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Abstract 

Background Automated radio telemetry (ART) systems enable high-temporal resolution data collection for species 
unsuited to satellite-based methods. A challenge of ART systems is estimating the location of radio tagged animals 
from the radio signals received on multiple antennas within an ART array. Localisation methods for ART systems 
with omni-directional receivers have undergone rapid development in recent years, with the inclusion of machine 
learning techniques. However, comparable machine learning methods for ART systems with directional antennas 
are unavailable, despite their potential for improved accuracy and greater versatility. To address this, we introduce 
an open-source machine learning-based location fingerprinting method for directional antenna-based ART systems. 
We compare this method to two alternative localisation approaches. Both alternatives use relative signal strengths 
recorded among multiple antennas to estimate the signal’s angle of arrival at each receiver. In the ‘biangulation’ 
approach, the location is estimated by finding the intersection of these angles from two receivers. In contrast, the ‘lin-
ear regression’ approach uses a linear regression model to estimate the distance from the receiver along the angle 
of arrival, providing a location estimate. We evaluate these methods using an ART data set collected for the southern 
black-throated finch (Poephila cincta cincta), in the Desert Uplands Bioregion of Queensland, Australia.

Results The location fingerprinting method performed slightly better than the best performing alternative, the linear 
regression method, with mean positional errors of 308 m (SE = 17.7) and 335 m (SE = 18.5), respectively. The bian-
gulation method performed substantially worse, with a mean positional error of 550 m (SE = 42.9, median = 540 m). 
Improved accuracy was observed with shorter distances between transmitters and receivers, higher signal strengths, 
and a greater number of detecting receivers, suggesting that increasing receiver density improves localisation accu-
racy, albeit with potential trade-offs in system coverage or cost. Furthermore, shorter pulse intervals of transmitters 
resulted in greater accuracy, highlighting the trade-offs among battery life, transmitter weight and radiative power.

Conclusions The open-source location fingerprinting method offers an improved and versatile localisation approach 
suitable for a wide variety of ART system designs, addressing the challenge of developing study-specific localisation 
methods using alternative approaches.
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Background
The field of movement ecology has seen rapid growth, 
driven by the development of tracking technologies 
that enable the monitoring of animal movements across 
time and space in diverse environments [1]. These tech-
nologies encompass a range of methods including radio 
telemetry, satellite-based systems (e.g., GPS and Argos), 
accelerometry, and wireless sensor networks [2–4]. Each 
method has its inherent limitations, such as tag mass, 
cost, accuracy, frequency of location estimates, and data 
retrieval options, with no one-size-fits-all solution [2, 5, 
6].

Among these technologies, Global Positioning Systems 
(GPS) stand out for their capacity to deliver location esti-
mates with high spatio-temporal resolution [2, 6]. The 
ongoing miniaturisation of GPS transmitters has resulted 
in multiple manufacturers offering minimum tag weights 
between 2.6 g and 5 g. Despite this miniaturisation, GPS 
transmitters remain too large to affix to animals weighing 
less than approximately 100 g, assuming maximum trans-
mitter weight of no more than 5% of an animal’s weight 
[7]. In comparison, radio transmitters, with minimum 
weights of around 0.13  g (e.g. Lotek NanoPin), remain 
an important tool for the telemetry of smaller animals 
weighing less than 100 g [2, 8, 9].

Traditional manual radio telemetry techniques are 
often limited by the time and cost constraints of locat-
ing and resighting tracked animals [10]. Automated radio 
telemetry (ART) systems have emerged as a promising 
development, enabling high-temporal resolution data 
collection remotely from radio tagged animals [9, 11]. 
ART systems can use lightweight and low-cost radio 
transmitters, making them a versatile approach that has 
been used to track over 180 species of birds, bats and 
insects to date [9, 11].

Unlike satellite-based methods, ART systems do not 
directly receive transmitter locations. Instead, trans-
mitter locations are estimated from the relative signal 
strength (RSS) of the transmitter’s signal recorded by one 
or more receivers [9, 10, 12–15]. There is substantial vari-
ation in the design and objectives of ART systems that 
result in no versatile approach to localisation [16].

The design of ART systems can be broadly split into 
omni-directional and directional systems. Omni-direc-
tional systems typically use one isotropic antenna per 
receiver. The antenna receives signals in an approxi-
mately uniform pattern, 360 degrees around the antenna; 
however, little information is provided with regards to 
the angle of arrival (AOA), or bearing, of the signal to the 
receiver [15, 17]. In contrast, directional systems typi-
cally use multiple antennas (3–6) per receiver, with each 
antenna orientated in different directions to allow the 
AOA of the signal to be estimated [9, 11, 14]. In general, 

directional systems often have a longer range than omni-
directional systems but have a higher cost per receiver 
[9].

