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Does estimator choice influence our ability
to detect changes in home-range size?
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Abstract

Background: Estimates of home-range size are frequently used to compare areal requirements of animals over time
or space. Comparative studies of home-range estimators have highlighted extreme differences among general classes
of methods (e.g., polygon-based and kernel density-based estimators) and sensitivity to the choice of various tuning
parameters (e.g., amount of smoothing). These studies, however, have largely failed to consider how estimates of
home-range size are typically used in applied research. We illustrate simulation-based methods for comparing
estimators, which focus on relative differences in home-range size (over time or space), rather than their absolute
magnitude. We also consider Global Positioning Technology (GPS) location data from a black bear (Ursus americanus)
from northwestern Minnesota, USA, to illustrate the relevance to real-world data applications.

Results: In our examples, estimates of home-range size often differed considerably in absolute magnitude. Yet, for
relative differences, the choice of home-range estimator was often negligible. Furthermore, choosing the right
estimator was less important than other aspects of study design (e.g., number of animals followed).

Conclusion: Many questions in ecology focus on changes in space-use patterns (over space or time). For these types
of questions, home-range estimators should be evaluated in terms of their ability to detect these spatial and temporal
patterns. More importantly, home-range estimation should be seen as a means to an end—i.e., estimators provide
indices useful for addressing interesting biological questions or hypotheses—rather than as an end to itself.
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Background
Animals interact with conspecifics and their environ-
ment, leading to non-random patterns of space-use [1].
Several different analytical methods have been proposed
for quantifying these patterns, including home-range esti-
mation (e.g., [2, 3]), habitat and step selection models
(e.g., [4, 5]), and Bayesian state-space models that fit a
mixture of random walks to movement data (e.g., [6, 7]).
Whereas the latter two approaches often require cus-
tom written code and fine tuning to fit a specific data
set, a variety of off-the-shelf home-range estimators can
be easily implemented in multiple software platforms
(R, ArcGIS, etc.).
Because of their accessibility, home-range estimators are

frequently used to compare space-use patterns for animals
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living in different landscapes (e.g., [8, 9]) or along spa-
tial gradients (e.g., [10]). With the increase of fine-scale
spatio-temporal data afforded by Global Positioning Tech-
nology (GPS), short-term (weekly, monthly) estimates of
home-range size are now also commonly used to explore
changes in space-use patters over time (e.g., [3, 11, 12]).
When using home-range estimators to summarize

space-use patterns, it is important not to conflate these
statistics with the biological concept of an animal’s home
range [13–15], defined by Burt [16], as “That area tra-
versed by an individual in its normal activities of food
gathering, mating, and caring for young. Occasional sal-
lies outside the area, perhaps exploratory in nature, should
not be considered part of the home range”. An animal’s
home range is arguably best thought of in terms of cogni-
tive maps, a complex summary of various spatio-temporal
utility surfaces representing different resources (e.g., food,
shelter, escape routes, or mating and breeding areas),
which the animal actively updates as it interacts with its
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environment [15, 17]. Home-range estimators, by con-
trast, provide simple, often static summaries of space-use
in terms of a boundary on a map, an area, or a probabil-
ity distribution of the relative time spent in different areas.
An estimate of home-range size is best viewed as an index
of space-use or movement cost to meet an individual’s
needs, a response measure that can be related to other
measured covariates in order to gain insights into how ani-
mals interact with their environment or other organisms
(e.g., habitat types and configurations, waterways, urban
areas, or other GPS-tagged individuals).

Methods
Simulation model
We use a spatially explicit, individual-basedmodel to sim-
ulate animal movement. The simulated animal moves in
discrete time steps, t1, . . . , tn, in homogeneous (scenario
1) or heterogeneous (scenario 2) space. We denote the
position of the animal at time step t as vector xt = (xt , yt)
containing the x and y coordinates at time t. At each time
step, the animal selects 20 candidate locations indexed
with the superscript j

