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Studying animal locomotion with multiple 
data loggers: quantifying time drift 
between tags
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Abstract 

Temporal accuracy is a fundamental characteristic of logging technology and is needed to correlate data streams. 
Single biologgers sensing animal movement (accelerometers, gyroscope, magnetometers, collectively inertial 
measurement unit; IMU) have been extensively used to study the ecology of animals. To better capture whole body 
movement and increase the accuracy of behavior classification, there is a need to deploy multiple loggers on a single 
individual to capture the movement of multiple body parts. Yet due to temporal drift, accurately aligning multiple 
IMU datasets can be problematic, especially as deployment duration increases. In this paper we quantify temporal 
drift and errors in commercially available IMU data loggers using a combination of robotic and animal borne experi-
ments. The variance in drift rate within a tag is over an order of magnitude lower (σ = 0.001 s  h−1) than the variance 
between tags (σ = 0.015 s·h−1), showing that recording frequency is a characteristic of each tag and not a random 
variable. Furthermore, we observed a large offset (0.54 ± 0.016 s·h−1) between two groups of tags that had differing 
recording frequencies, and we observed three instances of instantaneous temporal jumps within datasets introducing 
errors into the data streams. Finally, we show that relative drift rates can be estimated even when deployed on ani-
mals displaying various behaviors without the tags needing to be simultaneously moved. For the tags used in this 
study, drift rates can vary significantly between tags, are repeatable, and can be accurately measured in the field. The 
temporal alignment of multiple tag datasets allows researchers to deploy multiple tags on an individual animal which 
will greatly increase our knowledge of movement kinematics and expand the range of movement characteristics 
that can be used for behavioral classification.
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Introduction and background
Studies on the dynamics of a moving animal are classi-
cally performed by digitizing video and tracking multiple 
body parts through time [1, 2]. However, these studies 
usually examine a narrow range of locomotor behaviors 
in laboratory settings, and expanding estimates beyond 

a single individual, into three dimensions, or over longer 
time frames of hours to days is challenging. Researchers 
can also place sensors at specific locations on an animal, 
allowing for precise estimates of some characteristic of 
that location on the body. For example, the use of electro-
myography electrodes allow estimation of muscle activa-
tion during movement [3–5]. Traditionally, these sensors 
are tethered to an external data recorder, which provides 
power, data storage and enables multiple sensors to be 
time-synced. However, this design requires the animal to 
be physically connected to an external device which gen-
erally restricts such studies to laboratory settings.
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To move beyond these limitations, researchers have 
increasingly employed animal-born biologging devices 
[6, 7]. These devices have an internal battery and log data 
from a sensor to internal memory, and they “cut the cord” 
and eliminate the need for an individual to be tethered, 
allowing for in situ measurements of behavior in the field. 
Biologgers using a combination of accelerometers, gyro-
scopes, and magnetometers (collectively inertial meas-
urement unit; IMU) have been increasingly adopted to 
study a diversity of questions focusing on the movement, 
behavior, physiology, and ecology of animals [8–11], and 
provide a rich data set well beyond what can be achieved 
in the laboratory.

Animals are dynamic, and recording information from 
only one sensor at a single location presents ambiguity in 
determining an animal’s actions, an incomplete picture of 
body dynamics, and is of limited utility in studying the 
complex three-dimensional kinematics of most animals. 
Limited attempts have been made to have a single data-
logger record from multiple distributed sensors, but this 
approach is constrained by the requirement of having 
the sensors tethered across the animals body and by the 
recording bandwidth of the logger [12]. Furthermore, the 
majority of these attempts have been focused on catego-
rizing human movements and behaviors [12–15].

Placing multiple IMU dataloggers distributed across 
the body would resolve these issues and allow both high 
temporal and spatial resolution of animal body dynam-
ics as natural behaviors are executed in the field. How-
ever, minor differences in recording frequencies between 
loggers can accumulate, causing sensors to drift in time 
from each other [16]. This drift over time obfuscates tem-
poral patterns and thus prevents synchronous compari-
sons of movement across the body.

To illustrate this problem, imagine an IMU on each 
foot of a person walking. The IMUs will begin by record-
ing alternating steps: one foot moves forward, while the 
other is stationary. As small discrepancies in their record-
ing rates accumulate, the datasets will drift apart, and 
unrealistic behavior such as both feet moving forward at 
the same time will be recorded, changing the interpre-
tation of the locomotor mode used. Depending on the 
temporal precision that is required, the accuracy of each 
loggers clock, and the amount of time these loggers are 
deployed, this temporal drift can represent a significant 
and unknown source of error in analysis.

