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Abstract

Background: An important issue in conducting kernel home-range analyses is the choice of bandwidth or
smoothing parameter. To examine the effects of this choice, telemetry data were collected at high sampling rates
(843 to 5,069 locations) on 20 North American elk, Cervus elaphus, in northeastern Oregon, USA, during 2000, 2002,
and 2003. The elk had their collars replaced annually, hence none were monitored for more than a single year. True
home ranges were defined by buffering the actual paths of individuals. Fixed-kernel and adaptive-kernel estimates
were then determined with reference bandwidths (h,., least-squares cross-validation bandwidths (hy,), and
rule-based ad hoc bandwidths designed to prevent under-smoothing (hag noo). Both raw data and sub-sampled
sparse datasets (1, 2, 4, 6, 12, and 24 locations/elk/day) were used.

Results: With fixed-kernel and adaptive-kernel analyses, reference bandwidths were positively biased (including
areas not part of an animal’s home range) but performed better (lower bias, closer match between estimated and
true home ranges) with increasing sample size. Least-squares cross-validation bandwidths were positively biased
with very small sample sizes, but quickly became negatively biased with increasing sample size, as home-range
estimates broke up into disjoint polygons. Ad hoc bandwidths outperformed reference and least-squares cross-
validation bandwidths, exhibited only moderate positive bias, were relatively unaffected by sample size, and were
characterized by lower Type | errors (falsely including areas not part of the true home range). Ad hoc bandwidths
also exhibited lower Type Il errors (failure to include portions of the true home range) than did least-squares cross-
validation bandwidths, although reference bandwidths resulted in lowest Type Il error rates. Auto-correlation indices
increased to about 150 to 200 locations per elk, and then stabilized. Bias of fixed-kernel analyses with ad hoc
bandwidths was not affected by auto-correlation, but did increase with irregularly shaped home ranges with high
fractal dimensions.

Conclusions: The rule-based ad hoc bandwidths, specifically designed to prevent fragmentation of estimated
home ranges, outperformed both h,r and hy.,, and gave the smallest value for h consistent with a contiguous
home-range estimate. The protocol for choosing the ad hoc bandwidth was shown to be consistent and
repeatable.
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Background

A basic principal in animal ecology is that species, popu-
lations, and individuals have finite limits in use of space.
Species and populations are delineated by geographical
ranges, and individuals are described as having a home
range. Burt’s definition of home range is widely used:
‘...that area traversed by the individual in its normal ac-
tivities of food gathering, mating and caring for young’
[1]. Although plotting animal locations is straightfor-
ward, and is subject primarily to measurement errors,
estimating the size of the home range is often dependent
on a number of assumptions, which are often either not
tested or if they are tested, are often determined to be
false [2].

Kernel techniques for estimating the density of a
utilization distribution (UD) of a random sample of loca-
tions for an individual animal were first proposed by
Worton [3]. Kernel analyses are commonly used in stat-
istical density estimation and have the advantage of be-
ing non-parametric [4]. They are used not only with
single variables, but in bivariate space as well, with the
distributions of the x and y coordinates representing ani-
mal locations [3].

Although Worton [3] used the terms ‘utilization dis-
tribution” and ‘home range’ synonymously, a distinction
can be made between the two concepts. Early attempts
to quantify the home range of an animal involved draw-
ing polygons around the outermost set of locations. Such
techniques result in a contiguous polygon delineating
the ‘area traversed by the individual’ [1], including cru-
cial travel corridors in which an animal spends limited
amounts of time, but these fail to portray the intensity
of space use within the polygon [5]. Conversely, kernel
techniques provide a UD, that is, a three-dimensional
probability density map showing which portions of the
total home range home are used most frequently [5]. Al-
ternatively, the estimate of the UD can be sliced to re-
veal a two-dimensional (2D) surface (for example, by
taking a 95% volume contour), which is the equivalent
of a traditional definition of a home range. Such 2D
slices may not be contiguous but rather disjoint, being
composed of multiple polygons that more accurately in-
dicate intensity of space use [6]. To capture little-used
but important areas such as travel corridors, the 2D slice
may be constrained to a single, contiguous polygon [5].