A variety of methods have been employed to localise 
transmitter position from omni-directional and direc-
tional ART systems. Lateration techniques (Fig. 1A) are 
common for omni-direction systems [17]. Lateration 
estimates the distance of a transmitter from multiple 
receivers using the decline in RSS with distance from 
transmitter. Lateration requires simultaneous detections 
on at least three receivers in order to identify a point at 
which distances to the receivers overlap [16, 17]. Since 
lateration does not require an AOA of the signal, it has 
been widely applied to omni-directional systems [18]. 
However, lateration is generally not applied to ART 
designs with directional receivers as data pertaining to 
the AOA is wasted [16]. ART systems with directional 
receivers therefore employ methods that rely on angula-
tion, which is where the AOA of the transmitter to the 
receiver is calculated using the relative signal strength 
recorded among the multiple directional antennas per 
receiver [16]. Once the AOA has been calculated, loca-
tions are estimated using biangulation or triangulation, 
which is the point at which the AOAs from multiple 

Fig. 1 Localisation methods for automated radio telemetry systems, 
which estimate location by: A finding the intersection of distance 
estimates that are inferred from relative signal strengths (RSSs) 
on omni-directional receivers; B finding the intersection of multiple 
angles of arrival (AOA) produced by directional receivers; C using 
the AOA and distance estimates inferred from the RSSs of directional 
receivers; and D developing a radio fingerprint map of each receivers’ 
capture area (denoted by the colours red, green and blue), using 
ground-truthed RSS data
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receivers intersect (Fig.  1B) [10, 12]. Alternatively, the 
distance between the transmitter and the receiver can 
be inferred from the RSS, typically based on the assump-
tion of a linear decline in RSS with increasing distance 
(Fig. 1C) [14].

Location fingerprinting is a method that has been 
widely employed for indoor positioning systems and 
has recently been developed for ART systems [16]. This 
method uses machine learning based techniques to 
develop a model that relates the RSS of signals received 
to the locations of known reference points [19]. The 
model is then used to estimate the location of new signals 
(Fig.  1D). Tyson et  al. [18] and Wallace et  al. [17] have 
developed location fingerprinting methods for omni-
direction systems and achieved accuracies of approxi-
mately 10–30 m. However, there is no comparative open 
source system available for directional receiver systems, 
nor studies comparing the effectiveness of location fin-
gerprinting to alternative localisation approaches.

Location fingerprinting offers a highly versatile 
approach with potential for improved accuracy com-
pared to alternative methods. The method requires the 
development of study-specific radio fingerprinting mod-
els (Fig. 1D), which account for receiver specific variation 
in topography, vegetation density and radio tower design, 
as well as study-specific variation in species behaviour, 
radio transmitter power, receiver spacing and radio pulse 
interval [18]. All of these factors are difficult to factor into 
alternative approaches [10, 16]. Using study-specific loca-
tion fingerprint models allows the location fingerprint-
ing approach to generally achieve higher accuracies than 
alternative approaches [16, 18, 19]. Furthermore, this 
method offers a low-code approach to localising wildlife 
positions from ART data as site-specific training data 
are used to build location fingerprint models through 
machine learning techniques, rather than through coding 
bespoke solutions, which would be required to customise 
alternative approaches [10, 12, 14].

A key requirement of location fingerprinting is the col-
lection of reference points, or ‘training data’, which are 
known coordinates where the RSS is measured to develop 
the fingerprint model. In their location fingerprinting 
systems for omni-direction systems, Tyson et al. [18] and 
Wallace et al. [17] collected training data over 50 ha and 
0.4 ha study areas, respectively, to create a whole-of-array 
radio fingerprint map. However, directional systems are 
often used to track animals over study areas one to three 
orders of magnitude larger [8, 12, 20, 21], which can make 
the collection of training data for whole-of array radio 
fingerprint maps time and cost prohibitive [16]. An alter-
native approach that has not been explored is to train a 
fingerprint model for each directional receiver and apply 
the same model to multiple receivers where they have the 

same design and are in a similar environment (e.g., con-
sistent topography and vegetation structure). While this 
would come at a cost of accuracy, it would proportionally 
reduce the training data required and enable the location 
fingerprinting method to be applied to large-scale ART 
systems.

In this study, we present an open-source location fin-
gerprinting method to estimate radio transmitter posi-
tions from directional receiver-based ART systems. The 
method provides a versatile approach to location finger-
printing that allows the development of models that pool 
training data among similar receivers and thus allows the 
method to be applied to large-scale ART systems where 
collection of whole-of-array training data is time pro-
hibitive. We demonstrate the application of this method 
across a 2680  ha ART array tracking a threatened Aus-
tralian bird species, the southern black-throated finch 
(Poephila cincta cincta). We compare the performance of 
the location fingerprinting model (Fig. 1D) to two alter-
native localisation methods, namely: (1) finding the inter-
sect between AOAs from pairs of two receivers, hereafter 
‘biangulation’ (Fig. 1B); and (2) using a linear regression 
model to estimate the distance that a transmitter is 
located along the AOA, given the RSS, hereafter ‘linear 
regression’ (Fig. 1C).

Methods
Case study species
The southern black-throated finch (SBTF), Poephila 
cincta cincta, is a small grassfinch (~ 15 g) in the family 
Estrildidae. The species is endemic to north-eastern Aus-
tralia, with a current range that has contracted by over 
80% from its historical extent [22]. The species inhabits 
grassy woodlands and feeds primarily on grass seeds, 
with movement across the landscape influenced by 
water and resource availability [23]. Movement patterns 
of SBTF may be characterised as sedentary with a large 
home range of approximately 319 ha [24]. On a daily 
basis, SBTF move through their home range between 
foraging, drinking and nest locations [24]. The SBTF also 
uses all structural layers of the woodlands in which they 
inhabit, ranging from the ground layer in which they 
feed, up to the canopy and subcanopy layers in which 
they perch and nest [23, 25].