In this paper we demonstrate that temporal drift exists 
among multiple IMU data streams derived from the 
same controlled movement, and then (1) quantify the 
extent of this drift among commonly used commercially 
available data loggers, (2) measure the variation in drift 
across multiple datasets, and finally (3) illustrate a meth-
odological approach to temporally synchronize separate 

IMU data loggers placed at various locations on a single 
individual. Demonstrating how to correct for IMU drift 
establishes the foundation for using multiple IMU log-
gers to reconstruct the three-dimensional body dynamics 
of animal movement in the field.

Methods
Two types of experiments were conducted: (1) robotic 
experiments where the movements of the tags were 
known, and (2) experiments on three species of live 
fishes in which the movement of tags was unknown. In 
all experiments dataloggers were manufactured by Tech-
nosmart Inc (Rome, Italy). Models used varied across the 
experiments and involved the AGM model, the Axy-4 
model, and the Axy-5 model. The AGM model lacks a 
real time clock and records from an MPU-9250 (TDK 
InvenSense Inc.), which has a has a 3-axis accelerom-
eter, 3-axis magnetometer, and 3-axis gyroscope. The 
Axy-4 and Axy-5 record 3-axis acceleration from an LIS-
2DH12TR (STMicroelectronics Inc.) and LSM303AGR 
(STMicroelectronics Inc.) respectively. In all experiments 
the tags were programmed to record at 100  Hz. AGM 
models were purchased at three different times with 6 
tags having a larger 400 mAh battery and 6 tags having a 
100 mAh battery, while the Axy4 and Axy-5 models each 
had a 100 mAh battery.

Robotic experiments
Experiments were conducted using an automated robotic 
flapping mechanism that has been extensively used to 
study dynamics of fish movement in the past [17–19] 
The robotic flapping system has two degrees of freedom 
and can alter the heading (yaw, or pitch) as well as induce 
lateral translative movements (sway, or heave), with the 
user programming the frequency and amplitude of these 
movements. Multiple dataloggers were rigidly affixed 
to the flapping mechanism so that all tags experienced 
the same movement simultaneously (Fig.  1A). The flap-
ping mechanism was turned on for 1  min in duration 
and the tags were then oscillated laterally back and forth 
at 0.75  Hz and experienced a programmed 3  cm lateral 
amplitude and a 25 degree heading oscillation. Flapping 
was repeatedly conducted over a ~ 24  h period or until 
the tag batteries were drained. This entire procedure was 
repeated so that each tag’s drift rate could be estimated at 
least 3 times.

After an experiment, tag data was downloaded, and the 
data were imported into R for analysis. In this experiment 
we had no “true” time, and thus Tag 1 was used as the 
baseline and all other tags were compared to this tag. The 
starting and stopping point of each flapping period was 
identified and a buffer of 60 s was added before and after 
the flapping period. Temporal lag between each tag and 
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Tag 1 was estimated using a cross correlation function 
of the two tags Z-axis gyroscope data (change in head-
ing). The lag that maximized the correlation between the 
two datasets was identified as the temporal lag during 
each flapping period. The lag for each tag was regressed 
against time in to estimate the drift rate and converted 
to seconds per hour. Linear mixed effects models were 
used to estimate the variance in drift rate within and 
between tags using the lme4 package in R [20]. Tag ID 
was identified as a random effect and was used to esti-
mate variance between tags, while residual variance was 
used to estimate the within tag variation. After observing 
large discrepancies between groups of tags, a “fast-slow” 
recording group was also incorporated as a fixed effect.

Animal based experiments
While estimating drift under controlled laboratory con-
ditions is beneficial and provides an accurate estimate 
of among-tag drift, ideally we want to directly estimate 
the drift rates of tags in the field during an actual deploy-
ment. To determine if this was possible, we placed multi-
ple tags on three species of fishes (Fig. 1B–D) and allowed 
them to volitionally swim. Data loggers were fixed to the 
animal’s body using two sutures, one at the anterior side 
of the tag and a second at the posterior side of the tag. A 
smooth dogfish (Mustelus canis, TL = 99 cm, Fig. 1B) was 
tagged at three locations (anterior-above gills, mid:below 
first dorsal fin, and posterior: at caudal peduncle) using 
AGM tags. The shark was then placed into a small tank 

(2.5  m diameter) and allowed to swim freely for 26  h. 
White sucker (Catostomus commersonii, TL = 50  cm, 
Fig.  1C) were tagged with an AGM tag placed close to 
their center of mass with a second Axy-5 tag placed at 
the caudal peduncle. Finally, lamprey (Petromyzon mari-
nus, TL = 65 cm, Fig. 1D) were tagged at three locations 
(anterior, mid body, and peduncle) with a combination of 
AGM, Axy-5, and Axy-4 tags. Lamprey and white sucker 
were released into a large holding tank (8 × 7  m) that 
was connected to a flume (36 m long and 0.635 m wide) 
inducing flow that has been used to investigate volitional 
bursting behavior in migrating fish [21, 22].

