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Abstract 

Background Monitoring the behavior of wild animals in situ can improve our understanding of how their behavior 
is related to their habitat and affected by disturbances and changes in their environment. Moose (Alces alces) are 
keystone species in their boreal habitats, where they are facing environmental changes and disturbances from human 
activities. How these potential stressors can impact individuals and populations is unclear, in part due to our limited 
knowledge of the physiology and behavior of moose and how individuals can compensate for stress and distur-
bances they experience. We collected data from collar-mounted fine-scale tri-axial accelerometers deployed on cap-
tive moose in combination with detailed behavioral observations to train a random forest supervised classification 
algorithm to classify moose accelerometer data into discrete behaviors. To investigate the generalizability of our 
model to collared new individuals, we quantified the variation in classification performance among individuals.

Results Our machine learning model successfully classified 3-s accelerometer data intervals from 12 Alaskan moose 
(A. a. gigas) and two European moose (A. a. alces) into seven behaviors comprising 97.6% of the 395 h of behavioral 
observations conducted in summer, fall and spring. Classification performance varied among behaviors and indi-
viduals and was generally dependent on sample size. Classification performance was highest for the most com-
mon behaviors lying with the head elevated, ruminating and foraging (precision and recall across all individuals 
between 0.74 and 0.90) comprising 79% of our data, and lower and more variable among individuals for the four 
less common behaviors lying with head down or tucked, standing, walking and running (precision and recall across all 
individuals between 0.28 and 0.79) comprising 21% of our data.

Conclusions We demonstrate the use of animal-borne accelerometer data to distinguish among seven main behav-
iors of captive moose and discuss generalizability of the results to individuals in the wild. Our results can support 
future efforts to investigate the detailed behavior of collared wild moose, for example in the context of disturbance 
responses, time budgets and behavior-specific habitat selection.
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Background
Understanding the behavior of wild animals can facili-
tate effective conservation and management [1–3]. Such 
knowledge can be acquired through direct observations 
of wild animals, which is time-consuming, challeng-
ing and expensive [4]. One alternative is to use location 
data of wild animals to infer their behavior from charac-
teristics of their movement trajectories [5–7]. However, 
behavioral inference is limited by the spatial and tem-
poral resolution of the location data, which in turn can 
be influenced by the behavior itself (e.g. by collar posi-
tion and habitat choice impacting GPS fix rate) [8–11]. 
Advances in biologging technology alleviate this limita-
tion by enabling the recording of near-continuous data 
[12, 13]. In particular, animal-attached accelerometers 
enable a fine-scale biomechanical approach to the study 
of behavior [13–15].

Tri-axial accelerometers quantify inertial forces along 
three orthogonal axes [16, 17]. Attached to an animal, 
they record acceleration that is the result of both static 
or gravitational acceleration reflecting the posture of 
the animal relative to the earth’s gravitational field, and 
dynamic or specific acceleration resulting from changes 
in speed due to movement of the animal [18–20] and 
vibrations due to effects of tag attachment [21, 22]. The 
resulting datasets are large (especially at high sampling 
frequencies) and complex and commonly, machine learn-
ing tools are used to classify the accelerometer data into 
discrete behaviors, using predictor variables that quan-
tify characteristics of the accelerometer traces [14, 23, 
24]. Supervised machine learning algorithms are trained 
by linking behavioral observations to simultaneously 
recorded accelerometer data, thereby creating a labeled 
data set, in order to distinguish the observed behaviors 
based on characteristic differences in the accelerometer 
traces, allowing for the quantification of model perfor-
mance [11, 14, 25]. Such behavioral observations are 
commonly collected on accelerometer-bearing animals in 
captivity to facilitate the interpretation of accelerometer 
data collected on wild, unobserved animals [11, 13, 25].

Moose (Alces alces) are a keystone species of the boreal 
forests and tundra in the northern hemisphere [26–28]. 
Humans highly regard moose for their high cultural sig-
nificance, for trophy and recreational hunting, and as a 
food source [29–31]. However, in some areas, browsing 
damage to commercial forestry plantations and frequent 
moose–vehicle collisions result in management decisions 
aimed at limiting population sizes [29, 32]. Throughout 
much of their range, moose face changes in environmen-
tal conditions and disturbances due to human activi-
ties [33–35]. The effects of these potential stressors are 
not yet well-understood due to our limited knowledge 
of moose physiology and behavior, and of how much 

behavioral plasticity can compensate for stress and dis-
turbances experienced by individuals [36, 37].