Study area
The study was conducted in a 75,000  ha section of the 
Moray Downs property (Fig. 2), located within the Desert 
Uplands Bioregion of Queensland, Australia, which is 
one of the few remaining strongholds of SBTF [26]. Rem-
nant vegetation occurs over 79% of the study area, which 
is dominated by Eucalyptus melanophloia and Eucalyp-
tus brownii open woodland ecosystems [27]. Sub-canopy 
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and shrub layers are generally sparse and commonly 
include Acacia spp. Bursaria incana and Carissa lan-
ceolata. Other habitats include Acacia woodlands and 

shrublands and cleared grazing pastures, which are typi-
cally not suitable habitat for SBTF [22].

Fig. 2 Map of the study area showing the locations of automated radio towers (n = 27) and radio tracked southern black-throated finch (SBTF) 
(n = 232), which were used for training and testing the localisation methods
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Automated radio telemetry system
Twenty-seven (27) receiver stations were installed within 
remnant woodland within the study area in Novem-
ber 2020. Receiver stations were installed as four arrays 
of four towers, with an additional array of 7 towers sur-
rounded by four individual towers (Fig.  2). Receivers 
within an array were separated by approximately 500 m. 
Site-based testing of the receivers found a typical detec-
tion distance of approximately 300—800  m depending 
on whether the SBTF was foraging on the ground or 
perching (typically 2—10 m above ground height). Thus, 
foraging SBTF could be reliably detected by at least one 
receiver when in an array and substantial overlap in the 
detection ranges among towers was achieved while SBTF 
were perching. The total area covered by the array after 
subtracting areas of overlapping coverage among receiv-
ers was approximately 2680 ha, assuming an 800 m detec-
tion range of each transmitter. The number of receivers 
and antennas that simultaneously detected each signal 
was recorded to model their impact on localisation error.

The receivers remotely and autonomously logged the 
radio signals received from nearby radio tagged birds. 
The design of radio telemetry receivers was similar to 
the Motus Wildlife Tracking System [11]. Each receiver 
comprised four 5-element Yagi-Uda antennas (TDJ-150B 
150 MHz) mounted on a 4 m telescopic aluminium tri-
pod (Fig.  3). The antennas were horizontally polarised 
and oriented to face north, east, south and west. Anten-
nas were spaced ¼ wavelength apart (approximately 
0.5 m at 150.6 MHz) and connected to a Lotek SRX800-
D1 receiver. Antennas were scanned at 15  s intervals, 
resulting in a complete scan of all four antennas every 
minute. Receivers stored the transmitter ID, received 
signal strength (RSS) measured in decibels, antenna 
direction and GPS-synced time stamp of the detection. 
Transmitters were individually coded (Lotek Nanotag 
NTQB2-2) allowing multiple transmitters to be detected 
simultaneously while scanning antennas.

Radio transmitter attachment
We mist-netted SBTF over eight survey periods, each 
approximately 12  days in length, between February 
2021 and May 2023. A total of 47 SBTF were fitted with 
Lotek NTQB2-2 transmitters (0.32 g, < 2.5% of the bird’s 
weight), across six mist-netting locations that were dis-
persed among the spatial extent of the ART system 
(Fig.  2). The number of transmitters attached at each 
mist-netting location ranged from one to 14. Transmit-
ters were attached by trimming a small patch of feathers 
on the bird’s back and attaching the transmitter to the 
skin using cyanoacrylate glue [23, 28, 29]. Transmitter 
function and signal detection were tested using a hand-
held receiver (Lotek SRX1200 M2) prior to release. Two 

radio pulse intervals were used within this study, each 
below the 15  s receiver antenna scan windows used to 
ensure that at least one antenna would detect a tagged 
bird when within range of the receiver tower. Transmit-
ters with a 13 s pulse interval (n = 21) and 97 day battery 
life were initially used based on an estimated transmit-
ter retention time [29]. Following initial field surveys 
and evaluation of tag retention times, we changed to a 
3 s pulse interval and 29 day battery life (n = 26) to better 
reflect the tag retention that was being achieved, which 
was on average 21.8  days (SD = 22.5  days) and improve 
manual radio-tracking efficiency.

Collection of training and testing data
We collected ART receiver data when the transmitters 
were at known locations. These data were used to train 
the localisation models and evaluate the model’s accu-
racy, referred to as ‘training’ and ‘testing’ data.

Training data were collected by manually radio track-
ing tagged SBTF with a 3-element Yagi-Uda antenna 
connected to a Lotek SRX1200-M2 receiver. We used a 
hand-held GPS (Trimble Nomad TDC100) to record the 
location of the bird and the start and end times (GPS-
synchronised) of each sighting where the SBTF was in the 
same location for more than 3 min. We truncated records 
to a maximum of 20  min for balanced data representa-
tion among locations. In total, 232 unique locations were 
recorded across the 47 radio tagged birds, which ranged 

Fig. 3 Automated radio telemetry receiver with four directional 
antennas installed within the study area
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from one to 27 locations per bird. The average duration of 
recording was 8.5 min (SD = 5.0 min; range 3—20 min).

