
Hayden et al. Anim Biotelemetry  (2016) 4:19 
DOI 10.1186/s40317-016-0112-9

RESEARCH

Probability of acoustic transmitter 
detections by receiver lines in Lake Huron: 
results of multi‑year field tests and simulations
Todd A. Hayden1*, Christopher M. Holbrook2, Thomas R. Binder1, John M. Dettmers3, Steven J. Cooke4, 
Christopher S. Vandergoot5 and Charles C. Krueger6

Abstract 

Background:  Advances in acoustic telemetry technology have led to an improved understanding of the spatial ecol-
ogy of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to 
distinguish between tagged fish that may have been present but not detected and from those fish that were absent 
from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four 
acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay 
and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission 
varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances 
between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed prob-
ability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a 
moving acoustic transmitter on a line of receivers.

Results:  The probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for dif-
ferent receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m 
apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study 
period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron 
and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was char-
acterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish 
movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron 
had the strongest effect on simulated detection probability.

Conclusions:  Performance of receiver lines in Lake Huron varied across a range of spatiotemporal scales and was 
inconsistent among receiver lines. Our simulations indicated that if 69 kHz acoustic transmitters operating at 158 dB 
in 10–30 m of freshwater were being used, then receivers should be placed 1000 m apart to ensure that all fish 
moving at 1 m s−1 or less will be detected 90% of days over a 2-year period. Whereas these results can be used as 
general guidelines for designing new studies, the irregular variation in acoustic transmitter detection probabilities we 
observed among receiver line locations in Lake Huron makes designing receiver lines in similar systems challenging 
and emphasizes the need to conduct post hoc analyses of acoustic transmitter detection probabilities.
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models

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Animal Biotelemetry

*Correspondence:  thayden@usgs.gov 
1 Center for Systems Integration and Sustainability, Department 
of Fisheries and Wildlife, Michigan State University, Hammond Bay 
Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40317-016-0112-9&domain=pdf


Page 2 of 14Hayden et al. Anim Biotelemetry  (2016) 4:19 

Background
Animal movement is a fundamental process for structur-
ing populations and communities, and determining the fate 
of individuals [1, 2]. In aquatic systems, fishes move across 
a wide range of spatial and temporal scales to obtain tran-
sitory resources, avoid predators, and respond to physi-
cal constraints imposed by the environment [3, 4]. Recent 
advances in acoustic telemetry technology and method-
ology have improved understanding of fish movements 
at spatial and temporal scales that were previously not 
possible and have provided insights into fish habitat use, 
spawning, site fidelity, and migration [5–8]. Furthermore, 
advancements in animal biologging and telemetry technol-
ogy have provided insight into development and structure 
of social interactions of many terrestrial animals [9].

The quality of information obtained from a telemetry 
system in terrestrial or aquatic systems depends on many 
biotic and abiotic aspects of the transmitter–receiver sys-
tem [9, 10]. In an aquatic system, an acoustic transmit-
ter propagates a signal through water that is detected, 
decoded, and recorded by an acoustic receiver (and 
hydrophone) (herein referred to as a receiver) [7]. The 
distance between an acoustic transmitter and receiver in 
which an acoustic transmission can be detected depends 
on abiotic and biotic variables that influence the rate of 
energy attenuation as the signal passes through the water 
and on sources of noise that interfere with the receiv-
er’s ability to identify and decode the signal. Variables 
that influence the strength of a signal when it reaches 
a receiver include acoustic transmitter output power, 
spreading losses, signal refraction, receiver orientation, 
turbidity, air entrainment, water column stratification, 
algal blooms, ice cover, and submerged vegetation [7, 
11–17]. The probability of acoustic transmitter detection 
is partly a function of the signal-to-noise ratio; noises 
that can interfere with signal detection may be gener-
ated by water flowing over substrate or mooring equip-
ment (including the receiver), precipitation on the water 
surface, waves, grinding ice, anthropogenic sources 
(e.g., boats, sonars, pumps, vehicles), or other ambient 
biological noise (e.g., shrimp) [7]. In addition to abiotic 
and biotic variables that can influence the probability of 
acoustic transmitter detection, collision of signals from 
multiple acoustic transmitters arriving at the receiver at 
nearly the same time may prevent an acoustic transmitter 
from being decoded or result in an acoustic transmitter 
that is recorded incorrectly [18]. Numerous variables can 
affect detection range in a heterogeneous environment, 
resulting in variable detection ranges and probabilities at 
a receiver location over time.