(
x1t+1, . . . , x

20
t+1

)
for the position at

the next time step (t + 1). The coordinates for each can-
didate location

(
xjt+1

)
are determined by a turning angle

φj and step length sj from the current position (xt). The
turning angle is drawn from a wrapped Cauchy distri-
bution with concentration parameter ρt . The step length
is drawn from an exponential distribution with rate λt .
Next the animal assesses the quality of each candidate
location, xjt+1 in terms of habitat quality at xjt+1 and the
euclidean distance between xjt+1 and x0—the home-range
center—resulting in a vector of weights for each candi-
date location. Weights for habitat quality and distance to

home-range center are then summed, resulting in a single
weight, ωj

t+1, for each candidate location for the position
of the animal at the time t + 1. The animal then chooses
one of the candidate locations randomly, with probability
proportional to the weights ω1, . . . ,ω20.
Model parametrization for the different simulation

scenarios is shown in Table 1. We used time steps of
5 min and modeled the individual for 1 year, so that
104,832movement steps were available for each simulated
individual.

Scenarios
We investigate two different scenarios that reflect two dif-
ferent biological questions. In the first scenario, an animal
is tracked for 1 year, and the researcher uses estimates of
short-term “home-range” size as an index to quantify how
movement costs change over time. In the second scenario,
multiple animals in different landscapes are followed, and
the researcher uses estimates of home-range size to detect
differences in movement costs between landscapes that
vary with respect to the proportions of favorable habitat.
In scenario 1a, we assume that the tendency of the ani-

mal to move away from its home-range center changes
over the course of a year. To model the underlying pat-
tern, we use a rescaled Gaussian density function centered
on the middle of the year (panel A in Additional file 1:
Figure S1). For scenario 1b, we add additional sinusoidal
noise to the underlying Gaussian density function, to rep-
resent changes in movement that occur on smaller time
scales (panel B in Additional file 1: Figure S1).
For the second scenario, movement parameters do not

vary temporally, but the landscape is heterogeneous. We
simulated landscapes with different amounts of favor-
able habitat, using a modified version of the random

Table 1 Parameter values at time step, t, for finding one of 20 candidate locations (upper half) and for weighting the candidate
locations based on habitat and distance to the home range center (lower half). Step lengths were drawn from an exponential
distribution with rate parameter λt , and turning angles from a wrapped Cauchy distribution with concentration parameter ρt .
Candidate locations received weights that depended on habitat type, ωhab (scenario 2 only). In addition, an exponential distribution
with rate parameter, θt , was used to weight locations based on their distance to the home-range center. For both rates θt and λt , μ and
σ were set to constant values of 182 and 36.4, respectively

Parameter Scenario 1a Scenario 1b Scenario 2

Determing candidate locations

ρt 0.5 0.5

⎧⎨
⎩

0.01 xt in patch

0.8 xt in matrix

λ
j
t −e

(t−μ)2

2σ2 + 2 −e
(t−μ)2

2σ2 + 2 − 0.04 sin
( 0.2t
2π

)
0.01

Weighting candidate locations

ωhab 1 1

⎧⎨
⎩

1 xt in patch

0.1 xt in matrix

θt −0.4e
(t−μ)2

2σ2 + 0.5 −0.4e
(t−μ)2

2σ2 + 0.5 − 0.1 sin
( 0.2t
2π

)
0.01

μ and σ are constant with values of 182 and 36.4, respectively. Step length, s, habitat weight, ωhab, and concentration parameter, ρ , are constant for scenario 1 and vary for
scenario 2. In contrast, λt varies over time following a rescaled Gaussian density function for scenario 1 and is constant for scenario 2
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cluster algorithm [18] as implemented in [19]. The ran-
dom cluster algorithm generates landscapes based on spa-
tial autocorrelation of habitat patches controlled through
a fragmentation parameter p and the expected amount
of habitat A. We simulated landscapes with different
amounts of favorable habitat, A, by drawing this value
from a uniform distribution between 0.1 and 0.9 (i.e., 10 to
90% of the landscape consists of favorable habitat), while
holding the degree of fragmentation constant (p = 0.3).
We allowed turning angles to depend on the habitat type
(favorable or unfavorable), and we weighted proposed
locations according to their habitat type and the dis-
tance of each candidate location to the home-range cen-
ter (Table 1). In favorable habitat, chosen turning angles
were less concentrated (this resembles within-patch for-
aging) than in unfavorable habitat (resembling inter-patch
movement).
For both scenarios, we assumed the home-range center

to be at x = 50 and y = 50, the center of the landscape.
If this placed the home-range center in unfavorable habi-
tat, we assigned the home-range center to the closest pixel
with favorable habitat. All simulations were programmed
and run using the program R [20].