Following data collection, we randomly excised 20% 
(n = 47) of the radio tracked SBTF locations to use as a 
testing data set. These testing data were not used for 
model training, which avoided the leakage of training 
data into the testing set [30]. The remaining 80% (n = 185) 
of the radio tracked SBTF locations were used for the 
purposes of training the location fingerprinting model 
and in the linear regression method (described below).

Location fingerprinting method
Location fingerprinting overview
We developed a data processing pipeline to train a loca-
tion fingerprinting model (Fig.  4A) and then predict 
locations of radio transmitters using the trained model 
(Fig. 4B).

Model training (Fig. 4A) is divided into two steps: (1) 
data pre-processing restructures the raw ART signal data 

into a format suitable for input to a location fingerprint-
ing model; (2) signals are mapped to their known loca-
tions in order to train a location fingerprinting model 
using an open source automated machine learning plat-
form [31].

Inference (Fig. 4B) combines the signal pre-processing 
steps (as per the model training) and applies the loca-
tion fingerprinting model to predict locations of new 
signal data. Transmitter location is estimated separately 
for each receiver on which the signal is received. A loca-
tion averaging function is then applied when transmitters 
are recorded simultaneously across multiple receivers. 
The model training and inference methods are described 
below. All data processing was undertaken using Python 
(version 3.6.9, Python Foundation).

Receiver groups
The data pipeline uses a receiver-centric fingerprinting 
approach, whereby a fingerprinting model is trained for 
each receiver. Fingerprinting models may be grouped 

Fig. 4 Data pipelines for the training of the location fingerprinting model (A) and inference of transmitter location (B)
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among receivers that have similar properties, such as 
antenna design, topography and vegetation structure. 
This receiver-centric approach allows users to train and 
deploy location fingerprinting models for receivers that 
have limited training data available by pooling train-
ing data among receivers [32, 33]. It also provides the 
versatility to allow receiver-specific fingerprinting mod-
els, should sufficient training data be available [33]. The 
amount of training data required will be study-specific; 
however, we provide an assessment of training data 
requirements in the ‘model evaluation’ section of the 
methods.

For this study, we chose to train one location finger-
printing model that was shared among all of the receiv-
ers. We did this as no single receiver had training data 
locations from the breadth of its area of coverage, which 
was approximately 800  m from the receiver (Fig.  2). In 
addition, all receivers within our study used the same 
design and were located in similar vegetation (eucalypt 
open woodland) with flat topography.

Data pre‑processing
Manually radio tracked SBTF locations were time-
matched to ART receiver data to create a labelled data 
set of ART signals received when transmitters were at 
known locations. Example training data used as input 
into the data pipeline are provided in the Supplementary 
Information.

To prepare training data for input to the location fin-
gerprinting model, we calculated the average RSS for 
each transmitter detection at each antenna within a 
specified period (t). We selected a t value of 3 min, as 
the base duration for creating training and testing sam-
ples. This time frame was chosen because it corresponds 
to three complete cycles of the antennas connected to 
each receiver, balancing the accumulation of more sig-
nal data from a SBTF location with the potential of the 
tracked animal moving. While we used a 3-min period in 
this study, the data pipeline accepts any other value of t, 
which may be adjusted based on the frequency and speed 
of animal movements and pulse interval.

For each period of t, the data pipeline creates three 
variables for each antenna of each receiver. These vari-
ables include the mean RSS, a count of the number of 
signals received and the standard deviation of the sig-
nal strength. Thus, for our ART system, which had four 
antennas per receiver, the data pre-processing produced 
12 predictor variables in total. These 12 predictor vari-
ables were then used to train the location fingerprinting 
model to predict the transmitter’s easting and northing 
position, which were the response variables.

To construct the response variables, we normalised 
the transmitter locations to an X–Y grid, where the ori-
gin (0,0) was the location of each receiver and X–Y axes 
represented the east–west (x) and north–south (y) dis-
tance from the receiver. To do this, we converted GPS 
locations from their geographic coordinate system (rep-
resented by latitudes and longitudes) to a projected coor-
dinate system (represented by eastings and northings) 
using the utm package (version 0.7.0) in Python. We 
then subtracted the easting and northing coordinate of 
the receiver from each GPS recorded location to obtain 
the X and Y distances of the transmitter relative to the 
receiver. This step was undertaken for each receiver 
within the ART array independently, allowing one trans-
mitter location to be simultaneously associated with mul-
tiple receivers that received the signal within the period 
t. Example data obtained after the post-processing steps 
are provided in the Supplementary Information.

Machine learning model
Predictor and response variables were input into the 
H2O AutoML algorithm (version 3.40.0.4), which is an 
open source platform to automate the training and opti-
misation of a wide variety of supervised machine learning 
models [31]. H2O AutoML was chosen due to its open 
source design, the general high performance of the plat-
form in automated machine learning tests [34] and its 
ability to integrate into our broader automated data pro-
cessing pipeline.

Separate models were trained to independently predict 
the x-axis (east–west) and y-axis (north–south) distances 
of the transmitter from each receiver, resulting in two 
models per receiver group.