Data processing
Acceleration or angular velocity data from the latitudi-
nal direction was used to estimate the drift in tag sensor 
data from live fishes as these animals primarily locomote 
using lateral body oscillation. Data from the two sen-
sors was sequentially cross-correlated with each other 
using sliding and overlapping windows. Window size 
was 10 min and windows overlapped by 50 percent. The 
lag that represented the maximum cross correlation was 
selected as the lag for each analysis window. Windows 
that represented low cross correlation scores (ACF < 0.4) 
were excluded from further analysis. The lag for each 
window was regressed against time and any outlier with a 
Cooks distance of greater than 3 was excluded. To exam-
ine the sensitivity of drift estimate to window size, the 

Fig. 1 Pictures of multiple tags during each experimental set up. During robotic experiments (A) multiple tags were affixed to a rigid metal 
rod and simultaneously moved sinusoidally in heave and pitch to provide known a input movement pattern to all tags using a robotic flapping 
mechanism. Multiple tags were additionally attached along the body onto live animals including a smooth dogfish (B), white sucker (C) and sea 
lamprey (D)
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analysis was rerun using window sizes that varied from 1 
to 40 min (Additional file 1: Figs. S2–S4).

Results
Robotic experiments
Data from each tag were manually shifted to correct 
for initial starting time so that the tags produced simi-
lar and overlapping data during the first flapping time 
period (Fig.  2A). However, 24  h after the experiment 
started, there were noticeable temporal shifts in the flap-
ping patterns in tag data (Fig.  2B), indicating that the 
data streams from the different tags had drifted with 
respect to each other. Tags that were purchased at the 
same time as Tag1 (Tags 1–4) experienced temporal drift 
between + 0.2 and − 0.5 s over a 24-h period (Fig. 3A), an 
average a drift rate of − 0.011 ± 0.015 s·h−1 across all tri-
als. Tags 5–12 had a significantly greater drift rates than 
tags 2–4 (t = − 55.5, p < 0.001) and drifted from Tag1 by 
4.0–5.3  s over a 9-h duration (Fig.  2B), with an average 
drift rate of 0.545 ± 0.014  s·h−1. Once this large differ-
ence in drift rate between tags 1–4 and tags 5–12 was 
accounted for, the variance between tags in each group 
was not significantly different (Tags 1–4: σ = 0.015 s·h−1, 
Tags 5–12: σ = 0.014  s·h−1). In addition, variance within 
a tag was an order of magnitude smaller (σ = 0.001 s  h−1) 
than the variance across tags, representing only 0.5% of 
the total variance in drift estimates. This suggests that 
each tag was highly consistent in drift rate across all flap-
ping trials, even as the average temperature between tri-
als ranged from 21.1 to 27.0 C.

Within an experiment, tags recorded low variation in 
temperature (< 1C) and drift rates were highly linear and 
remained constant over time (r2 > 0.99, Fig. 3). However, 
during trials we observed three noticeable exceptions 
(e.g. Tag 7, Fig.  3B) during which a tag experienced an 
unrecorded error that introduced an instantaneous 1  s 
shift. On one of these occasions, 100 datapoints were 
missing from the dataset. On the other two occasions, 
100 extra datapoints were added into the dataset. As 
these errors were significantly greater than the drift rate, 
we were able to isolate when these shifts occurred and 
estimate the drift rate excluding this large error (Addi-
tional file 1: Fig. S1).

Animal experiments
The sliding window cross correlation during natural 
behavior was able to identify clear trends in temporal 
drift across both the shark (Fig. 4), the lamprey (Fig. 5) 
and the white sucker (Fig.  6) data sets. The shark and 
lamprey were tagged with the same AGM tags that were 
used in the robotic based experiments and allow us to 
directly compare drift estimates. Drift estimates from 
animal borne deployments were in the same direction 
and differed by less than 0.02  s·h−1, close to the drift 
rate we observed when all tags were moved with the 
same motion during the robotic flapping experiments 
in the laboratory. However, due to variation in behavior 
and subsequent temporal shifts in movement among 
the different tags, there was significantly more varia-
tion in animal datasets than in controlled simultaneous 

Fig. 2 Raw angular velocity data from 4 AGM tags that were simultaneously moved over a 24 h period using a robotic flapping mechanism. 
Immediately after the tags were corrected for their initial temporal offset, all 4 tags show identical and overlapping gyroscope data (A). However, 
after 24 h, small differences in the clock frequency among tags led to considerable drift among the loggers (B)
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flapping. Furthermore, distance between the tags sig-
nificantly impacted the mean cross correlation value 
between signals for the shark (ANOVA F1,728 = 35.8, 
p < 0.001) and for the lamprey (ANOVA F1,248 = 466, 
p < 0.001). In both cases the anterior and mid position 
of the body had a higher mean cross correlation than 
between the head and the posterior tag. Drift esti-
mates were moderately sensitive to the window size 
used for the cross correlation; however, a window size 
of approximately 10 min was adequate across all three 
species (Additional file 1: Figs. S2–S4).