The starting point in kernel analyses is to construct a
bivariate kernel estimate of a probability density function
around each data point (animal location). A standard
normal distribution is often used, although kernels can
take on other shapes such as triangular, rectangular, or
parabolic [4]. The functional shape and width of the
kernel is determined by the smoothing parameter or
bandwidth, denoted by /4. Once probability density func-
tions are in place, a grid structure is placed over the
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entire field, and volumes under the functions are summed
over individual locations.

The choice of a smoothing parameter is a key decision
in home-range analyses involving UDs, and the initial
value is often obtained from the data themselves, al-
though there is no a priori way to choose the best value
for h. Silverman [4] and Worton [3] suggested a method
of constructing an optimum / for large sample sizes if
the data were assumed to be normally distributed. Re-
ferred to as /,,; (and occasionally, an ad hoc choice of /)
by Worton [3], it is optimal only if the assumption of bi-
variate normality is met, and will be denoted here as the
reference bandwidth /,.s If animal locations are clumped
rather than normally distributed, /,.r will over-smooth the
data, and the estimate of home-range size will be posi-
tively biased [3].

A different approach is to choose a bandwidth that
minimizes the least-squares cross-validation score, /.,
[3,7]. In most instances, /i, is less than /,.5 and is often
only a small proportion of the latter. Although mathem-
atically appropriate [3], /., frequently results in under-
smoothing, and gives an estimate of the home range that
consists of multiple polygons. In extreme instances, such
an estimate will generate polygons around each small
cluster of points, or even individual points.

A further smoothing issue is whether to use the same
h for all points (global bandwidth), resulting in a fixed-
kernel analysis, or to allow 4 to vary as a function
of local point densities (local bandwidths), yielding an
adaptive-kernel analysis. The local-bandwidth approach
allows for larger kernels (greater smoothing) associated
with locations, often at the edge of the animal’s distribu-
tion, where location-point densities are lower. This ap-
proach assigns more uncertainty to sparsely distributed
locations near the edge of the home range [3].

An assumption of both kernel analyses and parametric
approaches is that data points are independent. How-
ever, animal locations are collected sequentially, and the
extent to which the assumption of independence is vio-
lated is a function of sampling rate [8]. Sampling rates
are rapidly increasing with newer telemetry technologies,
such as those based on global positioning systems [9].
Little information is currently available on how auto-
correlation interacts with estimation choices in kernel
analyses to bias resulting estimates. Moreover, the ability
to assess bias and hence performance of different kernel
techniques is ultimately dependent on defining the true
home range of an animal, an issue that has not received
much attention.

The objectives of this study were to define the true
home ranges for 20 female North American elk, Cervus
elaphus, from northeastern Oregon, USA (Figure 1),
based on periodic location data collected at high sam-
pling frequencies, yielding the actual paths of individuals
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Figure 1 Location of Starkey Experimental Forest and Range, Northeastern Oregon, USA, showing the main study area. Three smaller
areas to the northeast and east are areas separate from the main study area (7,762 hectares) in which this study was conducted.

by connecting the locations test the efficiency of kernel
analyses using both global and local bandwidths based
on /. and /g, and to suggest and test a new approach
to choosing a smoothing parameter or bandwidth when
conducting kernel home-range analyses.

Results

Estimates of bias in kernel analyses were affected by the
individual animal (Fi9700 = 6.93, P<0.0001), sampling
frequency (Fs714 = 28.95, P<0.0001), and technique for
choosing a bandwidth (F,7;7; = 969.64, P<0.0001), but
not by choice of fixed versus adaptive kernel (F;;g =
0.44, P>0.10). Kernel analyses with a bandwidth that
minimized the least-squares cross-validation score (/)
exhibited positive bias with a sampling frequency of one
location per day, then a severely increasing negative bias
with increasing sampling frequency (Figure 2, Figure 3).
This negative bias was a result of the estimated home
range breaking up into multiple polygons as sample size
increased (Figure 3). The effect of using a global band-
width (fixed kernel) versus a local bandwidth (adaptive
kernel) with /., was significant only at 6 (P = 0.0014)
and 12 (P = 0.0021) locations per day. The proportion

Hisev/hyep decreased with increasing sampling frequency
(X £SD =077 £ 0.31, 042 + 0.18, 0.21 + 0.08, 0.14 +
0.04, 0.11 + 0.006, 0.10 + 0.0003 at 1, 2, 4, 6, 12, and 24
locations per elk per day, respectively, and 0.10 + 0.0001
(raw data)).