Location averaging
Location estimates produced for each receiver were an 
X–Y offset from the centre of the receiver. These loca-
tions estimates were converted to an easting-northing 
Universal Transverse Mercator grid reference by offset-
ting the known location of each receiver by the estimated 
X–Y offset determined by the H2O AutoML model.

Where two or more receivers produced a location 
estimate for the same transmitter within the same time-
period (t), we calculated the geographic midpoint by 
averaging the easting and northing estimates.

Comparative methods
We compared the results of our location fingerprinting 
method against two commonly used approaches to local-
ise transmitters from directional ART data (Fig. 1), which 
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are described below. In addition, the code for these meth-
ods is accessible in the Supplementary Information.

Biangulation
For each period of t and for each receiver, we identified 
the pair of orthogonal antennas with the highest com-
bined RSS. Given that our receivers each had four anten-
nas orientated towards the cardinal directions, this step 
effectively determined the quadrant where the transmit-
ter was expected to be located relative to the receiver. We 
then calculated the AOA using the equation:

where �g was the difference in RSS between the two 
antennas ( sl − sr ) normalised by the maximum signal 
strength difference �m , using the equation [10, 35]:

The transmitter’s location was calculated by biangu-
lating two lines generated from this approach from each 
pair of receivers that detected the signal [10, 35]. This 
method therefore requires at least two receivers to esti-
mate a position. If more than two receivers detected the 
signal in period t, each pair of receivers was biangulated 
separately and the geographic midpoint of the resulting 
location estimates was calculated. We excluded any loca-
tion estimates falling outside of the study area, as these 
would be beyond the ART receivers’ potential detection 
range.

Linear regression
The linear regression method followed two steps. Firstly, 
the AOA was calculated following the biangulation 
method as above. Secondly, the distance between the 
transmitter and receiver was estimated using a linear 
regression model that estimated the decline in RSS rela-
tive to the increasing distance between the transmitter 
and receiver. We then calculated the transmitter position 
by using the distance from the receiver placed along the 
line of the AOA, with the known receiver position serv-
ing as the reference point.

To develop the linear regression model, we calculated 
the Euclidean distance of each recorded location in the 
training data set to the respective receivers. We then fit-
ted a linear regression using the sklearn package version 
1.4.1 [36] to model the relationship between the RSS and 
the distance to the receiver [14]. Where transmitters 
were recorded on multiple antennas in the same period 
of t, we used a linear regression model that averaged the 
RSS–distance relationship among all antennas [14]. If the 
transmitter was recorded on only one antenna, we used a 

AOA =

90

π
× arccos(�g)

�g =

(sl − sr)

�m

linear regression that had been fitted only to training data 
for that antenna and estimated distance from the receiver 
using the average signal strength for that antenna in 
period t along the cardinal bearing of the antenna. Where 
two or more receivers detected the signal in period t, the 
geographic average of the resulting location estimates 
was calculated.

Model evaluation
We evaluated the performance of the three localisation 
methods using a test data set that comprised 47 radio 
tracked SBTF locations. The error of location predic-
tions for each method was calculated as the Euclidian 
distance between the predicted and the actual locations, 
herein referred to as ‘positional error’. Four additional 
variables were calculated for each SBTF location, which 
were factors that we identified a priori as having potential 
to affect the positional error of localisations. These were 
the: (1) mean distance of the transmitter to the receivers 
on which the signal was detected; (2) number of receiv-
ers that detected the signal; (3) pulse interval of the radio 
transmitter; and (4) mean RSS of the detections.

We examined the effects of localisation method, mean 
distance to the receiver, number of receivers, mean RSS 
and pulse interval using a generalised linear mixed effects 
model with the glmmTMB package version 1.1.7 [37]. A 
gamma distribution with a log link function was selected 
to fit the response variable, positional error, which was 
in the form of continuous data with a positively skewed 
distribution. Continuous fixed factors were standardised 
using the sjPlot package version 2.8.15 [38]. A unique 
identifier of test data set location was included as a ran-
dom effect, to account for test data set locations that 
spanned longer than the period of t (3 min) having multi-
ple location estimates. All model fits and the distribution 
of residuals were tested using the DHARMa package ver-
sion 0.4.6 [39] (Supplementary Information).

We developed five candidate generalised linear 
mixed effects models and used an information theo-
retic approach to select the best performing model [40, 
41]. We used Akaike Information Criterion corrected 
for small sample size  (AICc) to select the best perform-
ing model. The six candidate models were developed 
based on an a priori understanding of potential factors 
and interaction effects likely to impact positional error 
(Table 1). All candidate models used the unique identifier 
of the test data set location as a random effect.

We estimated the impact of sample size on positional 
error for each of the two methods that required site-
specific training data (location fingerprinting and linear 
regression). To do this, we iteratively performed each 
method using randomly chosen subsets of the training 
data, varying the subset size from 5 to the total number 
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of samples (n = 185) and increasing the number of train-
ing data samples by 5 in each iteration. The positional 
error of these models was then calculated using the com-
plete testing data set. This process was repeated 10 times 
to account for bias in positional errors introduced by 
chance, which was particularly relevant to small sample 
sizes. All data analyses were undertaken using R statisti-
cal language version 4.3.0 [42].