Discussion
The attachment of multiple data loggers along the body 
of individual animals permits a detailed analysis of body 
dynamics during field-based locomotion going beyond 
what is possible to observe in the laboratory. In addition, 
data streams from IMU loggers provide an extremely rich 
source of information on animal movement that does 
not require the digitization and analysis of video record-
ings. Here we document the temporal drift in the data 
stream between multiple dataloggers, that if uncorrected, 
would result in erroneous analyses of animal body move-
ment patterns. We document a methodology to measure 

Fig. 3 The absolute amount of drift in seconds among Tags 1–4 over a 25 h period (A), and among tags 7–12 (B) over a 9 h period during one 
trial run. Each point represents an individual flapping trial, with the lines showing a linear model and the slope being the estimated drift rate. Tag 
7 in B experienced a large instantaneous jump in the drift at ~ 3 h as noticed by the light blue points. All drift rate estimates for each tag, with each 
datapoint representing drift estimates from each trial (C). There was a large discrepancy in drift rate between the two sets of tags and thus the y axis 
is broken, but the original axis can be seen in the inset
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temporal drift among independent dataloggers that are 
deployed on animals when it is not possible to externally 
validate their temporal offsets. We also demonstrate that 
different tags log time at different intervals from each 
either, and we show that the drift rate between two tags 
varies little over short periods of time (< 1  month). The 
standard deviation in drift rates between the tags used 

in these experiments was 0.015  s·h−1. While this devia-
tion is small, when the error is extrapolated over a 24-h 
period, 33% of tag pairs will drift by more than 0.5  s 
from each other. While seemingly a minor quantity for 
the reconstruction of broader ecological movement pat-
terns, for analyses of the movement of different parts of 
the body and studies of locomotor biomechanics in the 

Fig. 4 Estimation of the time lag between Tag 2 (A) and Tag 3 (B) compared to Tag 1, when deployed on a captive shark over a 30 h period. Solid 
lines represent the drift rate estimation calculated while deployed on the animal, while the dashed lines represent the estimate from the robotic 
flapping in the laboratory

Fig. 5 Estimation of the time lag between the anterior (Tag 8) and middle (Tag 7) tags while deployed on a lamprey (A). The solid line represents 
the drift rate based on the wild deployment and the dashed line in A represents the estimate from robotic flapping in the laboratory. We are 
also able to estimate the drift between a previously untested Axy-4 tag deployed on the posterior tail of the lamprey and Tag 7 (B)
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field, a 0.5 s shift is substantial. For example, with a fish 
beating its tail at 1 Hz, this offset represents 50% of the 
total duration of the behavior of interest, and > 50% of the 
phase differences between parts of the body. If tags are 
applied to both a fish’s head and tail, the tail tag will grad-
ually drift out of sync with the head, leading to a mis-
alignment of behaviors and erroneous reconstruction of 
the phase relationships between head and tail movement, 
a key variable of interest in studying the biomechanics of 
fish locomotion.

While we found a drift estimate of 0.5 s per day to be 
common, it is not the maximal drift variation measured 
between tags. In our study, two groups of tag drift behav-
iors emerged: a “low-drift” group, with an average drift 
rate of −  0.011 ± 0.015  s·h−1, and a “high-drift” group, 
with an average drift rate of 0.545 ± 0.014  s·h−1. When 
comparing these two groups, the drift is large, with tags 
in group 1 drifting over 10  s from tags in group 2 over 
a 24-h period. This drift is an order of magnitude more 
than the difference in phase shift along a body, with the 
different tags representing entirely different tailbeats at 
the same point in time, solely as a result of drift. Lastly, 
we observed large instantaneous errors that offset data-
sets from each other by one second, again causing data-
sets to shift from each other by an entire tailbeat.

