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Abstract

Background: The popularity of tri-axial accelerometer data loggers to quantify animal activity through the analysis of
signature traces is increasing. However, there is no consensus on how to process the large data sets that these devices
generate when recording at the necessary high sample rates. In addition, there have been few attempts to validate
accelerometer traces with specific behaviours in non-domesticated terrestrial mammals.

We fitted a collar with a tri-axial accelerometer to a tame captive Eurasian badger (Meles meles). The animal was
allowed to move freely in an outside enclosure and artificial sett whilst movements were recorded using a video
camera. Data were analysed using custom-written software in terms of magnitude of movement, posture and
periodicity using spectral analysis, a principal component analysis, the k-nearest neighbour algorithm and a decision
tree to facilitate the automated classification of behaviours.

Findings: We have demonstrated that various discrete behaviours (walking, trotting, snuffling and resting) can be
differentiated using tri-axial accelerometer data. Classification accuracy ranged between 77.4% and 100% depending
on the behaviour and classification method employed.

Conclusions: These results are an important step in defining how accelerometer data code for the behaviour of
free-ranging mammals. The classification methods outlined here have the potential to be used in the construction of
a behavioural database and to generate behaviour-time budgets of hitherto unparalleled detail for wild animals. This
would be invaluable for studies of nocturnal, subterranean or difficult-to-observe species that are particularly sensitive

to human intrusion.
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Findings

Background and aims

Accelerometer data loggers are being used increasingly
to study animal behaviour and derive indirect proxies of
energy expenditure in the wild [1-6]. A key challenge is
deciding how to assign specific behaviours to large sets
of acceleration data recorded at high frequencies (typ-
ically 10 to 50 Hz). To date, no common solution to
this problem has been agreed thus multiple processing
approaches have been adopted, ranging from black box
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machine learning techniques [7,8], to more visual, and
often manually applied, hierarchical key-based methods
[9]. Classification usually requires a ground-truthing stage
during which the animal is monitored (although unsuper-
vised attempts have also been made [10]).

Here we combined a number of previously tested meth-
ods with novel analytical techniques to develop an exten-
sible classifier with high potential utility across species.
We used: (a) the k-nearest neighbour (k-NN) algorithm
and (b) a sliding window combined with an intuitively
constructed decision tree to facilitate the automated clas-
sification of behaviours. The sliding window and deci-
sion tree approach also allowed for the simultaneous
visualisation of behaviours from continuous streams of
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accelerometer data. The Eurasian badger (Meles meles)
was selected as a study species as it is widely dispersed
across much of Europe and Asia [11], attracts much atten-
tion as a reservoir of disease (particularly tuberculosis
(TB) [12]) and serves as a model quadruped for mam-
malian studies in general [13].

Materials and methods

Accelerometer and collar

A tri-axial (orthogonal) accelerometer (X8M-3; Gulf
Coast Data Concepts, LLC, Waveland, MS, USA; record-
ing range: 8 g; resolution: 0.001 g) was encased in epoxy
resin (Evo-Stik, Bostik Limited, Stafford, UK) and con-
figured to record at a sample rate of 25 Hz. The device
was attached to an adjustable nylon clip-on dog collar
(Ancol Pet Products Limited, Walsall, UK; circumference:
20 to 30 cm) with a layer of waterproof self-amalgamating
tape (ultratape™; Bruce Douglas Marketing, Dundee, UK),
which was additionally fastened with three cable ties and
then covered with tesa’ tape (No. 4651; tesa AG, Ham-
burg, Germany). To ensure that the collar remained in
position on the ventral side of the neck, it was fitted with
an additional weight consisting of four metal nuts. The
total mass in air of the fitted collar was 146 g. The y-axis
of the accelerometer was positioned to correspond with
‘surge’” motion (front-back acceleration), the x-axis with
‘sway’ (left-right acceleration) and the z-axis with ‘heave’
(up-down acceleration) (Figure 1).

Subject and enclosure

The study took place in January 2013 at a wildlife rehabili-
tation centre (Secret World Wildlife Rescue) in Somerset,
UK (latitude: 51.205803, longitude: —2.963007), under
licence from Natural England. The subject was an adult
male badger (body mass: 12 kg). As the animal was tame,
the collar was attached without the need for anaesthesia

Figure 1 Tri-axial accelerometer axes in relation to the study
animal. The three orthogonal accelerometer axes in relation to the
body of the animal. The badger is shown wearing a collar with
accelerometer attached and positioned ventrally on the neck.
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and it could be observed from close range (<2 m). The
badger was then allowed to roam freely within a fenced
20 x 20 m? outdoor enclosure consisting of flat grassland.
Observations were also made within an indoor artificial
sett through an observation window.