Kernel analyses with the reference bandwidth (/)
exhibited a consistent positive bias as a function of sam-
pling frequency, although the bias declined somewhat
with larger sample sizes (Figure 3). Bias using /. was
generally not affected by choice of fixed versus adaptive
kernel, with a significant difference (P = 0.0347) seen
only when using raw data (Figure 3). In a manner similar
to Myep Maa noc resulted in a slight positive bias in the esti-
mation of the size of home range, although the bias was
more stable with respect to sampling frequency. Bias
using /1,4 50, was not affected as a function of fixed ver-
sus adaptive kernel (all a priori combinations P>0.10)
(Figure 3).

Type I error (including area in the estimate that was
not part of the animal’s home range) varied as a function
of the individual animal (Fy9700 = 123.81, P<0.0001),
sampling frequency (F5;14 = 260.37, P<0.0001), and
method of choosing a bandwidth (Fp7;7; = 1,143.39,
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Figure 2 Locations for elk 03.053 overlaid on true home range as defined in text. Also shown are home-range estimates using two kernel
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Figure 3 Mean percentage bias for fixed and adaptive-kernel techniques. Mean percentage bias was calculated as ((estimated home range
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Kie Animal Biotelemetry 2013, 1:13
http://www.animalbiotelemetry.com/content/1/1/13

P<0.0001), but less so on the choice of fixed or adaptive-
kernel approaches (F;715 = 81.86, P<0.0001) (Figure 4).
All techniques exhibited large Type I errors when a sam-
pling frequency of 1 location per day was used, whereas
the use of /i, quickly resulted in a decrease in Type I
errors with larger sample sizes, and effectively eliminated
them at frequencies of four or more locations per day.
This pattern was a result of the break-up of the estimate
of home range into multiple polygons (Figure 2). Type I
errors also decreased with sampling frequency when
using /1,5 but remained relatively constant when using
Naa noe (Figure 4).

Specific a priori comparisons indicated that the choice
of fixed versus adaptive kernel had a significant effect on
Type I errors when using /., at a sampling frequency
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of 1 location per day (P<0.0001), /,.rat 1, 2, 4, 6, and 12
locations per day (P < 0.0001) and at 24 locations per day
(P = 0.0006), and the raw data (P = 0.0226) (Figure 4). No
significant differences (P > 0.10) between fixed and adap-
tive kernels occurred at any sampling frequency when
using /1,4 poc (Figure 4).

Type 1II errors (failing to capture area in the estimate
that was part of the animal’s home range) were affected
by the individual animal (Fjg 99 = 24.48, P<0.0001), sam-
pling frequency (Fs5714 = 92.57, P<0.0001), and method
of choosing a bandwidth (F,7;7 = 2,050.50, P<0.0001),
but less by the choice of fixed or adaptive kernels
(F1718 = 6.95, P = 0.0086) (Figure 4). When using /.,
significant differences existed between fixed and adap-
tive kernels at two (P = 0.0335), four (P = 0.0121), and
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Figure 5 Relationships between measured parameters.
Relationships between (a) auto-correlation index [8] and number of
locations, (b) between percentage bias and auto-correlation index,
and (c) between percentage bias and fractal index of true home
range for 20 elk sampled at 7 sampling frequencies (n = 140),
derived from 95% fixed-kernel analyses using hag hoc Choice of
smoothing parameter. Data points for each individual elk were not
independent, hence, the trend line shown is based on LOESS
(locally estimated scatterplot smoothing).

six (P = 0.0415) locations per day (Figure 4). All other a
priori comparisons of fixed versus adaptive kernels
within a sampling period or bandwidth selection tech-
nique were not significant (all P>0.10) (Figure 4). Type
II errors increased sharply with /., as the estimates of
home range polygons became fragmented, but use of ei-
ther /1, and /.4 joc resulted in Type II errors that
remained relatively stable at less than 200 hectares as a
function of sample size (Figure 4).