The AGM tags used in this study lack a real time 
clock, and thus the tags temporal accuracy is depend-
ent on a temperature compensated oscillator stabilized 
by external capacitors. After discussions with the tag 
manufacturer, it was suggested variation in the batch of 

capacitors, quality of capacitors, or model of capacitor 
of the oscillator might account for the large discrepancy 
between the “fast” and “slow” groups drift rates. Further-
more, the instantaneous jumps were identified as an issue 
with the tags firmware, which has since been updated. 
These findings highlight the importance of testing and 
measuring clock drift when using multiple data loggers. 
In addition to multiple IMU tags deployed on a focal ani-
mal, biologging data streams are frequently referenced 
against additional datasets, such as additional tags on 
the same animal collecting different data using separate 
internal clocks (e.g. video loggers, swim speed sensors, 
muscle temperature loggers), or loggers simultaneously 
deployed on separate animals. Biologging datasets are 
also often compared to external environmental datasets 
(e.g. weather stations). As each of these datasets are inde-
pendently collected, knowing the extent of drift among 
data streams becomes a key factor in data analysis and 
interpretation.

 In addition to the precision of the components, tag 
recording frequencies are known to vary with  device 
age, manufacturing tolerances, supplied voltage, and 
temperature [13, 23]. Temperature is known to be one 
of the biggest drivers of variation in clock frequency in 
electronics and usually has a nonlinear impact. As our 
study is aimed at deploying multiple tags on one animal, 
all tags are in roughly the same temperature environ-
ment and thus simultaneously experience temperature 
changes. However, as temperature deviates from the 
electronics designed operating temperatures differences 
in frequency between tags are expected to increase. We 
observed linear relationships in drift rate during this 
experiment, but field and lab experiments were also held 
at near constant temperatures. As the variation in tem-
perature increases, such as animals moving through 
thermally stratified environments, variation in drift rates 
might also be expected to increase, potentially introduc-
ing non-linear impacts that are more difficult to correct. 
Future work should investigate and quantify the potential 
for temperature-based influences on tag drift rates.

We also chose to focus on the drift rate of tags with 
respect to each other, and not between tags and the 
“true” time. Compared to a highly accurate clock, 
all our tags could have drifted a substantial amount. 
Thus, the drift values within this paper should not be 
taken to represent the clocks’ absolute error. As many 
data products are indexed to “true”, global standard-
ized times, additional experiments are needed to com-
pare how biologgers drift from these time standards. 
Increasing clock accuracy will likewise decrease the 
drift rates between tags [13]. For tags purpose-built for 
simultaneous measurement, developers could incor-
porate temperature compensating internal crystals 

Fig. 6 Estimation of the time lag between a mid-body tag (Tag 8) 
and an untested Axy-4 tag deployed on the posterior tail of a white 
sucker
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of higher accuracy (< < 10  ppm, ~ 0.86  s·h−1) to limit 
the degree of temporal drift. Throughout our robotic 
experiments, there was little variation in drift estimates 
within a tag. However, the stability of these estimates 
through time is unknown, future work is needed to 
understand the stability of the characteristic drift rate 
between tags over time.

We show that animal borne estimates of drift are com-
parable to controlled simultaneous estimates of drift. 
However, for animals displaying volitional behavior in the 
field, care should be employed before uncritically esti-
mating the drift rates. After release, animals are known 
to exhibit shifts in behavior over time, such as large 
changes in tail beat frequency immediately post release 
[24, 25]. This change in behavior could make it difficult 
to separate the change in timing due to the tag’s tempo-
ral drift and the variation due to the animals’ movement. 
In these cases, alternative algorithms could be employed 
that would focus on similar or high intensity behaviors 
only that would be less susceptible variations due to ani-
mal behavior [13].

Standardizing time between multiple devices is a com-
monly encountered problem in electronics [26]. For cir-
cuits that are hard wired, time can easily be transferred 
in real time, or use an external synchronization signal to 
mark the temporal difference between recording units. 
Systems have been developed to have multiple data log-
gers synchronized using an external wire that sends 
pulses that can be simultaneously received by all log-
gers [15]. Alternatively, the data recording function can 
be centralized and where all sensors send information 
to a single device [12]. However, the size of the central 
recording station can be large and quite power inten-
sive to have the bandwidth needed to record at a high 
frequency simultaneously from multiple dataloggers. 
In these situations, the devices used need to be custom 
designed and still require physical connections between 
the loggers, which can be difficult to manage while an 
animal is performing behaviors involving substantial 
body deformation.  Furthermore, these connections risk 
altering the movement of each tag due to motion of the 
connecting wire. Increasingly, communication between 
tags is becoming wireless. Frameworks have been devel-
oped that allow for multiple independent sensors to 
wirelessly stream to a central data recorder/ processor, 
which could alleviate the problem of the tags being physi-
cally connected [26] or allow tags to periodically syn-
chronize their times during deployments [27]. However, 
radio frequencies are rapidly attenuated in marine and 
aquatic environments, limiting wireless communication 
to acoustic transmission, which lacks the bandwidth to 
transfer data at a sufficiently high rate needed for record-
ing higher-frequency animal body movements.