Monitoring the behavior of moose in situ can improve 
our understanding of how their behavior is affected by 
disturbances and changes in their environment [38]. 
Most previous studies aimed at remotely monitoring 
moose behavior used radio-telemetry or activity counts 
from dual-axis motion sensors and distinguished only 
between active and inactive periods lasting several min-
utes [35, 39, 40]. Ditmer et  al. validated activity counts 
averaged over 1 min with behavioral observations of a 
single collared captive moose during one season [41]. 
Resulting behavior-specific activity counts were then 
used to improve a model predicting the behavior of col-
lared wild moose from year-round GPS data, assign-
ing one of three potential behaviors (resting, foraging, 
traveling) per 15- or 20-min movement interval [41]. To 
predict moose behavior in greater detail (i.e. to predict 
a higher number of behaviors over multiple seasons), it 
is important to consider the effect of time of year on the 
motion signatures of behaviors [38, 40]. For example, col-
lar fit can vary over the course of the year [21, 38], the 
same locomotor behavior can be associated with vary-
ing activity counts depending on ground cover including 
snow [40, 42], the activity count can vary with seasonal 
changes in insect harassment and resulting movement 
[40, 43], and different types of food consumed over the 
course of the year can be associated with different head 
movements and consequently, activity counts [40, 44, 
45]. Furthermore, it is important to account for inter-
individual variation in the motion signatures of behaviors 
[46–48]. Notably, Herberg used behavioral observations 
conducted on eight collared captive moose during four 
seasons in combination with dual-axis accelerometer 
measurements of moose averaged over 5-min intervals 
as well as GPS-based location data to predict the pro-
portion of time spent resting, foraging or moving within 
each 5-min interval [38]. Activity within most of their 
5-min intervals comprised multiple behaviors associated 
with behavior-specific variations in energy expenditures 
[38, 49], and they proposed the use of continuous acceler-
ometer recordings to improve distinction among behav-
iors and refine the temporal resolution of the behavioral 
predictions [38]. Increasing the temporal resolution is 
important because biologically relevant and energetically 
costly behaviors such as bouts of locomotion or alertness, 
can occur on time scales that are shorter than the record-
ing intervals of the technology previously used for detect-
ing behaviors [35, 39]. Accelerometer sampling frequency 
should be at least twice the frequency of the fastest body 
movement of interest [51–53]. Investigating moose 
behavior on a finer temporal scale and distinguishing 
among a higher number of behaviors can facilitate the 
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early detection of individual responses to changes in the 
environment resulting from anthropogenic activities, 
which can serve as foundation for the assessment of pop-
ulation-level responses [54–56].

Our goal was to train a random forest algorithm to 
classify continuous high-frequency accelerometer data 
collected from captive moose over several seasons into 
discrete behaviors, to detect changes in behavior on the 
temporal scales on which the behaviors can occur. The 
aim was to enable future studies to quantify fine-scale 
disturbance responses, behavior-specific habitat selec-
tion and detailed time budgets in wild moose.

Methods
Data collection
To study moose behavior, we fitted 12 individuals of sub-
species A. a. gigas in Alaska (all female) and two indi-
viduals of subspecies A. a. alces in Norway (one female, 
one male) with Vectronic Vertex Plus accelerometer-GPS 
neck collars (Vectronic Aerospace GmBH; Berlin, Ger-
many), which recorded tri-axial accelerometer data at 
32 Hz with a sensor range of ± 4 g and a resolution of 8 
bit (Additional file 1: Table S1). Accelerometer data were 
recorded continuously, and accelerometer time stamps 
were synchronized with GPS time during GPS fixes 
(every 15 min in collars in Alaska, every 60 min in col-
lars in Norway). We conducted behavioral observations 
on individual collared moose and distinguished 21 mutu-
ally exclusive behaviors, including multiple foraging, 
locomotor, grooming and inactive behaviors, expanding 
on Herberg [38] (Additional file 1: Table S2). The proto-
col for data capture varied between the two locations as 
described below.

Alaska
Twelve captive female moose at the Kenai Moose 
Research Center (Alaska Department of Fish and Game, 
Alaska) were collared without anesthesia three times for 
data collection over the course of 3  years. Deployment 
periods were October 1–11 2020, May 7–November 23 
2021, and March 24–July 14 2022. Collars were fitted 
with a 6-cm gap between the collar and the neck to allow 
for seasonal changes in neck diameter. The moose were 
kept in two large (2.6   km2) enclosures with varying ter-
rain and vegetation consisting of boreal and black spruce 
forest, meadows, bogs and lakes [57]. Supplemental feed 
was provided from January through April. Supplemen-
tal water was provided in one enclosure during June and 
early July when warm, dry conditions depleted the natu-
ral water supplies from wetlands, and in October and 
November when natural water sources were frozen prior 
to adequate snow fall. Each animal was observed for at 
least six hours per observation day during daylight hours. 

During the observations, moose were followed on-foot by 
one of five observers, who logged time-stamped behav-
iors to the nearest second using GPS time on a tablet 
running ArcGIS QuickCapture software (Esri, Redlands, 
CA, USA) and connected to a handheld GPS unit (Bad 
Elf GPS Pro, Bad Elf, West Hartford, CT, USA).