The elk locations used in this study were not inde-
pendent, but exhibited serial auto-correlation. The auto-
correlation index of Swihart and Slade [8] increased with
sampling frequency, reaching an asymptote of 2 to 3 at
between 100 to 200 locations, corresponding to sam-
pling frequencies of 4 to 6 locations per day (Figure 5a).
Fixed-kernel analyses using /,; 5, as bandwidth indi-
cated that bias did not differ as a function of auto-
correlation index (Figure 5b), and hence, sampling
frequency. Bias did increase with increasing fractal di-
mension of the true home range (Figure 5c). As home
ranges became more irregular in shape, the bias in
home-range estimates increased.

Discussion and conclusions
Kernel analyses are widely used in estimating home ran-
ges and UDs of animals, but they have some disadvan-
tages. Choice of initial bandwidth largely determines the
resulting estimates of home-range size (Figures 2, 3). A
reference bandwidth (/,.) assumes bivariate normality,
although samples of animal locations are frequently not
normally distributed. Animals often use space in a
clumped or multimodal manner, and /,.; in assuming
a unimodal normal distribution, assigns high variance
to the data when they are actually distributed more
tightly around two or more modes. The result is
over-smoothing of data, and an inflated estimate of
home-range size. Conversely, a bandwidth that minimizes
the least-squares cross-validation score (/) often under-
smoothes location data, and the resulting home-range
estimate breaks up into disjointed polygons [5,6], resulting
in negative bias in the estimate of home-range size
(Figure 3) and large Type I errors (Figure 4).

Why should an estimate of the home range for an ani-
mal be contiguous? One reason is philosophical; such a
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distribution matches Burt’s definition of home range as
‘that area traversed by the individual in its normal activ-
ities of food gathering, mating, and caring for young [1].
Disjoint or separate core areas, such as those defined by
a 60% kernel analysis, do not violate this definition, al-
though an estimate of the entire home range that con-
sists of multiple polygons does. For many purposes, such
as estimating the intensity of spatial use of habitats [10],
disjoint polygons are appropriate. Consequently, the
terms ‘utilization distribution” and ‘home range’ are not
synonymous, with only the former being a legitimate de-
scription of disjoint spatial distributions. However, the
biggest disadvantage to disjoint home-range polygons
resulting from the use of /., is that the degree of frag-
mentation is highly dependent on sample size (Figure 2),
which is an undesirable property when analyzing animal
location data sampled at high frequencies with new and
emerging telemetry technologies [9,11].

Given the disadvantages of kernel techniques, what
available analytical options are essential to minimize bias
and error? One issue is that as sampling frequency
increases, so does serial auto-correlation. White and
Garrott [2] argued that auto-correlation itself was not as
much of an issue as was insuring that the sampling was
evenly spread over the time period of interest. De Solla
et al. [12] also recommended maximizing the number of
observations using constant time intervals, arguing that
such a protocol increases the biological relevance of
home-range estimation. In the current study, bias was
not influenced by degree of auto-correlation when using
Naa noe choice of bandwidth (Figure 5b). Type I and II er-
rors associated with /1,4 ,,. also appeared to be inde-
pendent of sampling frequency (Figure 3). Given an
appropriate choice of bandwidth such as /,; .. auto-
correlation is not a concern. However, use of /i, is
fraught with pitfalls associated with sampling frequency,
auto-correlation, bias, and Type I and II errors. The
issue is not whether an assumption of independent data
has been violated, but rather how robust is a specific
choice of bandwidth to such violations. This study indi-
cates that kernel analyses using /,; .. can be robust
under these conditions, and supports previous recom-
mendations [2,12].