Once the drift between two tags is known, there are 
multiple computational methods that researchers can 
employ so that the datasets are temporally synchro-
nized. For analytical methods that do not require simul-
taneous measurements, one of the tags timestamp can 
simply be recalculated. However, when simultaneous 
measurements are required for temporal comparison, a 
commonly employed method is that one, or both, of the 
datasets can be resampled with interpolated datapoints 
[28, 29]. However, when data are interpolated, the result-
ing values are ones that were never actually recorded 
by the tag. Depending on the method of interpolation, 
an increase or systematic decrease in the amplitude of 
recorded signals can be observed. Often, it is preferable 
to limit data manipulation to retain as much of the origi-
nal data quality as possible. A simple method that limits 
data manipulation is to periodically delete or duplicate a 
single datapoint in one of the tag data streams so that the 
data are temporally synchronized. This method limits tag 
data manipulation to single localized time points, with 
the rest of the data stream being the true recorded values 
and temporal error between two tags is maximally half 
the recording frequency.

For future studies that employ multiple independ-
ent dataloggers on the same focal individual as shown 
in Fig. 1, we suggest that prior to field deployments, the 
tags be tested under controlled conditions of simultane-
ous movement to calculate drift estimates. In this study 
we employed a robotic flapping machine with repeated 
periodic flapping, although simpler methods would likely 
suffice. Attaching multiple tags to a rigid object, and 
then shaking the object at the beginning and then sev-
eral hours later, would provide two estimates of lag. By 
regressing these two estimates of lag across time a sim-
ple estimate of drift can be calculated. Repeating this 
procedure would provide confidence that the drift esti-
mates are repeatable and provide a baseline estimate of 
drift. However, we recommend that when deployed on 
an animal, researchers should still calculate the lag using 
moving window cross correlation to account for minor 
variation due to time or temperature. Laboratory based 
estimates can act as a prior and give confidence to under-
stand the expected magnitude and direction of drift 
observed in the field among tags.

The use of multiple data loggers on one animal provides 
researchers with a key method to wholistically capture 
the movement of animals and significantly expand the 
ability of natural movement data to inform biomechani-
cal studies. The use of multiple data loggers to capture 
the kinematics of animals is a rapidly advancing field and 
has been used to classify gait in horses [29]. However, 
deploying multiple motion sensing dataloggers has util-
ity beyond biomechanics, as motion sensing data loggers 
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are commonly used to estimate discrete animal behaviors 
and generate ethograms using both supervised and unsu-
pervised classification [30, 31]. However, classifying all 
behaviors from a single point on the body can be difficult, 
especially for behaviors that are similar (e.g. prey cap-
ture attempt vs predator avoidance) [30]. Incorporating 
additional sensors (e.g. gyroscopes and magnetometers) 
into a single datalogger has improved accuracy of behav-
ioral classification [32]. But by placing multiple sensors 
across an animal’s body, researchers will be able to add 
additional features to these datasets further increasing 
the ability to accurately identify discrete behaviors [33]. 
For example, placing a datalogger on an animal’s jaw in 
addition to the body midpoint would aid in the ability to 
separate prey capture attempts from escape behaviors 
not involving rapid jaw movements [34, 35].

Conclusions
We demonstrate the magnitude of temporal drift 
between multiple commercially available tags while 
deployed on free swimming animals. The methodology 
we present here allows researchers to use generic, com-
mercially available tags to monitor multiple locations 
on an animal simultaneously. By employing multiple 
dataloggers, we can begin to understand movements at 
separate locations on the body simultaneously to bet-
ter analyze and discretize specific behaviors. Studies on 
the complex three-dimensional kinematics of animals 
can now progress from the laboratory into the wild by 
capturing volitional behavior with ecologically relevant 
stimuli [36], and move toward analyzing thousands of 
locomotor behaviors (i.e. tailbeats and body kinematics) 
over long time periods to better understand the variabil-
ity and dynamics of animal biomechanics and behavior.

Abbreviation
IMU  Inertial measurement unit

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 024- 00363-4.

Additional file 1: Figure S1. Shows one of the instantaneous jump errors 
that we recorded, while Figures S2-S4. Show the sensitivities to window 
size on drift rate estimates.

Acknowledgements
We would like to thank the United States Geological Survey for providing 
access to the facilities at the S.O. Conte Anadromous Fish Research labora-
tory. Special thanks go out to E. Goerig for helping coordinate and assisting 
in operations, and to Dr. T. Castos-Santos for collecting fish, and assisting in all 
operations at the AbiKis flume at the Conte Lab. We also thank M. Blumstein 
for helpful comments on early versions of the manuscript, and members of 
the Lauder Lab for helpful comments and discussion of these data. Finally, we 
would like to thank two anonymous reviewers who provided valuable insights 
and comments that greatly improved this manuscript.