Norway
One female and one male moose at the Norwegian 
Moose Center (Inland Norway University of Applied Sci-
ences, Norway) were collared on November 23 2020, fol-
lowing anesthesia with etorphine and xylazine [58]. The 
moose were kept in a 0.02  km2 enclosure with vegetation 
and undulating terrain, a stream and an artificial water 
station. A salt lick and daily rations of feed pellets were 
provided, as well as supplemental browse every second 
day. The moose were filmed from the outside perimeter 
of the enclosure between November 23 and December 
5 2020, using a Canon XA40 (Canon Europe Ltd, Mid-
dlesex, U.K.) handheld video camera mounted onto a 
tripod. The camera was infrared-enabled to film dur-
ing low-light conditions. On a few occasions, filming 
without tripod was conducted in order to maintain vis-
ibility of active moose during a filming interval. Filming 
each day was opportunistic and depended on the activ-
ity level of the moose, visibility of the moose from the 
perimeter of the enclosure, and available daylight. Film-
ing took place in approximately 1-h intervals, and the 
camera was briefly switched off between intervals. At 
the start and end of each filming interval, the video was 
synchronized with GPS time by filming the screen of a 
handheld GPS unit (GPSMAP 64s, Garmin, Southamp-
ton, U.K.). Each filming interval focused on one moose, 
unless both moose were in close proximity to each other. 
Collars were removed on December 4, 2020 (Mattis, 
male) and December 9, 2020 (Idun, female) following 
anesthesia with etorphine and xylazine [58]. Using the 
software BORIS v.7.9.22 [59], the videos were then tran-
scribed by a single observer with experience in the data 
collection on Alaskan moose to ensure comparability 
between the data sets from the two locations. To avoid 
errors during the transcription process, exclusion criteria 
for mutually exclusive behaviors were set to ensure the 
logical sequence of transcribed behaviors (e.g., standing 
excluded lying).

Data preparation
Behavioral data
Observation data from Alaska were downloaded from 
ArcGIS QuickCapture and checked manually. Duplicated 
entries were removed (e.g. the same button was pressed 
repeatedly by accident). Within observations, time peri-
ods with nonsensical behavioral sequences were excluded 
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from the analysis (e.g. lying followed by running, with-
out any recording of the moose standing up in between). 
Observations with many errors were entirely excluded 
from the analysis. Transcribed observation data from 
Norway were exported from BORIS for further analy-
sis. All behavioral data were imported into R Studio [60] 
v. 2022.7.2.576 running R [61] v. 4.2.2 for subsequent 
analysis.

Accelerometer data
The accelerometer data were downloaded from the 
collars using Vectronic GPS Plus X software v.10.7.2 
(Alaska) or v.10.7.1. (Norway), extracted using Vectronic 
MotionData Monitor software v.1.2.0 and imported into 
R Studio [60]. Inspection of the data revealed a delay 
in the date switching of the timestamps after midnight 
each day. We therefore excluded the first 20 s after mid-
night for all observations. Inspection of the data also 
revealed gaps in the accelerometer data of each collar (< 1 
min) that occurred at least once per 24-h period, due to 
rebooting of the unit, as well as inconsistencies in the val-
ues of consecutive seconds of time stamps assigned dur-
ing GPS time synchronization during GPS fixes. Because 
of these data gaps and the inconsistencies in time stamps 
assigned during GPS fixes, we summarized the 32-Hz 
raw accelerometer data in intervals, rather than correct-
ing each individual time stamp, which also facilitated the 
temporal matching of the behavioral data with the accel-
erometer data intervals. Based on a preliminary analysis 
of the data with interval lengths varying from 1 to 10 s, 
we summarized the accelerometer data in 3-s intervals to 
maintain a high temporal resolution of individual behav-
iors (the shortest mean duration of a behavior in our 
ethogram was two seconds, Additional file  1: Table  S2) 
while maximizing classification performance (i.e. maxi-
mizing recall and precision for the largest number of 
behaviors). Inspection of the data revealed that one collar 
(Individual: Minnie) recorded at 8 Hz, while the remain-
ing accelerometers recorded at 32 Hz. However, because 
we summarized our data into intervals, this data was 
included in the analysis. Opportunistic video recordings 
revealed that two accelerometer axes were reversed in 
the collars from Norway compared to Alaska. The data 
from Norway were adjusted to standardize axis orienta-
tion across all collars (Fig. 1).

From the raw accelerometer data, we calculated vari-
ables that were frequently used in other studies [14, 23, 
25] and did not require continuous time series, to accom-
modate the aforementioned gaps and inconsistencies in 
the data. We then summarized the variables in each 3-s 
interval (Table 1). Most variables described the distribu-
tion of raw accelerometer values within each 3-s interval 
on each axis (X–Z). In addition, pitch (corresponding to 

vertical neck orientation) (Eq. 1) and Minimum Specific 
Acceleration (MSA) (Eq. 2) were calculated from the raw 
accelerometer data in each interval. We also included 
individual metrics which are easy to record in the field: 
Subspecies, sex, body length, girth and season. Such met-
rics could improve the generalizability of our model to 
individuals not seen during model training [25].