Likewise, the shape of the kernel itself may not be a
crucial issue. Wand and Jones [13] noted that that effi-
ciency of various kernel shapes varied by less than 10%.
Most computer programs currently use a standard nor-
mal distribution for the kernel probability density func-
tion [14]. However, other shapes are possible, including
uniform or triangular kernels [4,13]. Some older pro-
grams use a parabola-shaped Epanechnikov kernel to
avoid having to evaluate the volume under the extended
tails of a bivariate normal distribution [15]. It should be
noted that computationally, it is not possible to conduct
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a strict 100% volume analysis with a standard-normal
kernel; the tails of the kernel must be truncated at some
point by requesting a volume of less than 100%. In some
computer programs, this modification may be done
automatically, for example at 99.9%, in a manner not
transparent to the user. Although not tested in this
study, it has been suggested that choice of kernel shape
is not of major concern [13].

The advantages and disadvantages of using global ver-
sus local bandwidths in kernel home-range analyses has
been the subject of debate, as has the choice of & [7].
Worton [3] favored a local bandwidth (adaptive kernel)
using /., but also suggested that a global bandwidth
(fixed kernel) using /. also produced valid estimates.
Worton [16] later argued that although the choice of &
was very important, the choice of global versus local ap-
plication of that bandwidth was less so. Seaman and
Powell [17] and Seaman et al. [18] reported that global
use of /iy, resulted in little bias in home-range esti-
mates, but that local-bandwidth approaches overestima-
ted areas of distribution, and thus should not be used.
The results from the current study are consistent with
Worton [16]; the choice between global versus local
bandwidths is inconsequential in terms of bias (Figure 3),
Type 1, and Type II errors (Figure 4). Conversely, in this
study the use of /i, resulted in rapidly increasing nega-
tive bias and Type I errors in home-range estimates with
increasing sample size (Figures 2, 4). Similar concerns
have been raised by Hemson et al. [19].

Different computer programs have limits on how small
hisey can be as a function of /4, Home Range Extension
(HRE) places a minimum value of /., at 0.1025 /. [14],
a floor unlikely to have a pronounced effect on the cal-
culation of /., in this study. However, another com-
monly used program (Animal Movement Extension,
http://alaska.usgs.gov/science/biology/spatial/gistools/
index.php/, accessed 29 January 2013) will not allow a
value for /i, of less than 0.9662 4,5 in effect implemen-
ting an incorrect definition of /., (= 0.9662 h,) in many
analyses (A. Rodgers, personal communication).

The current study indicates that implementation of
Naa noer specifically designed to prevent fragmentation of
estimated home ranges, in either a global or local con-
text, outperformed both 4,,rand /. Use of an arbitrary
value for & such that / is less than or equal to 4, to im-
prove model fit while preventing fragmentation of
home-range estimates has been reported for domestic
cattle, Bos taurus (h = 0.8 h,.) [20], mule deer, Odo-
coileus hemionus (h = 0.8 h,y) [21], and white-tailed
deer, Odocoileus virginianus (h = 0.7 h,.) [22]. The pro-
tocols used in this current study were similar, but rather
than select an arbitrary value for the bandwidth, the
smallest value for / that was consistent with a contigu-
ous home-range estimate was chosen. These protocols
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are consistent and repeatable, and have been used in
other studies [23,24].

With emerging telemetry techniques, large numbers of
data on animal location can be collected at high sam-
pling frequencies [9]. The technique of plotting the
buffered path of an individual [25,26], similar to that
performed in this study to define true home ranges, may
provide a useful estimate of the total area used by an
animal. However, further research into perceptual ranges
of different species [27,28] will be required refine the
distance by which animal paths should be buffered. Con-
versely, for the foreseeable future, kernel approaches will
remain useful for the analysis of spatial use by animals,
not only for use with sparse datasets, but most import-
antly for determining intensity of use within a home
range.

Methods

Study area

This study was conducted at the US Forest Service’s
Starkey Experimental Forest and Range (hereafter re-
ferred to as ‘Starkey’), located 35 km southwest of La
Grande (45°13'N, 118°31’W) in the Blue Mountains of
northeastern Oregon, USA (Figure 1). The forest is situ-
ated between 1,122 and 1,500 meters in elevation, and
supports a mosaic of coniferous forests, grasslands, and
riparian areas that typify the summer range for elk in
the Blue Mountains [29]. A network of narrow, irregular
drainage channels in the project area creates a complex
and varied topography [30,31].