Analysis
We estimated home ranges for different sampling rates
and analysis intervals (only scenario 1). We sampled
each realization of the movement path at three differ-
ent sampling rates (2, 4, and 24 observations per day).
We chose these sampling rates to resemble commonly
used sampling schedules of real GPS collars. We then
split the sampled data into either weekly or monthly
analysis intervals and calculated home ranges for each
combination of sampling rate and analysis interval. We
set a threshold of 20 for the minimum number of
relocations required for any combination of sampling
rate and analysis interval. Hence, we did not consider
weekly home ranges for a sampling rate of 2 observations
per day.
We estimated home ranges with the minimum convex

polygon (MCP), kernel density estimator (KDE), and local
convex hull (LoCoH). Although a variety of more home
sophisticated home-range estimators have been devel-
oped in recent years,MCPs and KDEs are the simplest and
most widely applied approaches [14, 21].We also included
LoCoH because previous studies (e.g., [9, 22]) found that
home-range estimates from LoCoH may be more useful
for wildlife managers, because of their ability to better
detect sharp boundaries. For KDE, we used bivariate nor-
mal kernels on a 100 by 100 grid with a resolution of
1 unit. We did not rescale the data before calculating
bandwidth, and we used the same bandwidth for both
dimensions. We used four different methods for choos-
ing the bandwidth: 1) the reference (href ) method [23], 2)

least-squares cross validation (hlscv; [24]), 3) plug-in-
the-equation (hpi; [25]), and 4) an ad hoc scaling of the
reference bandwidth (hscaled; [26]). This last approach
attempts to find the smallest bandwidth that results in a
contiguous home-range area. For least-squares cross val-
idation and ad hoc scaling, we performed a grid search
with values ranging from 0.1 × reference bandwidth to
2 × reference bandwidth. For least-squares cross valida-
tion, we searched for a global minimum. If the algorithm
did not converge (this only happened once for scenario
1b), we excluded the simulation run from the analysis.
With the LoCoH approach, we used the type k method,
with k determined by the square root of the number of
fixes. In all cases, we estimated the area associated with
the 95% isopleth. All home-range analyses were imple-
mented using program R (Version 3.1.1) [20] and the rhr
(1.0.010) package [27].
For scenario 1, we explored, graphically, temporal pat-

terns in home-range estimates and their variability across
multiple simulated data sets for each unique combina-
tion of sampling rate, home-range estimator, and analysis
interval. Since we were particularly interested how home
ranges can be used as a proxy to quantify movement costs,
we also looked at differences in home-range size, i.e., the
numerical first derivative: home-range sizet−home-range sizet−1

	t
versus t. We calculated 	home-range size

	t for each realiza-
tion and then averaged these values at each time point. In
order to investigate the variance of different home-range
estimators, we calculated the difference between the 97.5
percentile and 2.5 percentile of the home-range size and
	home-range size

	t sampling distribution, and used the width
of this interval as a measure of estimator precision at each
time point.
For scenario 2, we sampled n = (5, 10, . . . , 100) indi-

viduals from the population and fit linear models relating
log(home-range size) to the amount of favorable habitat,
A, log(home-range size) = β0 + β1A. Then, we repeated
this process for R = 100 times for each home-range
estimator, sampling rate, and sampling size n. We then
calculated the interquartile range and the difference of
the 97.5 percentile and 2.5 percentile of the sampling dis-
tribution for each combination of sample size, sampling
rate, and estimator, and again used the widths of these
intervals as a measure of estimator precision. For β1, the
slope, we calculated for each estimate a 95% confidence
interval and looked at the number of times we obtained
significant results (i.e., the confidence interval did not
overlap 0).