Fig. 1 Accelerometer collar on Idun while standing. Arrows 
represent axis orientation of the accelerometers mounted 
in the housing on top of the neck and point towards positive values. 
X: surge (cranio-caudal axis), Y: sway (medio-lateral axis), Z: heave 
(ventro-dorsal axis)

Table 1 Predictor variables in the random forest model

Predictor variables described either the 3-s interval accelerometer data or the 
time and location of data collection and morphometrics of the collared moose 
and were used in the random forest model to predict behaviors from the 
accelerometer data

Predictor variable Number of 
variables per 
interval

Mean (X, Y, Z, pitch, MSA) 5

Median (X, Y, Z, pitch, MSA) 5

SD (X, Y, Z, pitch, MSA) 5

Min (X, Y, Z, pitch, MSA) 5

Max (X, Y, Z, pitch, MSA) 5

Range (X, Y, Z, pitch, MSA) 5

Interquartile range (X, Y, Z, pitch, MSA) 5

Absolute value of skew (X, Y, Z, pitch, MSA) 5

Kurtosis (X, Y, Z, pitch, MSA) 5

Girth 1

Length 1

Season 1

Sex 1

Subspecies 1
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Calculation of pitch [62]:

Calculation of Minimum Specific Acceleration (MSA) 
[19]:

Labeling of accelerometer data
Visual comparison of the start times of recorded behav-
iors with the raw accelerometer data for a subset of the 
data revealed that the recorded start time lagged behind 
the accelerometer signatures. Therefore, we applied an 
offset to all behaviors (1  s for data from Alaska, 2  s for 
data from Norway). The non-overlapping 3-s acceler-
ometer data intervals were labeled with the respective 
behavior recorded during the observations. Intervals 
during which more than one behavior was recorded were 
excluded from analysis. The frequency with which dif-
ferent behaviors were observed varied greatly. Because 
our goal was to obtain a model that could reliably dis-
tinguish the main behaviors of moose, we excluded rare 
behaviors such as head shaking, scratching and urinating, 
which represented 2.4% of observations. We summarized 
all foraging behaviors into a coarser foraging category. 
To identify when the moose were lying with their head 
tucked, which has been reported as their energetically 
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least costly behavior [49], we distinguished between two 
separate lying behaviors based on their head position: 
lying with the head down or tucked (“lying_o”) and lying 
with the head up (“lying_u”) (Additional file 1: Table S2). 
Head position of lying moose was assumed to be up 
unless otherwise noted during the observations (the 
head position was not recorded for moose in Norway, 
and therefore whenever these moose were lying, we con-
sidered the behavior to be “lying_u”). Our final analysis 
included 394.7 h of labeled data (380.4 h of observations 
collected on-foot in Alaska and 14.3 h of annotated video 
footage from Norway) of the following seven behavioral 
categories: Foraging, lying_o, lying_u, ruminating, run-
ning, standing, walking (Table 2).

Predicting behaviors from accelerometer data
To classify the accelerometer data into behavioral cat-
egories, we used a random forest algorithm, which is 
frequently used for the classification of accelerometer 
data [23, 47, 63]. A random forest grows many decision 
trees on bootstrapped subsamples of the data and com-
bines the predictions of all trees to predict the out-of-
bag data that were not used to grow the trees, in order 
to quantify prediction error [64, 65]. Random forest is a 
comparatively fast supervised classification algorithm 
that, through the combination of many decision trees 
and introduced stochasticity in the modeling process, 
increases classification performance and can process 
correlated and interacting predictor variables as well as 
missing values [64–67]. To accommodate the unbal-
anced nature of our dataset, we assigned weights to the 

Table 2 Samples sizes for each individual and behavior

Number of labeled 3-s accelerometer data intervals for each behavior and individual moose used to train the random forest model classifying animal-borne 
accelerometer data into seven discrete behaviors