Starkey consists of 10,125 hectares enclosed by a
2.4-m high fence that prevents immigration or emigra-
tion of resident elk and other large herbivores [29].
The largest division within Starkey is a main study area
if 7,762 hectares, from which data for this research were
obtained (Figure 1). Details of the study area and facil-
ities are available elsewhere [29,32-34].

Determining animal locations

As part of ongoing research at Starkey on North American
elk, mule, and domestic cattle, an automated radio tele-
metry system was developed based on rebroadcast long
range navigation (LORAN)-C signals in the late 1980s to
collect location data on these ungulates [29]. For the
current study, data were collected each November during
2000, 2002, and 2003. Periods of data collection coincided
with the ability, dictated by the needs of other studies, to
reduce the total number of animals being monitored, and
thereby increase the sampling frequencies of study ani-
mals (Table 1). To avoid lack of independence in data
resulting from individuals traveling together in herds, an
association-matrix approach was used [35]. Each year, a
random sub-sample of four locations per day was drawn
for each radio-collared elk. A temporal threshold of 1 day
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and a spatial threshold of 183 m were used. Deposition of
fecal pellet groups by elk and mule deer in open grass-
lands in a forest-grassland mosaic declined at more than
183 m away from forested edges [36]. Hence, 183 m was
judged a reasonable approximation for the perception
threshold of the North American elk [27]. Data from one
animal in each pair that was located within 183 m of each
other 50% or more of the time on any given day were
eliminated, thereby arriving at a final sample size of 20 fe-
male elk for the 3 years of this study (Table 1). No indivi-
dual was monitored for more than 1 year.

Ethic approval

Protocols were approved by the Institutional Animal Use
and Care Committee at Starkey Experimental Forest and
Range [37].

The female elk in this study were (mean + SD) 6.9 +
2.85 years of age (range 3 to 14 years). Mean elapsed
times between observations were 36.90 + 5.22 minutes
(n = 3 elk) in 2000, 8.67 + 0.92 minutes (n = 9) in 2002,
and 8.95 + 0.87 minutes (n = 8) in 2003. Numbers of lo-
cations per individual ranged from 843 to 1,089 in 2000,
and from 3,615 to 5,069 in 2002 to 2003 (Table 1).

Finally, to test the performance of different techniques
for estimating home-range size using sparse datasets,
data were sub-sampled by choosing at random 1, 2, 4, 6,
12, and 24 locations per elk per day. Techniques for
home-range estimation were then applied to each dataset
of reduced sampling frequency in addition to raw data.
Moreover, bivariate serial auto-correlation and cross-
correlation between 2 points, but among 3 or more points
in the raw and sparse datasets were estimated with a
measure described by Swihart and Slade [8].

To test the accuracy of location data obtained from in-
dividual elk, each year a radio collar was placed at a
known location and its position monitored regularly,
along with the study animals. Based on approximately
3,000 locations determined each year for the fixed col-
lars, the estimated error (mean + SD) was 35.3 + 35.9 m,
comparing favorably with a previous estimate of 52.8 +
5.87 m (mean + SE) [38].

Analyses of home ranges

The true home range of an animal was defined by as-
suming first that the actual path followed by an individ-
ual was a straight line between each pair of successive
locations. Elapsed times between locations were rela-
tively short, particularly in 2002 and 2003, hence this is
likely to be an accurate portrayal. Again, using a percep-
tion threshold of 183 m, the path of each elk was buf-
fered by that amount, and then any lacuna within the
resulting polygon were removed [25] to arrive at the true
home range. In addition, the fractal dimension of each
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Table 1 Location data collected for Rocky Mountain elk at Starkey Experimental Forest and Range, Oregon, USA