Bear data
During May–July, 2007–2011, we captured American
black bears living in northwestern Minnesota, USA, using
baited barrel traps as part of a larger study investigating
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how bears utilize an agriculturally dominated and frag-
mented landscape [28]. We immobilized bears using a
combination of ketamine hydrochloride and xylazine,
or premixed tiletamine hydrochloride and zolazepam
(Telazol®, Elkins-Sinn, Cherry Hill, NJ, USA). Bears were
fit with either collars with store-on-board GPS devices
or GPS collars using the Iridium satellite system as a
data link. During annual winter den visits, we adjusted
collar fit and downloaded data from collars. Bear han-
dling was approved by the University of Minnesota’s
Institutional Animal Care and Use Committees (permit
no. 1002A77516). For the analyses presented, we chose
to utilize data from a representative 8-year-old female
bear without cubs of the year. This individual was outfit-
ted with a GPS collar from Vectronic Aerospace (Berlin,
Germany) throughout 2012. We chose this bear because
of the complete year of data she provided (den exit to den
entrance), frequent fix schedule (fixes attempted every
2 h), and high level of home-range fidelity (based on
5 years of GPS-collar data). We used 1711 success-
ful GPS-collar locations (mean time step = 2.54 h, SD
= 1.17 h) from 30 April 2012 to 28 October 2012.
We used 1-, 2-, 4-, and 8-week analysis intervals and
estimated the home-range size using the same home-
range estimators as were used in the scenario analyses
(see above).

Results
Scenario 1a/b: modeling temporally changingmovement
patterns
For scenario 1a, absolute magnitude of home-range size
differed (Fig. 1), with KDE methods producing larger
home-range size than MCP and LoCoH. Yet, all estima-
tors captured the underlying temporal pattern. Further,
estimates of changes in home-range size, (	home-range size

	t ),
were nearly indistinguishable (Fig. 1), although the mag-
nitude of changes depended somewhat on the analysis
interval (Fig. 1), with longer analysis intervals result-
ing in estimated rates of change that were less variable
and smaller in absolute magnitude. Results for scenario
1b were similar (to scenario 1a), but only short analy-
sis intervals (weekly) were able to recover the signal of
the short-term sinusoidal variation of changes of space
requirements (Additional file 1: Figure S7).
The variability of home-range size estimates was depen-

dent on the estimator and the time of the year (Fig. 2).
For weekly analysis intervals, only two estimators, KDE
(hscaled) and LoCoH, had relatively constant variability
(i.e., the width of the 95 percentile interval of the sampling
distribution did not depend on the time). For all other
estimators and analysis intervals, the width of the 95 per-
centile of the sampling distribution varied with time, with
estimates exhibiting more variability in the middle of the

Fig. 1 Results of simulation scenario 1a. Average estimates of log(home-range size) (first and third row) and changes of log(home-range size) (second
and fourth row) from 1000 realizations of animals moving according to simulation model 1a at different analysis intervals (rows) and sampling rates
(rows). We present results for all six estimators (different colors), two analysis intervals, and three sampling rates. We required at least 20 relocations
for any combination of sampling rate and analysis interval. Hence, we did not considered weekly home ranges for 2 observations per day
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Fig. 2 Variability of home-range estimators. Difference between the 97.5 percentile and 2.5 percentile of the sampling distributions of home-range
size as a measure of the variability of estimates of home-range size. We present variability estimates from 1000 realizations of animals moving
according to simulation scenario 1a for all six estimators (columns), three analysis intervals, and two sampling rates (rows), averaged at each time
stamp (solid line) and averages over all time steps (dashed line)

year when animals moved more extensively. Across the
range of simulation scenarios (and averaging over time),
the variability was smallest for the KDE (hpi) and largest
for the KDE (hscaled). Estimates of home-range size (and
also rates of change) were less variable when using longer
time intervals and when sampling more frequently (Fig. 2
and Additional file 1).