Animal ID Foraging Lying_o Lying_u Ruminating Running Standing Walking Total

Stella 12,308 3763 19,247 13,242 18 5408 1661 55,647

Babe 15,732 2791 15,832 9787 89 8462 2590 55,283

Wilma 6970 1383 20,242 15,274 16 9465 1474 54,824

Sky 13,126 1354 15,733 15,999 49 5226 1715 53,202

Shiner 7397 1390 23,916 11,784 9 6359 2176 53,031

Cayenne 13,149 732 12,568 12,927 7 8536 2197 50,116

Roxanne 9392 1386 16,271 10,006 41 7243 3716 48,055

Minnie 6349 1678 22,927 8434 28 5253 1988 46,657

Winnie 4326 99 3426 4078 0 1128 266 13,323

Vicky 3205 49 4034 4451 37 709 236 12,721

Mattis 753 0 2729 2036 50 3897 727 10,192

Idun 865 0 2614 929 13 1894 637 6952

Lily 2832 0 1277 2203 7 362 203 6884

Olivia 2303 10 1392 1930 0 1035 121 6791

Total 98,707 14,635 162,208 113,080 364 64,977 19,707 473,678
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observations of each behavior that were inversely pro-
portional to the class size of the respective behavior (i.e., 
we weighed observations so that the weight of observa-
tions of behavior X was equal to the number of obser-
vations of the rarest behavior divided by the number of 
observations of behavior X). Assigning greater weight to 
observations of rare behaviors reduces the error rate of 
classifications of the rare classes [67]. We used the ran-
dom forest implementation from H2O through the h2o 
R package [68] v. 3.38.0.1 with 200 trees. To test the gen-
eralizability of our model to new individuals not included 
during model training, we performed leave-one-indi-
vidual-out cross-validation, where the model was 
repetitively trained on all but one of the individuals and 
evaluated with the labeled data of the remaining, held-
out individual [69–71]. We first ran a random forest with 
the full set of predictor variables. Random forests are 
capable of handling both correlated and non-informative 
predictor variables [65–67] and, while a higher number 
of predictor variables might increase computation time, 
our priority was to maximize behavioral classification 
performance. To assess the effect of variable selection on 
model performance, we then re-ran the model with only 
those predictor variables that had scored the highest vari-
able importance (≥ 3%) in the full model [67]. To evaluate 
classification performance, accuracy is a commonly used 
metric [72]. However, it is a suboptimal metric for evalu-
ating classification performance in imbalanced datasets 
(such as ours) [72–74]. Thus, modeling with the goal of 
maximizing accuracy may not be the best procedure for 
our dataset. Therefore, we focus the discussion of the 
performance of our model on the metrics recall and pre-
cision (but also give accuracy values since this is a com-
mon metric used in other studies) [73].

Results
Model performance
Out of 50 predictor variables in the full model, 16 scored 
a variable importance of at least 3% and were included in 
the reduced model. Recall and precision of most behav-
iors in the full model were slightly higher than or equal 
to recall and precision of the reduced model, except 
for lying with the head down/tucked and ruminating 
(Table  3). Therefore, we focus the description of our 
results and the discussion on the full model.

Across all individuals and behaviors, our model clas-
sified 473678 3-s accelerometer data intervals from 14 
moose into seven behaviors (Fig. 2) with mean recall of 
0.75 (± 0.10) and mean precision of 0.62 (± 0.24) (Table 3).

Across all individuals, classification performance varied 
by behavior and was generally best for the three most com-
mon behaviors (lying with the head up, ruminating, forag-
ing) constituting 79% of our data, with recall and precision 

ranging from 0.74 to 0.90. Model performance was more 
variable among the four rarer behaviors constituting the 
remaining 21% of our data, with recall and precision rang-
ing from 0.28 to 0.79. Among these behaviors, performance 
was best for walking and lying with the head down/tucked, 
while standing had the most misclassifications and was 
most frequently confused with lying behaviors and foraging 
(Table 4).

Among individuals, classification performance was vari-
able with overall accuracy ranging from 0.38 (Mattis, the 
only male in our study) to 0.82 (Sky) (Additional file  1: 
Table  S4). Sample sizes among individuals were highly 
variable, with six moose each contributing less than 3% to 
the total data in this study, and eight moose each contrib-
uting at least 10%. The six individuals with smaller sample 
sizes scored lower mean recall (mean ± SD: 0.67 ± 0.05) and 
mean precision (mean ± SD: 0.55 ± 0.06) values than the 
eight moose with larger sample sizes (mean recall ± SD: 
0.75 ± 0.04, mean precision ± SD: 0.64 ± 0.06).

Among individuals, the rarest behaviors (lying_o, run-
ning) showed the highest variation in classification per-
formance, particularly precision (Table 5, Additional file 1: 
Tables S5–S18).

Variable importance
The most important variable in our model was the stand-
ard deviation of acceleration along the heave axis with an 
overall contribution of 5% to the classification performance 
of the model (Additional file 1: Table S3). Sixteen variables 
contributed at least 3%, of which five were metrics of pitch, 
four metrics of surge and three metrics of heave.

Discussion
Animal-borne accelerometers have wide-ranging appli-
cations, from investigating the energy budget [75–77] 
and health status [78, 79] of individuals to identifying 
behavior-specific habitat use [80, 81]. By facilitating the 

Table 3 Effect of variable selection on model performance

Comparison of model performance between the full random forest model run 
with all 50 predictor variables and subsequent reduced random forest model 
run with only the 16 most important variables

Full RF Reduced RF

Recall Precision Recall Precision

Foraging 0.86 0.90 0.84 0.89

Lying_o 0.78 0.34 0.75 0.41

Lying_u 0.74 0.84 0.74 0.83

Ruminate 0.79 0.80 0.82 0.78

Run 0.74 0.28 0.73 0.24

Stand 0.55 0.56 0.52 0.53

Walk 0.79 0.62 0.79 0.60
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identification of areas important for species conserva-
tion [3, 80] and the assessment of effects of disturbances 
and environmental changes on individual behavior and 
energy balance [56, 75], this technology can improve 
wildlife conservation and management efforts. Here, we 
show that data from animal-borne accelerometers can be 
used to distinguish among the most common behaviors 
in moose.