Results
Positional error
The average positional errors were: 308  m for the loca-
tion fingerprinting method (SE = 17.7, median = 230  m, 
Fig. 5), 335 m for the linear regression method (SE = 18.5, 
median = 280 m, Fig. 5), and 550 m for the biangulation 
method (SE = 42.9, median = 540  m). Both the location 
fingerprinting and linear regression methods were able 
to estimate locations for all of the 47 test locations, while 
the biangulation method was only able to estimate a loca-
tion for 19 of the 47 test locations (40%). Of the 28 test 
locations that could not be estimated using the biangula-
tion method, 23 locations (82%) failed as the transmitter 

was recorded on only a single receiver for each period of 
t, while 5 locations (18%) failed due to non-intersecting 
AOA estimates.

Positional error was best predicted by the model that 
included all main effects and the first order interactions 
between localisation method and the other fixed effects 
(Table 1). The next best performing model had an  AICc 
that was 24.1 higher than the best model and as such we 
solely used the best performing model for interpretations 
[40].

Compared to the location fingerprinting method, 
the linear regression method achieved a similar posi-
tional error (β = 1.08, 95% CI 0.97—1.21, Table 2, Fig. 5), 
while the positional error of the biangulation method 
was substantially greater (β = 2.44, 95% CI 1.82—3.28). 
Model accuracy was affected by all fixed factors assessed 
(Table 2, Fig. 6). Signals detected on more receivers and 
signals with a higher average RSS both decreased posi-
tional error (β = 0.89, 95% CI 0.80—0.99; β = 0.72, 95% CI 
0.65—0.80, respectively). In contrast, tags with a longer 
pulse interval and tags located further from receivers had 
a higher positional error (β = 1.45, 95% CI 1.01—2.06; 
β = 1.16, 95% CI 1.02—1.32, respectively).

While positional error increased with both increasing 
distance to the receivers and decreasing signal strength, 
the effect was less for the location fingerprinting method 
than the other methods. The result of this effect was 
that location fingerprinting achieved a lower positional 
error than both alternative methods where transmitters 
were far from the receivers (Fig. 7). This is demonstrated 
by small but significant interaction effects between the 
mean distance to the receiver and the linear regression 
method (β = 1.28, 95% CI 1.13—1.44) as well as between 
the mean signal strength and both the linear regression 
and biangulation methods (β = 1.11, 95% CI 1.00—1.24; 
β = 1.59, 95% CI 1.12—2.272, respectively Table 2).

Sample size requirements
The relationship between positional error and training 
data size showed an approximately exponential decay dis-
tribution, with an initial rapid decrease in positional error 
with additional training samples, plateauing as more 

Table 1 Candidate models evaluating the effects of localisation method, mean distance to the receiver, number of receivers, pulse 
interval and mean relative signal strength (RSS) on the positional error of location estimates

Model K AICc ∆AICc wi

Localisation method * (Receiver count + Pulse interval + Mean distance to receiver + Mean RSS) 17 5190.4 0.0 1

Localisation method + Receiver count + Pulse interval + Mean distance to receiver + Mean RSS 9 5214.5 24.1 0

Receiver count + Pulse interval + Mean distance to receiver + Mean RSS 7 5256.3 65.9 0

Localisation method 5 5267.6 77.2 0

Intercept only model 3 5303.0 112.6 0

Fig. 5 Comparison of the mean positional errors of each localisation 
method. Bars show 95% confidence intervals
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samples were included. The linear regression method 
required relatively few training data samples to plateau in 
performance, achieving a plateau after approximately 25 
training locations. In contrast, the location fingerprinting 
method required over 100 training locations for a plateau 
to be reached (Fig. 8).

Discussion
We compared the performance of three localisation 
methods for ART systems with directional receivers. 
We found that the location fingerprinting and linear 
regression methods demonstrated comparable accuracy 
for estimating transmitter locations, with mean errors 
of 308  m and 335  m, respectively. Previous studies that 
have used similar methods to localise ART data have 
substantially differed in their ART design, which makes 
direct comparisons of accuracy among studies challeng-
ing. Nonetheless, previous studies have included: Har-
bicht et al. [43], who achieved sub-meter accuracy using a 
location fingerprinting method that used six receivers to 
track Atlantic salmon (Salmo salar) along a 295 m linear 
waterway; Fisher et al. [14], employed a linear regression 
method and achieved a median error of 72  m tracking 
monarch butterflies (Danaus plexippus) in the centre of 
an array of four receivers located 250 m apart, with lim-
ited vegetation or topographic variation; and Scardama-
glia et al. [44] who used a location fingerprinting method 
with relatively few receivers over a 500 ha study area to 
achieve a mean positional error of 488 m.

The biangulation method was the worst performing 
method in this study, with an average positional error 
nearly double that of the best performing methods. 
Angulation methods, which include biangulation, are the 
most widely applied localisation method [8, 10, 12, 35, 
45]. Accuracies achieved in previous studies have been 
wide ranging and include a median error of 250  m for 
aerial insectivorous birds [45] down to 21 m in an envi-
ronmentally uniform and short-range trial [10], albeit 
noting the aforementioned challenge of directly com-
paring accuracy estimates among studies. Regardless of 
the accuracy of the biangulation method, the method 
is limited by its inability to estimate locations from sig-
nals detected on only a single receiver or where the esti-
mated AOAs do not intersect [10]. In our study, which 
had receivers that were sparsely distributed compared 
to previous studies, biangulation could localise only 40% 
of the test data locations. While using triangulation or 
multiangulation (more than three receivers) may improve 
accuracy [10], it is likely to come at a cost of fewer locali-
sations. For many studies, including our SBTF study, 
reducing the number of location estimates is a key disad-
vantage of the biangulation method.