Scenario 2: modeling effects of habitat fragmentation on
movement patterns
Intercepts associated with the linear model relating
log(home-range size) to the amount of favorable habitat
differed in magnitude, again suggesting absolute estimates
of home-range size varied with estimator choice (Fig. 3).
For small sample sizes (n = 5, 10), the sampling distribu-
tions of intercepts (β0) overlapped, but differences among
estimators became more pronounced as more individuals
were followed. Intercepts associated with KDE (hlscv) and
KDE (hpi) were generally smaller than MCP, KDE (href ),
and KDE (hscaled), with LoCoH falling in between (Fig. 3).
Estimates of β1, which summarizes the influence of habi-
tat on home-range size, were closer to 0 for KDE (lscv) and
KDE (hpi); estimates of β1 were similar in magnitude (and
larger in absolute value) for all other estimators (Fig. 3 and
Additional file 1).

Precision, and thus the power to detect an influence
of the amount of favorable habitat on movement costs,
depended mainly on the number of animals followed but
was also influenced to a lesser extent by the sampling rate
(Figs. 3 and 4).
At the highest sampling rates (24 relocations per day),

all estimators had a high power to detect an effect of habi-
tat on home-range size (Fig. 3). With lower sampling rates
(e.g., 2 relocations per day), however, many more animals
were necessary to detect significant effects, and the choice
of estimator becomes more important. In particular, KDE
(lscv, hpi) had lower power to detect an effect of habitat
than other methods (Fig. 4), largely because the sampling
distributions of these two estimators were centered on
values closer to 0 (Fig. 3).

Bear data
We observed a similar, although noisier pattern, with real
data originating from a female bear. Absolute home-range
size was small in the beginning and the end of the year
(this is when bears exit (spring) and prepare to enter (fall)
the den). During summer, energy demands increase and
bears expand their range to meet their daily needs. All of
the estimators captured this trend, but the estimates were
of different magnitudes. LoCoH estimates were the most
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Fig. 3 Variability of home-range estimators with respect to sample size. Difference between the 97.5 percentile and 2.5 percentile (horizontal gray
bars), and the interquartile range (horizontal solid black lines) of the sampling distributions of coefficients associated with a linear model relating
log(home-range size) to the amount of favorable habitat of animals moving according to simulation model 2. We present results for six home-range
estimators for three different sampling rates (columns) and five different sample sizes (i.e., the number of animals that were tracked). The absence of
an effect of amount of favorable habitat on home-range size is indicated if the difference between the 97.5 percentile and 2.5 percentile of the
sampling distribution of the slope overlaps 0 (vertical dashed red line)

conservative (i.e., smallest), and KDE (href ) estimated the
largest home ranges (but see also the top panel of Fig. 5).
Similar to the simulated data from scenario 1a, differences
between estimators became negligible when we evaluated
changes in the amount of space used over time (bottom
panel of Fig. 5).

Discussion
In the introduction, we suggested that it could be advan-
tageous, from a statistical and conceptual point of view,

to think about home-range estimators as an index of an
animal’s areal requirement or movement costs. In such
cases, the absolute magnitude of home-range size is often
less important than how estimates of home-range size
change over space and/or time. Importantly, we found that
although estimates of home-range size often differed con-
siderably in absolute magnitude, for relative differences,
the choice of home-range estimator was often negligible.
Furthermore, results of simulation scenario 2 suggest that
choosing the right estimator is often less important than

Fig. 4 Power to detect a significant effect of the amount of favorable habitat on home-range size. Home-range size is plotted as a function of
sample size (i.e., the number of animals tracked) for six different home-range estimators (colors) and sampling rates (different panels)
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Fig. 5 Results from empirical data. Estimates of home-range size (top panel) and changes of home-range size (bottom panel) with six different
home-range estimators over time of a female black bear from northwestern Minnesota

other aspects of study design (e.g., number of animals
followed; see also [29]).
Other studies have shown that results may be robust

to the choice of home-range estimator (e.g., [12, 30]).
Van Beest et al. [12] found that different home-range
estimators (KDE and LoCoH) provided qualitatively sim-
ilar results (i.e., the direction of the relationship did not
depend on the home-range estimator) regarding the most
important factors influencing variation in home-range
size across different spatiotemporal scales for moose
(Alces alces) in Norway. Also, Nilsen et al. [30] were able
to draw the same biological conclusions relating to home-
range size fromMCP- and KDE-based estimators to body
mass for interspecific comparative studies. In congruence
with Börger et al. [29], our results suggest that efforts
should be directed towards collaring more individuals
at the expense of sampling rate; results from scenario 2
highlight this point.
Although comparative studies of home-rage estimators

are common (e.g., [24, 31, 32]), most simulation stud-
ies tend to focus on bias associated with estimates of
home-range size, which requires that one defines a true
home range, a concept that can be difficult to quantify
using only (real or simulated) animal locations [15, 33].