Classification performance
With the three most prevalent behaviors (lying with the 
head up, ruminating, foraging) scoring the highest recall 
and precision values between 0.74 and 0.90, classification 
performance was generally related to class prevalence, 
which might suggest that the model performed better 
when the training data contained greater variation in the 
ways a certain behavior was expressed. While the most 
prevalent behaviors scored comparable values for both 
recall and precision, the rarest behaviors (running, lying 
with the head tucked/down, walking) scored higher recall 
than precision values. This indicates that our model had 
fewer false negative predictions of these behaviors, which 
means that it was able to identify these rare behaviors 
when the moose were engaging in them, and had a higher 
number of false positive predictions, which means that it 
incorrectly predicted these behaviors when other behav-
iors were occurring. While we assigned greater weights to 
rare behaviors in order to reduce their classification error 
[67], it is possible that the weighting was more effective 
at reducing the number of false negative predictions (and 
thus increasing recall) than at limiting the number of 
false positive predictions (and thus increasing precision). 

Failing to reduce false positive predictions would lead to 
a reduction in precision, particularly for behaviors with 
small numbers of true positive predictions, i.e., behaviors 
with small sample sizes. Increasing the sample sizes of 
rare behaviors might improve classification performance 
for these behaviors but was not feasible in the current 
study.

Behaviors characterized by little body movement can 
be difficult to distinguish based on accelerometer data 
(while predictor variables based on static acceleration 
might facilitate this distinction, we could not calculate 
these in the current study), and attempting to distinguish 
among several inactive behaviors with our model (lying 
with the head down/tucked, lying with the head up, 
standing) comes at the risk of reducing the overall clas-
sification performance [63, 82]. Nonetheless, we did not 
group these behaviors together because we wanted to 
evaluate the performance of our model in distinguishing 
among these important behaviors. Renecker and Hud-
son recorded the lowest heart rates in moose lying with 
the head folded against the abdomen, and an increase 
in energy expenditure of up to 79% during standing 
compared to lying with the head tucked [49]. Therefore 
it was important that our model could distinguish peri-
ods of minimal energy expenditure during lying with the 
head down/tucked from times when moose engage in 
behaviors associated with increased metabolic rates that 
serve other functions such as energy gain (ruminating), 
and increased awareness of and interaction with the sur-
roundings (e.g. during lying with the head up or standing, 
compared to lying with the head down/tucked). Despite 
being one of the rarest behaviors in our study, the recall 

Fig. 2 Example raw accelerometer traces (sampling frequency of 32 Hz) of one captive moose (Stella). Vertical lines indicate the start of a new 
behavior predicted from the 3-s accelerometer data intervals (bold top labels) and observed during the behavioral data collection (bottom labels). 
Tick marks on the top axis indicate the start of a new accelerometer data interval
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of lying with the head down/tucked ranged among the 
highest values of all behaviors, with 78% of all events that 
were labeled as lying with the head down/tucked being 
correctly identified by our model. While the unique neck 
postures during this inactive behavior might facilitate its 
distinction, false predictions of this behavior did occur 
(34% in total) and involved mostly other, more common 
inactive behaviors (lying with the head up, standing, 
ruminating), illustrating the challenges of distinguishing 
inactive behaviors from accelerometer data. We did not 
distinguish lying with the head down/tucked from the 
generally much more common behavior lying with the 
head up during the transcription of videos from Norway 
and therefore labeled all lying behaviors of these moose 
as lying with the head up. As a consequence, some data 
had incorrect labels (the small proportion of data that 
were labeled as lying with the head up when it should 
have been labeled as lying with the head down/tucked) 
that trained the model to incorrectly predict the behav-
ior in these instances as lying with the head up. Similarly, 
some data with incorrect labels (i.e. lying with the head 
up) were used to falsify predictions that were actually 
correct (i.e. lying with the head down/tucked). It is likely 
that this contributed to the comparatively low precision 
of our models’ predictions of lying with the head down/
tucked.