The wide range of positional errors achieved in our 
study and previous studies [13, 21, 46, 47] highlights 
the practical trade-offs that must be considered when 
designing an ART system and subsequent localisation 
methodology. We found that across all methods that we 
employed, positional error was affected by four fixed 

Table 2 Relationships between positional error and fixed factors for the top performing model identified in Table 1

Methods were compared using a generalised linear mixed effects model with a log-link gamma distribution. Model estimates (β and 95% confidence intervals [CIs]) 
have been scaled

Predictor Estimate (β) 95% CI p

(Intercept) 256.19 223.87–293.17 < 0.001

Biangulation 2.44 1.82–3.28 < 0.001

Linear regression 1.08 0.97–1.21 0.162

Receiver count 0.89 0.80–0.99 0.04

Pulse interval (13 s) 1.45 1.01–2.06 0.041

Mean distance to receiver (km) 1.16 1.02–1.32 0.02

Mean received signal strength 0.72 0.65–0.80  < 0.001

Biangulation x Receiver count 0.94 0.75–1.18 0.596

Linear regression x Receiver count 1.09 0.97–1.23 0.143

Biangulation x Pulse interval (13 s) 0.58 0.36–0.93 0.023

Linear regression x Pulse interval (13 s) 0.83 0.62–1.10 0.195

Biangulation x Mean distance to receiver (km) 1.07 0.84–1.35 0.598

Linear regression x Mean distance to receiver (km) 1.28 1.13–1.44  < 0.001

Biangulation x Mean received signal strength 1.59 1.12–2.27 0.01

Linear regression x Mean received signal strength 1.11 1.00–1.24 0.05

Observations 406

R2 marginal/R2 conditional 0.408/0.614
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factors, all of which may be considered within ART sys-
tem design. Accuracy was increased when the mean 
distance to the receiver was lower, signal strengths were 
higher and the number of receivers that simultaneously 
detected the signal was higher. Increasing receiver density 
and having transmitters located inside of an array area, 
instead of on the periphery, are likely to improve locali-
sation accuracy through changes to these three factors. 
However, it comes at the cost of either reduced coverage 
or greater cost to install more receivers [35]. Accuracy 
was also greater for tags with a shorter pulse interval, 
demonstrating a common trade-off in radio telemetry, 

which is that among the battery size, battery life, trans-
mitter weight and radiative power of the transmitter [46, 
47]. Positional error is also impacted by animal mobility 
and behaviour, with species that move quickly, irregularly 
and among a range of habitats (e.g. height above ground 
level) producing a more inconsistent signal and result in 
greater localisation error [14, 21, 48].

The trade-off between spatial coverage, accuracy and 
cost is an important consideration for researchers imple-
menting ART systems. Griffin et al. [9] estimated that a 
network of 85 ART receivers would cost approximately 
USD $500,000 and Birds Canada [49] suggests a cost per 

Fig. 6 Effect of four covariates on the positional error of localisations. The relationships depicted include the: A mean distance to the receiver; 
B mean relative signal strength (RSS) of the detections; C pulse interval of the transmitter; and D number of receivers on which the signal 
was recorded. All figures show the mean estimate with 95% confidence intervals. A random jitter has been applied to the points of (D) to aid data 
visualisation
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receiver ranging from USD $2200 to $7300. Our experi-
ence indicates a similar cost of approximately USD $3500 
to $5000 per receiver. The benefits of ART systems must 
also be weighed against alternative radio telemetry meth-
ods, such as manual radio tracking [7] and drone-based 
methods [50–52]. Although there is no one-size-fits all 
solution, ART systems are likely to be most beneficial 
for studies requiring a high temporal resolution of data 
capture, as they allow for continuous radio signal detec-
tion. Due to their fixed nature, ART systems will also be 
most applicable to species that remain within the array’s 
coverage area or where regular movements through the 
array are of research importance, such as studying migra-
tion patterns [11, 21]. In contrast, manual radio tracking 
and drone-based systems are advantaged by their flex-
ibility of spatial coverage [7, 51]. Finally, localising animal 
positions using ART systems has inherent inaccuracies. 
While small-scale controlled trials have reported accura-
cies less than 100 m [10, 14, 18], most applied field stud-
ies, including our own, have reported accuracies in the 
range of 100–500 m [13, 20, 44, 45]. Although positional 
accuracy can be improved by increasing tower density, 
it is unlikely to achieve the sub-20 m accuracy available 
through manual radio-tracking with a hand-held GPS [2]. 
Therefore, ART systems may not be suitable for studies 
requiring highly accurate position estimates for radio-
tagged wildlife.