Author contributions
All authors (CFW & GVL) participated in idea conception and data collection. 
Data analysis was performed by CFW, and both authors wrote, edited and 
approved the final manuscript.

Funding
This work was supported by the National Science Foundation (Grant number 
EFRI-830881), the Office of Naval Research (Grants N00014-18-1-2673 and 
N00014-22-1-2187), and the Robert A. Chapman Fund from the Museum of 
Comparative Zoology. Published by a grant from the Wetmore Colles fund of 
the Museum of Comparative Zoology, Harvard University.

Availability of data and materials
All data and scripts used within the current study are available on request 
from the corresponding author.

Declarations

Ethics approval and consent to participate
All research procedures were reviewed and approved under protocols #20-
03-3 and #20-03-4 by The Harvard University Institutional Animal Care and Use 
Committee (IACUC).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no financial or non-financial competing 
interests.

Received: 31 January 2024   Accepted: 26 March 2024

References
 1. Gray J. Studies in animal locomotion: I. The movement of fish with special 

reference to the eel. J Exp Biol. 1933;10:88–104.
 2. Marey E-J. Le mouvement. Paris: G. Masson, Libraire De L’Academie De 

Medecine; 1894.
 3. Basmajian JV. Electromyography comes of age: the conscious control 

of individual motor units in man may be used to improve his physical 
performance. Science. 1972;176:603–9.

 4. Jayne B, Lauder G. How swimming fish use slow and fast muscle fibers: 
implications for models of vertebrate muscle recruitment. J Comp Physiol 
A. 1994;175:123–31.

 5. Rome LC, Swank D, Corda D. How fish power swimming. Science. 
1993;261:340–3.

 6. Rutz C, Hays GC. New frontiers in biologging science. London: The Royal 
Society London; 2009.

 7. Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V. The 
golden age of bio-logging: how animal-borne sensors are advancing the 
frontiers of ecology. Ecology. 2015;96:1741–53.

 8. Brown DD, Kays R, Wikelski M, Wilson R, Klimley AP. Observing the 
unwatchable through acceleration logging of animal behavior. Anim 
Biotelem. 2013;1:1–16.

 9. Payne NL, Taylor MD, Watanabe YY, Semmens JM. From physiology to 
physics: are we recognizing the flexibility of biologging tools? J Exp Biol. 
2014;217:317–22.

 10. Whitney NM, Lear KO, Gleiss AC, Payne N, White CF. Advances in the 
application of high-resolution biologgers to elasmobranch fishes. In: Car-
rier JC, Heithaus MR, Simpfendorfer CA, editors. Shark research: Emerging 
technologies and applications for the field and laboratory. Boca Raton 
(FL): CRC Press; 2018. p. 45–70.

 11. Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac 
S, Demšar U, English HM, Franconi N, Gómez-Laich A. Optimizing 
the use of biologgers for movement ecology research. J Anim Ecol. 
2020;89:186–206.

https://doi.org/10.1186/s40317-024-00363-4
https://doi.org/10.1186/s40317-024-00363-4


Page 10 of 10White and Lauder  Animal Biotelemetry            (2024) 12:5 

 12. Cutti AG, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A. ‘Outwalk’: a 
protocol for clinical gait analysis based on inertial and magnetic sensors. 
Med Biol Eng Comput. 2010;48:17–25.

 13. Brønd JC, Pedersen NH, Larsen KT, Grøntved A. Temporal alignment of 
dual monitor accelerometry recordings. Sensors. 2021;21:4777.

 14. Stewart T, Narayanan A, Hedayatrad L, Neville J, Mackay L, Duncan S. A 
dual-accelerometer system for classifying physical activity in children and 
adults. Med Sci Sports Exerc. 2018;50:2595–602.

 15. Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN. Measurement of 
human daily physical activity. Obes Res. 2003;11:33–40.

 16. Shipley JR, Kapoor J, Dreelin RA, Winkler DW. An open-source sensor-log-
ger for recording vertical movement in free-living organisms. Methods 
Ecol Evol. 2018;9:465–71.

 17. Quinn DB, Lauder GV, Smits AJ. Scaling the propulsive performance of 
heaving flexible panels. J Fluid Mech. 2014;738:250–67.

 18. Shelton RM, Thornycroft PJ, Lauder GV. Undulatory locomotion of flexible 
foils as biomimetic models for understanding fish propulsion. J Exp Biol. 
2014;217:2110–20.

 19. Thandiackal R, Lauder G. In-line swimming dynamics revealed by fish 
interacting with a robotic mechanism. Elife. 2023;12: e81392.

