in such experiments, obtaining reference data for true 
height in flight is not trivial (but see [35]). The correction 
should optimally be conducted for each tag separately, as 
we obtained indications that the bias in barometric data 
differs between individual tags (unpublished data), sim-
ilarly to Heuck et  al. [16]. It should be noted that even 
though the accuracy in barometric height data might be 
improved with further corrections, our results also sug-
gest that a bias of a few metres, which probably remained 
in the barometric height data without corrections, might 
not have major implications for the proportion of posi-
tions within the collision risk height range, as opposed 
to extensive noise as in low-frequency GPS height data 
(Fig. 7).

Table 1 Overview of the sources of error in GPS and barometric 
height data, either regarding the determination of height above 
ground itself or regarding the identification of stationary periods 
on the ground on which we based our assessment of vertical 
accuracy

Source of error GPS height Barometric 
height

Determination of height above ground

GPS height above geoid/ellipsoid X

Air pressure measurement X

Weather data X

Simplifications in barometric height formula X

Horizontal GPS position X X

Digital elevation model X X

Identification of stationary periods on the 
ground

GPS speed X X

Classification of stationary/flight positions X X

Habitat classification X X
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Sources of error
The aim of this study was to assess the overall vertical 
accuracy occurring in a practical field setting. However, 
we do want to stress that the accuracy we described here 
in fact represented a combination of different sources of 
error, not only related to the height measurement itself, 
but also to the digital elevation model (DEM) and to 
the identification of stationary periods on the ground 
(occasional erroneous classification of flight positions as 
stationary;  Table  1). Therefore, we expect that the true 
vertical error itself is somewhat smaller than indicated 
here. In addition, it has been reported that horizontal 
and vertical accuracy in GPS data is higher when tags 
are moving [34, 36]. This suggests that our estimation of 
accuracy based on stationary positions is conservative 
when transferred to flight positions.

At several stages of our analysis, we came across 
problems of obtaining raw data from the GPS tags. For 
example, the raw height above ellipsoid data were only 
available for one out of three manufacturers, and in the 
case of another manufacturer, height above geoid was 
truncated at zero, precluding negative values. These limi-
tations potentially bias error assessments as conducted 
here, but can also have implications for analyses of flight 
height. Therefore, we want to call on manufacturers to 
make raw data (unprocessed height above ellipsoid for 
GPS and raw pressure measurements for barometers) 
available throughout, in line with Péron et al. [14].

The large differences in vertical accuracy across tag 
models, especially in low-frequency GPS data, and the 
need for correction of the barometric height data as 
found here, underline the importance of testing the accu-
racy of GPS tags. Assessing accuracy using data from tags 
already deployed on birds, as done here, has the advan-
tages that it can be applied a posteriori and that it inte-
grates the in situ conditions of data collection. However, 
it requires the possibility to identify periods during which 
the true height of the birds is approximately known, like 
stationary periods on the ground (this study) or on the 
sea surface [32], which is not possible for every species. 
This approach is also restricted to non-flight positions. 
Un-deployed tags can be tested with stationary experi-
ments [13, 14, 16], experiments where tags are moved 
horizontally [34], or using drones [35]. Approaches based 
on stationary data have the disadvantage that results 
may not be fully applicable to flight data (see above). 
Approaches with moving tags have the disadvantage that 
the true height is difficult to determine, but drones with 
laser altimeter represent a promising new method to 
solve this issue [35].

Effect of error on proportion of positions 
within the collision risk height range
Using simulations, we showed that both bias and noise 
in the height data can lead to a bias in the proportion of 
positions within the collision risk height range (CRHR). 
However, the potential effect of noise was much larger 
than the effect of bias (up to + 210% with noise com-
pared to up to − 24% with bias). Moreover, the effect of 
noise differed strongly between the two considered spe-
cies, with a strong overestimation of the proportion 
within the CRHR in marsh harriers at the highest levels 
of noise, but only a small overestimation in red kites. This 
can be explained by differences both in the shape of the 
flight height distributions and in the location of the mode 
in relation to the CRHR in the two species, with a very 
steep distribution with a mode located relatively far from 
the CRHR in marsh harriers and a broader distribution 
with the mode being closer to the CRHR in red kites. It 
is important to note that extensive noise could not only 
lead to an overestimation of the proportion of positions 
within the CRHR, but also to an underestimation, most 
probably in cases where the mode of the flight height dis-
tribution falls within the CRHR (e.g. larger soaring birds 
like short-toed eagle Circaetus gallicus, unpublished 
data). This would in turn lead to an underestimation of 
wind turbine collision risk.

We would like to stress that low-frequency GPS data 
does not necessarily produce erroneous outcomes. In 
our empirical flight height data, the difference in the 
proportion of positions within the CRHR between high-
frequency and low-frequency GPS data was surprisingly 
small in some tag model-species combinations (Addi-
tional file 2: Table S7). The effect of noise on the results 
will depend on (1) the level of noise in the data (which we 
showed to vary between tag models); (2) the true flight 
height distribution (e.g. marsh harrier vs. red kite) and 
(3) the question for which the data are applied (e.g. def-
inition of the CRHR). However, in practice, neither the 
exact level of noise nor the true flight height distribution 
are normally known, making it difficult to predict the 
effect of noise on the outcomes.