In an accelerometer study on reindeer (Rangifer taran-
dus) that grouped all inactive behaviors (including stand-
ing, sleeping and ruminating) into one behavior class, 
this class had the best classification performance among 
all behaviors [71], which was better than the classifica-
tion performance for any of the inactive behaviors in our 
study. However, the focus of the study on reindeer was 
the distinction among three foraging behaviors (brows-
ing low, browsing high and grazing) [71]. In contrast, we 
grouped three foraging behaviors into one overall forag-
ing class, which in turn had a better classification perfor-
mance than the three foraging behaviors investigated in 
the study on reindeer (precision of foraging in our study 
scored higher than precision of all three behaviors in 
the study on reindeer, and recall of foraging in our study 
scored higher than recall of two out of the three behaviors 
in the study on reindeer) [71]. This comparison illustrates 

the potential effect of grouping of behaviors on model 
classification performance and the behavioral inferences 
that can be drawn from the predictions, emphasizing that 
behavioral grouping needs careful consideration in stud-
ies using supervised classification algorithms to analyze 
accelerometer data.

Classification performance in our model was compara-
ble to that in Martiskainen et al. classifying accelerometer 
data from dairy cows [83]. While their model performed 
better at classifying standing, our model performed bet-
ter at classifying foraging behavior. Similar to our study, 
Martiskainen et  al. reported misclassifications among 
less active behaviors (lying, ruminating and standing), 
which they also suspected was due to the similarities in 
neck posture of the cows during these behaviors [83]. 
Their model confused among the behaviors foraging, 
standing and (lame) walking [83] which is also evident 
in our predictions. During our observations, we consid-
ered a moose to be foraging until it took more than two 
consecutive steps without bites of food; which prompted 
a switch to walking. Consequently, some instances where 
the moose was walking were still recorded as foraging, 
likely contributing to the misclassifications of these two 
behaviors. Furthermore, foraging and walking can occur 
simultaneously in browsing animals, complicating their 
distinction using accelerometer data.

Model generalizability
Given the goal of classifying unlabeled data in wild ani-
mals, cross-validating the model on labeled data from 
unseen individuals, can provide insights into the general-
izability of the model [25, 70, 71]. Therefore, variation in 
classification performances among individuals is a useful 
indicator of the generalizability of our model [69–71].

In an effort to maximize model generalizability, we 
aimed to maximize the amount of variation in our train-
ing data by pooling data from as many individuals as pos-
sible and including individuals from both sexes and two 
subspecies [83]. The lowest overall prediction perfor-
mance (accuracy and mean recall) was observed when 
our model classified data from the only male moose in 
our study (Mattis). A possible interpretation is that our 
model might have limited applicability to male moose. 

Table 5 Behavior-specific individual variation in model performance

Behavior-specific variation in classification performance among 14 individuals of the random forest model classifying seven different behaviors from accelerometer 
data. Mean and standard deviation of precision and recall are given together with the prevalence of the behaviors in the observational data

Performance metric Behavior

Lying_u Ruminating Foraging Standing Walking Lying_o Running

Recall 0.69 ± 0.17 0.74 ± 0.18 0.86 ± 0.04 0.53 ± 0.18 0.73 ± 0.14 0.78 ± 0.15 0.74 ± 0.21

Precision 0.82 ± 0.09 0.78 ± 0.12 0.89 ± 0.07 0.56 ± 0.18 0.57 ± 0.19 0.31 ± 0.31 0.28 ± 0.26

Prevalence (%) 34 24 21 14 4 3 0
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Morphological differences such as the large weight 
of the head due to the presence of antlers and result-
ing increased neck circumference [84] could result in 
different neck posture and movement of male moose 
compared to female moose during the same behaviors, 
precluding the generalizability to male moose of a model 
that was trained on data from female moose to classify 
data from neck-mounted accelerometers. This notion is 
supported by the high total number of false predictions 
of lying with the head down/tucked for Mattis; a behav-
ior characterized by unique neck postures that is con-
fused mainly with behaviors characterized by limited 
body movement where neck posture might be an impor-
tant predictor (standing, lying with the head up and 
ruminating). However, we did find that these misclassi-
fications also occurred particularly often in Shiner, the 
female moose with the largest measured chest girth and 
weight in our study, where a large and heavy head and 
large neck circumference might have resulted in similar 
misclassifications to those observed for a (younger and) 
smaller male with small antlers. This might suggest that 
the reduced performance of our model in classifying 
Mattis’ data did not stem from a lack of generalizability 
of our model to (young) male moose with small antlers. 
Instead, the low sample sizes for several of Mattis’ behav-
iors as well as overall individual variability in model per-
formance, which we discuss below, might have resulted 
in the comparatively low performance of our model when 
classifying his data. However; ultimately, due to our small 
sample size of male moose, we cannot evaluate the gener-
alizability of our model to male moose. European moose 
constituted only 3.6% of the data, hence their predictions 
were largely based on data from Alaskan moose. Yet, 
mean recall and precision of the behavioral classification 
of the one female European moose in our study, Idun, 
were higher than the mean values of Alaskan moose with 
similar sample sizes. While the successful application of 
our model to Idun’s accelerometer data might have been 
facilitated by the similarities in size between Idun and the 
yearling Alaskan moose in our study (Babe, Vicky and 
Winnie), ultimately our sample size is too small to evalu-
ate the generalizability of our model to European moose.