 20. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, 
Dai B, Scheipl F, Grothendieck G, Green P. 2009. Package ‘lme4’. http:// 
lme4.r- forge.r- proje ct.org.

 21. Castro-Santos T, Sanz-Ronda FJ, Ruiz-Legazpi J. Breaking the speed limit—
comparative sprinting performance of brook trout (Salvelinus fontinalis) 
and brown trout (Salmo trutta). Can J Fish Aquat Sci. 2013;70:280–93.

 22. Duguay JM, Lacey RJ, Castro-Santos T. Influence of baffles on upstream 
passage of brook trout and brown trout in an experimental box culvert. 
Can J Fish Aquat Sci. 2019;76:28–41.

 23. Vig JR. Introduction to quartz frequency standards. Army Research 
Laboratory Electronics and Power Sources Directorate, Tech. Rep. SLC-
ETTR-92-1. 1992.

 24. Whitney NM, White CF, Anderson PA, Hueter RE, Skomal GB. The physi-
ological stress response, postrelease behavior, and mortality of blacktip 
sharks (Carcharhinus limbatus) caught on circle and J-hooks in the Florida 
recreational fishery. Fish Bull. 2017;115(4):532–43. https:// doi. org/ 10. 
7755/ FB. 115.4.9.

 25. Whitney NM, White CF, Gleiss AC, Schwieterman GD, Anderson P, Hueter 
RE, Skomal GB. A novel method for determining post-release mortality, 
behavior, and recovery period using acceleration data loggers. Fish Res. 
2016;183:210–21.

 26. Rhee I-K, Lee J, Kim J, Serpedin E, Wu Y-C. Clock synchronization in wire-
less sensor networks: an overview. Sensors. 2009;9:56–85.

 27. Wild TA, Wikelski M, Tyndel S, Alarcón-Nieto G, Klump BC, Aplin LM, 
Meboldt M, Williams HJ. Internet on animals: Wi-Fi-enabled devices 
provide a solution for big data transmission in biologging. Methods Ecol 
Evol. 2023;14:87–102.

 28. Bosch S, Serra Bragança F, Marin-Perianu M, Marin-Perianu R, Van Der 
Zwaag BJ, Voskamp J, Back W, Van Weeren R, Havinga P. Equimoves: a 
wireless networked inertial measurement system for objective examina-
tion of horse gait. Sensors. 2018;18:850.

 29. Bragança F, Bosch S, Voskamp J, Marin-Perianu M, van der Zwaag B, Ver-
nooij J, van Weeren P, Back W. Validation of distal limb mounted inertial 
measurement unit sensors for stride detection in Warmblood horses at 
walk and trot. Equine Vet J. 2017;49:545–51.

 30. Brewster L, Dale J, Guttridge T, Gruber S, Hansell A, Elliott M, Cowx I, 
Whitney N, Gleiss A. Development and application of a machine learning 
algorithm for classification of elasmobranch behaviour from accelerom-
etry data. Mar Biol. 2018;165:1–19.

 31. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wan-
less S. Can ethograms be automatically generated using body accelera-
tion data from free-ranging birds? PLoS ONE. 2009;4: e5379.

 32. Noda T, Kawabata Y, Arai N, Mitamura H, Watanabe S. Monitoring escape 
and feeding behaviours of cruiser fish by inertial and magnetic sensors. 
PLoS ONE. 2013;8: e79392.

 33. Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G. Hip and wrist accel-
erometer algorithms for free-living behavior classification. Med Sci Sports 
Exerc. 2016;48:933.

 34. Ding L, Lv Y, Jiang R, Zhao W, Li Q, Yang B, Yu L, Ma W, Gao R, Yu Q. Predict-
ing the feed intake of cattle based on jaw movement using a triaxial 
accelerometer. Agriculture. 2022;12:899.

 35. Liebsch N, Wilson RP, Bornemann H, Adelung D, Plötz J. Mouthing off 
about fish capture: jaw movement in pinnipeds reveals the real secrets of 
ingestion. Deep Sea Res Part II. 2007;54:256–69.

 36. Wilson AM, Lowe J, Roskilly K, Hudson PE, Golabek K, McNutt J. Locomo-
tion dynamics of hunting in wild cheetahs. Nature. 2013;498:185–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://lme4.r-forge.r-project
http://lme4.r-forge.r-project
https://doi.org/10.7755/FB.115.4.9
https://doi.org/10.7755/FB.115.4.9

	Studying animal locomotion with multiple data loggers: quantifying time drift between tags
	Abstract 
	Introduction and background
	Methods
	Robotic experiments
	Animal based experiments
	Data processing

	Results
	Robotic experiments
	Animal experiments

	Discussion
	Conclusions
	Acknowledgements
	References