In our study, both top performing methods required 
the collection of training data. While collecting site-
specific training data is labour-intensive, the results of 
our study and the indoor localisation literature [16] sug-
gest that the most accurate localisation methods require 

Fig. 7 Interaction effects between localisation method and the: A 
pulse interval; B mean distance to the receiver; and C mean relative 
signal strength (RSS) of the detections. All figures show the mean 
estimate with 95% confidence intervals

Fig. 8 Positional error of localisation estimates compared 
to the number of samples used to train the model. Bars show 
the standard deviation around the mean positional error. The y-axis 
scale is the same for both plots and does not start at zero
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these site specific training data. However, in our study, 
the location fingerprinting and linear regression methods 
substantially differed in their training data requirements. 
The linear regression method required approximately 25 
training data locations to achieve maximum performance 
for our data set. In contrast, the location fingerprinting 
method required over 100 training locations before the 
accuracy plateaued. The linear regression method uses 
site specific training data to train a simple linear regres-
sion model that relates the distance between the trans-
mitter and receiver to the RSS. In contrast, the location 
fingerprinting method maps locations directly to the 
signal strengths from multiple antenna on each receiver 
[16]. As such, location fingerprinting requires training 
data from a broad area around the receiver, indicative of 
the spatial coverage of the receiver. For ART applications 
with limited training data, we therefore recommend the 
use of the linear regression approach; however, where 
sufficient training data can be collected then either the 
location fingerprinting or linear regression methods may 
achieve similar performance.

While we collected training data by manually radio 
tracking SBTF within the range of an ART array, this 
method is not feasible for all studies. Manual radio-
tracking may be constrained by inaccessible terrain, lim-
ited resources and time, or species behaviour (e.g., highly 
vagile species) [50]. An alternative to manual radio-
tracking is to use an artificial simulation of the tracked 
animal to collect training data. Methods include holding 
the antenna in the air with a low-conductivity medium 
such as PVC tubing [14, 18], attaching the transmitter to 
a drone [53], or using an artificial surrogate of the spe-
cies, such as a glove filled with saline water [13, 47]. To 
train either a location fingerprinting or linear regression 
model, the simulation method should replicate the target 
species’ signal properties as closely as possible to maxim-
ise the model’s accuracy when applied to ART data from 
the target species [30]. In a small-scale experiment on the 
effective radiative power from different radio transmit-
ter attachment methods, Naef-Daenzer et al. [47] found 
that the transmitter attachment technique and radiative 
coupling between the transmitter and the animal’s body 
resulted in an almost three-fold difference in effective 
radiative power. Furthermore, Ward et al. [13] found that 
postural changes in radio tagged ratsnakes (Pantherophis 
spp.) resulted in significant variation in received signal 
strength. The design of an artificial surrogate of the spe-
cies must therefore be considerate of the species behav-
iour, transmitter orientation and attachment, body mass 
and movement patterns [13, 14].

The location fingerprinting method, though more 
data-intensive, offers greater versatility across different 
ART designs with directional receivers. It accommodates 

receivers with any number of antennas at any combina-
tion of orientation, two elements of ART design that 
would currently require custom code development to 
implement a linear regression method. An alternative 
location fingerprinting approach, which was employed by 
Tyson et al. [18] for omni-directional receivers and Har-
bicht et al. [43] for an aquatic environment, is to create a 
whole-of-array radio fingerprinting map, rather than the 
receiver-centric approach used in this study. The indoor 
positioning literature suggests that these whole-of-array 
approaches would provide the highest level of accuracy 
[16]; however, collecting training data for such whole-
of-array models would be challenging, potentially pro-
hibitive, in many large scale ART arrays. Nonetheless, 
should such training data be available, a whole-of-array 
location fingerprinting method would likely outperform 
the receiver-centric method we have applied [16]. Fur-
ther research could improve our location fingerprinting 
method by incorporating time information associated 
with the RSS data and testing alternative approaches for 
location averaging to increase the weighting of receiv-
ers closer to the SBTF that record a higher RSS [54]. In 
addition, future extensions may integrate activity clas-
sification into the location fingerprinting method. Gott-
wald et al. [48] and Schofield et al. [55] demonstrated that 
machine learning methods can classify activity states of 
microchiropteran bats and songbirds by extracting fea-
tures such as variation in received signal strength from 
ART data. Leveraging these techniques could improve 
insights into animal behaviour that are gained from ART 
systems.

The difficulties of comparing localisation performance 
among methods and studies underscores the importance 
of like-for-like methodological comparisons. While liter-
ature that compare localisation methods for omni-direc-
tional antennas have progressed in recent years [15, 18], 
our study is the first methodological comparison for ART 
systems with directional receivers. There remain meth-
odological variations not included in this study, and likely 
future developments that will benefit from having their 
performance benchmarked to alternative methods. To 
this end, we have made our training and testing data sets 
and methods open access.

Conclusions
In this study, we introduced a novel machine learn-
ing based localisation method for ART systems that use 
directional receivers and compared it to two alternative 
approaches. We found that the location fingerprinting 
method provided a highly versatile approach to localisa-
tion for these systems that achieved comparable accu-
racy to the best performing alternative approach that we 
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tested. The location fingerprinting method can be applied 
to a wide variety of ART system designs; however, it 
requires the collection of site-specific training data, an 
important consideration in designing ART systems using 
this approach. In addition, our findings provide insights 
into the practical trade-offs in ART system design, espe-
cially among localisation accuracy, receiver density and 
cost.
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