Animal ID Locations, n

Elapsed time, minutes®

True home range

X SD Size, hectares Fractal dimension
31 October to 24 November 2000 (25 days)
00.068 843 42.85 61.10 1,983 1.149
00.134 1,038 34.79 38.50 1,061 1.091
00.486 1,089 33.07 3263 965 1.084
2 November to 3 December 2002 (32 days)
02.073 5,069 7.84 9.25 1,861 1.097
02.077 4,911 8.10 1023 1616 1.123
02.151 4,998 797 10.09 904 1.098
02.240 4,655 855 25.72 1,880 1.075
02.252 3615 1097 30.73 1,087 1.077
02.256 4,601 8.62 25.05 741 1.097
02.267 4,626 8.60 25.04 1,692 1.095
02.275 4,564 8.72 1213 1,722 1.071
02.330 4,952 8.67 12.21 1,327 1.114
4 to 30 November 2003 (27 days)
03.053 4,119 9.72 12.82 1,348 1.077
03.132 4,155 9.64 48.50 1,893 1.073
03.135 4913 8.19 861 3,083 1.076
03.200 4,321 9.27 11.79 1,741 111
03.216 4,677 8.60 14.96 1,828 1113
03.274 5,003 8.04 8.88 1,330 1.067
03.307 5,054 795 8.65 1,369 1.057
03.344 3,942 10.19 13.05 1,874 1.079

“Time between successive observations.

home range was estimated to give a measure of the ir-
regularity of its shape.

HRE [14] for ArcView (ESRI, Redlands, CA, USA) was
used to estimate elk home ranges. The 95% volumetric
kernel analyses [3] were calculated using a variety of
techniques, including both a global bandwidth (fixed
kernel) and local bandwidth (adaptive kernel), all with a
default resolution (70 x 70 cell grid) option in HRE [14].
Three different methods were used in choosing an initial
bandwidth. The first was to use the reference bandwidth,
hyes the second was to use the bandwidth that mini-
mized the cross-validation score, /,; and the third was
based on an ad hoc approach.

Silverman stated that ‘a natural method for choosing a
smoothing parameter is to plot out several curves and
choose the estimate that is most in accordance with
one’s prior ideas about the density’ [4]. In the current
study, the goal was to delineate a single, contiguous
polygon representing a complete home range as de-
scribed by Burt [1]. Therefore, the reference bandwidth
(h,r) was sequentially reduced in 0.10 increments (0.9 7,5
0.8 N1y 0.7 hyeps ...0.1 hyp). This rule-based /1,4 0 Was the

smallest increment of /1, that: 1) resulted in a contiguous
rather than disjoint 95% kernel home-range polygon, and
2) contained no lacuna within the home range. When se-
quentially reducing 4, lacuna occasionally appeared that
subsequently disappeared at successively smaller values of
. However, Once an estimate of the home range frac-
tured into two or more polygons, the process of searching
for h,4 10c was halted. In most instances, 4., < Hag hoc <
Hyep although K, poe < Miser < hyer was considered. Con-
versely, we did not allow /.4 j, to be greater than 7,
when the estimate of the home range was fragmented at
h,e5 but accepted the fragmented estimate instead. Note
that the definition of /,; . used in the current study
should not be confused with the discussion of /4, as an
ad hoc choice by Worton [3]. This ad hoc choice of a
bandwidth has previously been used to delineate home
ranges in coyotes, Canis latrans [23], and in pronghorns,
Antilocapra americana [24].

Finally, the various estimates of elk home ranges were
compared with what were previously defined as true
home ranges. Differences in size between the estimates
and the true home range (% bias) and Type I (area
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included as part of the estimate, which was not part of
the true home range) and Type II errors (area within the
true home range, which was not included within the es-
timate), were examined. For kernel analyses, statistical
tests were conducted with a general linear model in
SAS software (SAS Institute, Cary, NC, USA) [39] with
main factors including individual animal (# = 20), initial
bandwidth (n =2: global, local), bandwidth selection
technique (7 = 3: hye5 Misery Mag noc)y and sampling fre-
quency (n = 6: 1, 2, 4, 6, 12, and 24 locations per day
plus raw data), along with interactions between the main
factors. Total sample size was thus 720 records (20 x
2 x 3 x 6). Bias was transformed with a square-root arc
sin function to ensure additivity of treatment effects
[40], and specific a priori comparisons were made with
least-squares means [39]. The relationship between per-
centage bias of the various home-range estimates as
functions of degree of auto-correlation between among
of individual elk and the fractal dimension of the true
home range was examined.
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