Behaviours

In total, four discrete behaviours were studied, three of
which were recorded in the outdoor enclosure: ‘walk-
ing’ (head up and travelling forwards), ‘trotting’ (fast
leg movements with rump swaying from side to side)
and ‘snuffling’, the primary mode of foraging (i.e. stand-
ing, head lowered with nose to the ground). A third
locomotory gait that has been documented in badgers,
‘galloping’ [14], was not observed. A continuous
sequence of movements was recorded on a video camera
(Samsung Galaxy Tab 10.1; Samsung Electronics Co,
Ltd, Suwon, South Korea) for a total of 35 min. At no
point did the collar rotate. Therefore, specific behaviours
were recorded consistently in the three axes. The final
behaviour, ‘resting’ (lying down), was recorded whilst the
animal was in the artificial sett over a two-day period,
during which a total of 10 min were filmed. Video footage
was time-stamped to ensure synchronisation with the
accelerometer.

Analysis

The collar was removed from the animal and the
accelerometer data downloaded. All analyses were per-
formed using R version 3.0.2 [15]. To ground truth data,
results were annotated manually with behavioural labels
by examining video footage frame-by-frame (30 FPS). In
total, 25 2-s samples (which was sufficient time to cap-
ture repetitive cycles of movement) of each of the four
behaviours were selected at random using a custom R
function and the corresponding accelerometer data were
isolated (Additional file 1a and b). From each segment, we
extracted features that have proved useful in the determi-
nation of behaviours in other species [16,17], as described
below.

Static and dynamic acceleration

Acceleration can be described using a number of com-
ponents [18]. ’Static’ acceleration is defined as the accel-
eration due to the Earth’s gravitational field and provides
information on posture. '‘Dynamic’ acceleration results
from movement of the accelerometer and is superimposed
on the static acceleration to give the raw data. Static accel-
eration was approximated by taking a 2-s running mean
of the raw acceleration data (Additional file 2a). The
dynamic acceleration was derived by subtracting the static
acceleration from the raw acceleration (Additional file 2b).
As an indicator of posture, the mean static acceleration
was calculated for each axis. The mean absolute dynamic
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acceleration was calculated to gauge the magnitude of
acceleration resulting from movement in each axis.

Spectral analysis

Spectral analysis was used to determine the periodic-
ity of the various behaviours. The dynamic acceleration
data for each of the three axes were transformed from
the time to the frequency domain by computing the dis-
crete Fourier transform. This enabled the acceleration
data to be categorised in terms of the frequency (Hz)
and amplitude of the signal components. Raw acceler-
ation data were first centred around zero to remove
the constant component (i.e. static acceleration). A Han-
ning window (50 points long) was applied to reduce
spectral leakage. The fast Fourier transform algorithm
was then used to compute the frequency spectra from
which the maximum amplitude (normalised by a fac-
tor of 1/N where N is the number of points), standard
deviation of the amplitude and absolute period of move-
ment (peak frequency, precision: 0.5 Hz) were calculated
(Additional file 1c).

Behaviour classification

To establish whether the four target behaviours could
be distinguished we used the supervised non-parametric
k-NN machine learning algorithm, in which an object
is classified based on a majority vote of its k-nearest
(in Euclidean distance) neighbours. Principal component
analysis was used to reduce the dimensionality of the
100 isolated behavioural sequences. Principal compo-
nents with eigenvalues greater than 1.0 were retained
adhering to the Kaiser criterion [19]. The retained princi-
pal component scores were used in lieu of the 15 original
variables as the training data set of the k-NN classifier
(k = 3) with leave-one-out cross-validation. Subsequently,
a decision tree (Figure 2) was constructed (e.g. [9,17])
based on the descriptive statistics derived for each of the
behaviours (Additional file 3). These rules were imple-
mented in custom-written software designed to scan and
identify animal behaviours from streams of accelerome-
ter data. Features were extracted within a 2-s overlap-
ping sliding window (e.g. [20]) and threshold values were
refined through iterative testing on the randomly selected
sequences (Figure 3). This software was used to pro-
cess the 45-min continuous sequence of data from both
the outdoor enclosure and within the artificial sett (see
Additional file 4 for video output).