For many questions, we suggest that a focus on variability
of home-range estimates under different circumstances
will lead to more informative comparisons. The simula-
tion conducted under scenario 1 would lead us to KDE
(hpi) because it was the most precise estimator. By con-
trast, the power analysis aimed at detecting the influence
of habitat on resource needs would lead us to suggest
any method except KDE (hpi or hlscv). These conflicting
results highlight the need to begin with clearly defined
research questions and goals prior to choosing an appro-
priate home-range estimation method [13].
Our results suggest that for questions like the follow-

ing: do male individuals require more space than females?
does latitude or elevation influence the space-use of a
species?, or do individuals of a given species need more
space in summer than in winter?, the choice of the esti-
mator will likely be less important than emphasized in the
literature while other decisions a researcher might make
(e.g., sample size, sample rate, or analysis interval) are at
least as important as the estimator choice. Yet, because
different estimators give different absolute estimates of
home-range size, it is still important, whenever possible,
to use the same home-range estimator to analyze all loca-
tion data. Further, given the differences in implementation
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of home-range estimators (e.g., variability in how KDE
(lscv) is implemented [21]), it is also important to use
the same software whenever possible. As a corollary, we
strongly encourage researchers to archive raw location
data (e.g., in archives like Movebank or dryad) to facilitate
meta-analytic hypotheses testing of broad-scale ecological
patterns.
Although some research question may require absolute

estimates of home-range size, most often, home-range
estimates are used to explore changes in space-use pat-
terns over time or space. In these cases, home-range
estimators should be evaluated in terms of their ability
to detect these patterns. More importantly, home-range
estimation should be seen as a means to an end, i.e., esti-
mators provide indices useful for addressing interesting
biological questions or hypotheses—rather than as an end
to itself [13].

Conclusion
An advantage of viewing home-range estimates as indices
is that it emphasizes the need to start with an interesting
and meaningful biological question or hypothesis, rather
than viewing home-range estimation as an end in itself
[13]. It also suggests that we need to think differently
about comparative studies of home-range estimators. We
should not only compare the ability of estimators to cap-
ture (or exclude) particular areas of space used (or not
used) by an animal but also increase emphasis on whether
the estimator does a good job of capturing an important
biological signal in the data that is relevant to an underly-
ing question or hypothesis of interest. A biased estimator
for home-range size may still prove useful if it does a
good job of detecting changes in home-range size. For
many research questions, this will mean that home-range
size is often expected to be proportional to movement
cost.
The aim of this manuscript is to illustrate these points

by investigating a property of common home-range esti-
mators, the area, through a simulation study. We consider
two different simulation scenarios capturing two broadly
defined research questions. In the first scenario, we are
interested in detecting changes in the amount of space
used by an individual over time. In the second scenario,
we are interested in comparing the amount of space used
by different individuals living in landscapes with different
amounts of favorable habitat. In both cases, we simulate
animal movement using discrete time steps and calculate
home ranges using different estimators, sampling rates,
and analysis intervals (scenario 1 only; movement behav-
ior did not change over time for scenario 2). In both
cases, it is natural to ask, “What home-range estimator is
most appropriate for detecting differences in the amount
of space used (changes over time in scenario 1 or differ-
ences among landscapes with different amounts of habitat

in scenario 2).” In addition, we ask “What analysis interval
is most appropriate for exploring temporal space-use pat-
terns?” (scenario 1 only).We explore these questions using
simulated data, but we also consider GPS location data
from a black bear (Ursus americanus) inhabiting north-
westernMinnesota, USA, to illustrate the relevance of our
simulation results, and method of estimator comparison
to real-world data applications.

Additional file

Additional file 1: Results of modeling scenarios that were not
presented in the main text.
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