Variation in overall accuracy and behavior-specific 
recall and precision among individuals with comparable 
sample sizes (e.g. Shiner and Sky) suggests the influence 
of factors other than sample size, sex and subspecies on 
model performance. Such individual differences in clas-
sification performance have been observed on a wide 
range of species from penguins [48] to pinnipeds [25, 
47] and caprids [46]. Including individual characteris-
tics as predictor variables might account for some of this 
individual variation and has been shown to increase the 
generalizability of classification models [25]. However, 

individual length and girth had comparatively low vari-
able importance in our model. Other variables such as 
age or weight might have been more important [25] but 
were not included in our model because these metrics 
are difficult to determine in the field when collaring wild 
moose. Furthermore, length and girth were not measured 
on all animals in our study and were inferred from other 
data for several individuals, potentially confounding the 
importance of these metrics on the behavioral classifica-
tion of moose accelerometer data.

Fine-scale differences in placement of the acceler-
ometers among individuals might have contributed 
to the individual variation in the classification perfor-
mance of our model [48, 69]. Because most collars were 
deployed for several months at a time, they were fitted 
to account for seasonal changes in neck diameter, poten-
tially resulting in changes in how the collars responded 
to body movement over the course of the deployments, 
thereby increasing within- and among-individual varia-
tion of the data [22, 38, 85]. Because collar fitting in our 
study was similar to collar fitting on wild moose in the 
field, our training data included such variation. While 
this might have reduced the classification performance 
of our model, it increases generalizability of our model 
to data from wild animals, where some fine-scale dif-
ferences in accelerometer placement among individu-
als can be expected. In our model, season had a variable 
importance of 2%, suggesting that variation in collar fit 
over the course of the deployments, or other seasonal 
variation such as the effect of snow on locomotor behav-
iors, exerted some influence on the classification in our 
model. In addition to within- and among-animal varia-
tion among collar placement, variation may exist among 
the accelerometer units themselves [22]. Addressing such 
variation requires calibration of the units prior to deploy-
ment [22, 86, 87]; but calibration data are often not avail-
able for existing accelerometer data where collars were 
deployed in the field without prior calibration [22].

Limitations of our study and recommendations for futures 
studies
The quality of the time stamps of our accelerometer 
data prevented a time series analysis of the data at a 
sub-second level. It was therefore not possible to distin-
guish between static and dynamic acceleration [17, 18] 
and analyze the frequency composition of the acceler-
ometer signals [14, 18], to calculate predictor variables 
that were among the most important for the classifica-
tion of accelerometer data in other studies [46, 63, 71]. 
For example, frequency analysis of accelerometer data 
using fast Fourier transform can facilitate the distinc-
tion among simultaneous, rhythmic behaviors such as 
foraging and walking [63]. In moose, such a frequency 
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analysis might help distinguish among lying and rumi-
nating, standing, foraging and walking behaviors from 
accelerometer data. Improving the quality of the time 
stamps recorded by the accelerometers built into the 
collars would enable the calculation of these important 
predictor variables, thus offering a promising way to 
further improve the performance of behavioral classifi-
cation models on fine-scale tri-axial accelerometer data 
of moose.

For the sake of this study, we considered postures 
(e.g. lying, standing) as separate categories from behav-
iors (e.g. foraging, ruminating, walking). Postures and 
behaviors are not mutually exclusive as, for example, 
a foraging moose is usually standing. Consequently, 
there was overlap in the accelerometer signatures of the 
behavioral classes, which we considered exclusive. This 
could explain some of the misclassifications among 
these behaviors like for example, foraging and standing, 
and lying with the head up and ruminating. In future 
studies, recording posture and behavior separately 
might facilitate the distinction among these behaviors 
[63]. However, such a distinction is logistically chal-
lenging when logging behaviors in real time in the field.

When applying our model to accelerometer data 
from wild moose, our model will not be able to clas-
sify behaviors that were not included in model training, 
for example swimming which can occur when moose 
are foraging on aquatic vegetation [88]. Instead, such 
behaviors unknown to the model will be misclassified 
as one behavior (or multiple behaviors) known to the 
model based on similarity in the accelerometer vari-
ables [25]. Increasing the sample size of observations 
of male and European moose and of rare behaviors 
would improve the generalizability of our model to new 
individuals.

Conclusions
We demonstrate the use of accelerometer data to dis-
tinguish among seven important behaviors of moose. 
Potential applications include the quantification of the 
time budget of wild moose and, by relating behavioral 
predictions to environmental variables, the investigation 
of behavior-specific habitat selection as done for other 
species [80, 81, 89]. Quantifying behavioral responses 
of moose to changes in their environment can elucidate 
the effect of disturbances on their time budget. Relating 
accelerometer data to metabolic rate could elucidate the 
energetic consequences of behavioral responses of moose 
to disturbances [15, 56].

Abbreviation
MSA  Minimum specific acceleration
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