Pros and cons of high‑frequency GPS tracking 
and barometric altimetry
Our study showed that the use of high-frequency GPS 
tracking resulted in the highest vertical accuracy amongst 
the considered methods. Additionally, this method pro-
vides the advantage of an increased horizontal accuracy 
([13]; Table  2). Moreover, the high temporal resolution 
enables the use of high-frequency GPS tracking data 
for detailed analyses of 3D flight trajectories with many 
potential applications, e.g. regarding habitat use and for-
aging behaviour [37] or the use of thermal uplifts [38, 
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39]. In particular, the study of wind turbine avoidance by 
birds requires high positional accuracy both in the hori-
zontal and vertical dimension, and reliable information 
on this aspect is urgently needed to improve the predic-
tions of mortality from wind turbine collisions [5]. High-
frequency GPS tracking could play an important role to 
fill this knowledge gap [30, 32].

The main disadvantage of high-frequency GPS tracking 
is the high battery demand, which implies that this type of 
data can only be collected during restricted time periods. 
The collection of high-frequency GPS data depends on 
solar charging conditions, which poses the risk of a sam-
pling bias by an underrepresentation of circumstances 
with poor solar charging, for example in relation to time 
of day, weather, season or sex (underrepresentation of 
females due to reduced movement during the breeding 
season). However, whenever representative results on the 
vertical niche of a bird species are required, it is impor-
tant to sample across the aforementioned variables in 
an unbiased way. Note that the extent of the problem of 
battery demand and sampling bias might depend on the 
behaviour of the study species (e.g. depending on time 
spent flying and habitat) and the climatic conditions in 
the study area (e.g. less problematic in tropical areas).

The application of high-frequency GPS tracking has 
been facilitated by the possibility of remotely modifying 
tag settings, mainly through the GSM network in recent 
tag models. However, to date, the monitoring of battery 
voltage levels and the activation of the high-frequency 
mode often have to be performed manually, which 
requires a considerable time investment on a daily basis 
and might discourage researchers from applying high-
frequency settings. Note that the automatic initiation of 
the high-frequency mode when battery voltage reaches a 

defined threshold is already an available option in some 
manufacturers at present, but this potentially leads to 
a strong bias towards good solar charging conditions. 
In this respect, it would be a considerable step forward 
if tag manufacturers could provide more complex pro-
gramming options for tag settings (for example, when a 
defined voltage threshold is reached, scheduling a one-
hour sequence of high-frequency sampling for a random 
time on the next day). Another example of a promising 
avenue in this context is automatic flight detection, i.e. 
automatic application of high-frequency tracking when 
the bird is in flight, and low-frequency tracking when the 
bird is stationary, which is already available in some tag 
models [34, 39], but not yet fully efficient for all bird spe-
cies (unpublished data).

Barometric data have the advantage of reduced battery 
demand compared to high-frequency GPS data (Table 2). 
In fact, barometric measurements are recorded along-
side every GPS fix with a negligible increase in battery 
consumption. This makes it much easier to obtain flight 
height data without the aforementioned sampling biases. 
A disadvantage of barometric altimetry is the additional 
weight of the pressure sensor. For example, the lightest 
GPS tag with pressure sensor of the manufacturer Orni-
tela currently weighs 20 g, preventing its use on smaller 
species such as Montagu’s and hen harrier.

Conclusions
The recent advancements of the GPS tracking tech-
nology have opened many opportunities for the study 
of animal movements. However, it has remained chal-
lenging to obtain accurate flight height data from GPS 
tags. At the same time, this data is urgently needed to 
accurately predict the collision risk of birds with wind 

Table 2 Advantages and disadvantages of high-frequency GPS tracking and barometric altimetry, compared to standard low-
frequency GPS tracking

High‑frequency GPS tracking Barometric 
altimetry

Advantages

Increased vertical accuracy X X

Increased horizontal accuracy X

Potential for detailed trajectory analyses X

Disadvantages

High battery demand X

 Intensive management of tag settings required X

 Sampling only during restricted time periods X

 Sampling bias towards periods of good solar charging conditions X

Weather data required X

Reduced accuracy in unstable weather conditions X

Increase of tag weight X
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turbines and identify effective mitigation measures. 
Based on a field assessment using data from GPS tags 
deployed on free-living birds, we confirmed that GPS 
height data from standard low-frequency GPS track-
ing is associated with substantial error, blurring flight 
height distributions and potentially leading to an 
important bias in parameters relevant for bird conser-
vation. Barometric altimetry may provide more accu-
rate height data, but there is the risk of a systematic 
error which is difficult to resolve fully. Dedicated exper-
iments are needed, especially elucidating the behaviour 
of barometric height in relation to movement (station-
ary vs. flying), to derive an effective correction method 
for barometric height data. Most importantly, we 
showed that high-frequency (continuous-mode) GPS 
tracking substantially improves vertical accuracy com-
pared to low-frequency (discrete-mode) GPS tracking. 
It can be seen as a complementary approach to statis-
tical modelling techniques accounting for the vertical 
error [12, 14]. Moreover, it has the additional advantage 
that it enables detailed 3D trajectory analyses, notably 
with respect to wind turbine avoidance. However, care 
should be taken to collect the high-frequency data in an 
unbiased, representative way.
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