Results

Descriptive statistics and decision tree

Low absolute dynamic acceleration was indicative of rest-
ing behaviour (surge: x = 0.011 g, s = 0.002; sway: x =
0.011 g, s = 0.001; heave: x = 0.011 g, s = 0.001). Trotting
had a distinctively high degree of periodicity (maximum
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Figure 2 Binary decision tree used to classify behaviour of the
Eurasian badger. The logic of this decision tree was implemented in
custom software designed to automate the classification of animal
behaviours from accelerometer data within a sliding window. g,
gravitational acceleration; max., maximum.

amplitude: x = 0.966 g, s = 0.235) and high abso-
lute dynamic acceleration in the heave axis (x = 0.792 g,
s = 0.153). Relatively high static surge acceleration (x =
0.539 g, s = 0.141) was the most distinguishing feature
of snuffling behaviour. Walking exhibited low to inter-
mediate periodicity (maximum amplitude: x = 0.378 g,

= 0.186) and intermediate levels of absolute dynamic
acceleration in the heave axis (x = 0.336 g, s = 0.112).
See Additional files 1, 2 and 3 for more details. The root
node of the decision tree (Figure 2) first evaluated the
magnitude of absolute dynamic acceleration in the three
axes. If these values were less than or equal to the thresh-
old (0.03 g), the behaviour was classified as resting. The
next internal node examined the static surge acceleration
to consider the position of the badger’s head in relation to
the ground. If the static surge threshold (0.345 g) was met
or exceeded, the behaviour was classified as snuffling. If
the value was less than the snuffling threshold, a subse-
quent internal node examined the degree of periodicity in
the heave axis, terminating as either trotting (if the max-
imum amplitude was greater than or equal to 0.664 g) or
walking (less than 0.664 g).

Classification accuracy

The first three components from the principal component
analysis rendered eigenvalues that were greater than 1.0
and these were retained. These components accounted
for 80.2% of the total variance. Overall the accuracy of
the k-NN algorithm was 92% (Cohen’s kappa = 0.89, aver-
age proportion of votes = 0.93). Resting behaviour was the
most readily identifiable with an accuracy of 100% (aver-
age proportion of votes = 1.0), followed by trotting (96%,
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Figure 3 Eurasian badger (Meles meles) accelerometer traces with sliding-window feature extraction and behavioural classification. For
each axis, the blue section represents a 2-s (50 points long) sliding windown (in steps of 0.04 s, 98% overlap), from which features were extracted.
The simultaneous decision tree classification for a given set of features is displayed below (see Additional file 4 for video output). The 100 randomly
selected behavioural sequences (Additional file 3) were flagged in the continuous stream of accelerometer data as a training data set. Threshold
values were then refined through iterative testing on these sequences to obtain the best overall fit. Finally, the selected tree was used to classify the

remainder of the data set. g, gravitational acceleration; max., maximum.

average proportion of votes = 0.91), snuffling (88%, aver-
age proportion of votes = 0.95), and lastly, walking (84%,
average proportion of votes = 0.87) (Table 1). A total
of 21 min from the continuous sequence were manually
annotated as belonging to one of the four behaviours of
interest (excluding training data). For this time, the over-
all decision tree percentage match was 87.1% and 83.2%
when weighted equally between the behaviours. As with
the k-NN results, resting had the highest classification
accuracy (99.4%), followed by trotting (78.7%), snuf-
fling (77.5%) and walking (77.4%) (Table 2).

Discussion

The ability to identify behaviours retrospectively from
animal-borne data loggers is an important goal in field
ecology [21,22]. Our use of the k-NN algorithm and an
automated decision tree applied to accelerometer data

show how this can be achieved with a model mammalian
quadruped, the Eurasian badger. Using features that relate
clearly to animal movement and posture, both methods
demonstrated variable (depending on behaviour), but
high, classification accuracy. The k-NN results indicate
that the behaviours could be distinguished from iso-
lated sequences of accelerometer data and, as such, lend

Table 1 Confusion matrix for k-nearest neighbour
algorithm with leave-one-out cross-validation output

Walking (%) Trotting (%) Snuffling (%) Resting (%)

Walking 21 (84) 2(8) 2(8) 0(0)
Trotting 1(4) 24 (96) 0(0) 0(0)
Snuffling 3(12) 0(0) 22(88) 0(0)
Resting 0(0) 0(0) 0(0) 25 (100)

Correct identifications are indicated in bold.
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Table 2 Confusion matrix of decision tree output with time
engaged in each behaviour

Walking (s)  Trotting (s)  Snuffling(s)  Resting (s)
(%) (%) (%) (%)
Walking 3214 (774) 36 (8.7) 57.8(13.9) 0(0)
Trotting 40.3(18.6) 170.1 (78.7) 582.7) 0(0)
Snuffling 20.3(22.3) 0.2(0.2) 70.4 (77.5) 0(0)
Resting 32(06) 0(0) 0(0) 5448 (99.4)

Correct identifications are indicated in bold.

themselves to the creation of a database of behavioural
information to help classify future traces. Using a slid-
ing window and decision tree classification approach, we
showed that behaviours could also be accurately iden-
tified under more natural conditions from continuous
streams of accelerometer data containing multiple transi-
tions between behaviours.

In terms of the misclassification rate, variable walk-
ing speed and hence periodicity may explain some of
the observed confusion between walking and trotting.
While moving forwards, the animal occasionally lowered
its head making the distinction between walking and snuf-
fling less clear. Optimisation of window length and the
extraction of additional features could further improve
classification accuracy [23]. It is also worth noting the
extensibility of the feature extraction methods detailed
here as they may be used in conjunction with a variety of
other classification algorithms (such as those explored by
Nathan et al. [8]).

In future studies, these methods will enable the auto-
mated generation of detailed behaviour-time budgets
from large quantities of accelerometer data collected on
wild animals. Whilst the figures presented here may serve
as an initial benchmark for badgers, further work should
focus on the characterisation of a wider repertoire of
behaviours occurring over a range of terrain, as both
substrate and gradient can affect the mechanical work
requirements of terrestrial locomotion, which may be
reflected in body acceleration [24,25]. Cross-validation
between animals of the same species could also be per-
formed to confirm the implication that accelerometer data
from one individual can accurately predict the behaviour
of another. Promisingly, other recent validation studies
suggest this may be the case both at intra-specific [17]
and, to varying degrees of success depending on mor-
phology, inter-specific levels [26]. Specifically for badgers,
accelerometers could be used to examine the differential
occurrence of behaviours between TB infected and unin-
fected individuals, with the potential to expand on recent
studies [27-29]. Such a high resolution of behavioural
information could prove invaluable in future badger biose-
curity work.
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Availability of supporting data

The analysis software is under continued develop-
ment and will be made available at: https://github.com/
dmcclune/accelerometeR.

Additional files

Additional file 1: Example raw acceleration and frequency spectra of
four behaviours (walking, trotting, snuffling and resting) for the
Eurasian badger (Meles meles). (a) Raw acceleration in the surge, sway
and heave axes for a range of behaviours over a 2-min period. Dashed lines
indicate a sub-slice containing the behaviour of interest. (b) Magnified
regions displaying a detailed 50-point view (2 s) of raw acceleration data
for each behaviour for the three axes. (€) The dynamic acceleration data
(raw acceleration values centred around zero to remove the constant
component, i.e. static acceleration) for each behaviour transformed from
the time to the frequency domain by discrete Fourier transform and
plotted as frequency spectra. The heave axis during trotting exhibited the
highest periodicity of acceleration with a prominent peak at 4 Hz (1 cycle
every 0.25 s) in this sub-slice.

Additional file 2: Example static and dynamic acceleration of four
behaviours (walking, trotting, snuffling and resting) for the Eurasian
badger (Meles meles). (a) Static acceleration in the surge, sway and heave
axes for each behaviour over a 2-s period. When the animal was upright
during walking, trotting or snuffling, the static acceleration registered on
the heave axis. Note that during snuffling, relatively high static acceleration
values registered on the surge axis as the badger had its head pointed
downwards, nose to the ground. For resting, the heave static acceleration
was close to 1 g, indicating that the animal was lying on its back.

(b) Dynamic acceleration during the same period for the surge, sway and
heave axes.

Additional file 3: Descriptive statistics for walking, trotting, snuffling
and resting for the Eurasian badger (Meles meles). VValues shown are
mean = standard deviation derived from 100 isolated behavioural
sequences. For surge, sway and heave, amplitude o is the population
standard deviation.

Additional file 4: Eurasian badger (Meles meles) accelerometer traces
with real-time feature extraction and behavioural classification. A
25-s video clip showing real-time feature extraction within a 2-s
overlapping sliding window. The video frame rate (FPS) and accelerometer
sample rate (Hz) both equal 25. The simultaneous decision tree
classification is also displayed. (To guarantee playback, download and view
with the latest version of VLC media player [30].) A streaming version can
be viewed at: http://youtu.be/WGYWolID1IUk.

Abbreviations
g: gravitational acceleration (1 g = 9.80665 m/s%); k-NN: k-nearest neighbour;
TB: tuberculosis.
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