Performance of acoustic telemetry receivers needs 
to be assessed to accurately describe fish behavior and 
reduce bias from unrecognized receiver performance 

problems [14]. Although acceptable performance of an 
acoustic system is project specific, poor or variable per-
formance of an acoustic receiver line may result in peri-
ods of time when it is difficult to distinguish when a fish 
is present and not detected as compared to a fish that 
is absent from the area. Detection range is often evalu-
ated before a telemetry study begins so as to inform the 
study design to be used, although retrospective analyses 
of detection range also have been used to evaluate per-
formance [14]. Acoustic transmitter detection range 
represents the probability of detecting individual acous-
tic transmissions as a function of the distance between 
transmitter and receiver [19]. Static range testing uses 
fixed-position acoustic transmitters and receivers to esti-
mate the proportion of acoustic transmissions detected 
over time and under varying environmental conditions 
[20]. Performance of receivers given existing environ-
mental conditions and transmission characteristics of 
acoustic transmitters needs to be evaluated at temporal 
scales consistent with study objectives to fully quantify 
the effects of varying environmental conditions. Mobile 
range testing can also be used to evaluate receiver per-
formance by ‘swimming’ an acoustic transmitter near a 
receiver or network of receivers to evaluate transmitter 
detection ranges as a function of environmental condi-
tions and distance between the transmitter and receivers.

Receiver lines consisting of multiple receivers with 
overlapping detection ranges are commonly used to iden-
tify fish movements into or out of a specific area, or to 
observe fish movements along migratory pathways [21, 
22]. Notwithstanding the effects of variables that cause 
attenuation or interference, the probability of detecting 
a moving fish on a stationary receiver line (i.e., acoustic 
transmitter detection probability of a line) depends on 
transmission rate, receiver spacing, fish movement rate, 
and acoustic transmitter detection range. Among these 
variables, acoustic transmission rate and receiver spacing 
are controlled by the researcher, but transmitter detec-
tion range and fish movement rates are not directly con-
trolled and can vary unpredictably over time [17]. Rapid 
movements or low acoustic transmitter detection range 
may result in some individuals passing a receiver line 
without being detected [23]. The probability of detect-
ing a moving fish by a stationary line of receivers may 
be estimated using mobile range testing and simulation 
or modeling [23, 24]. Although range testing can provide 
insight into the performance of a single receiver, it can be 
difficult to predict or infer the probability of detecting a 
tagged fish moving through a line of stationary receivers.

Our objectives were (1) to characterize seasonal pat-
terns in the probability of detecting an acoustic trans-
mission at 1000 m at four receiver lines in Lake Huron, 
(2) to determine whether mean probability of detecting 
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an acoustic transmission at a distance of 1000  m dif-
fered among receiver lines, and (3) to determine using 
simulation whether fish movement rates, receiver spac-
ing, and the probability of detecting an acoustic trans-
mission influenced the probability of detecting a tagged 
fish moving through a line of receivers. Objectives were 
addressed using static range testing at four receiver 
lines, each containing at least 10 receivers, in Lake 
Huron over 2  years. Two acoustic transmitters, located 
250  m apart, were deployed within each receiver line 
for nearly 2 years. Distances between acoustic transmit-
ters and receivers ranged from 200 m to > 10 km in each 
line. Logistic regression and generalized additive models 
(GAMs) were used to estimate weekly detection range 
curves for each acoustic transmitter, predict acoustic 
transmitter detection probability at 1000-m transmit-
ter-to-receiver distance, and estimate seasonal patterns 
in acoustic transmitter detection probability at 1000 m. 
Simulation models were used to estimate the probabil-
ity of detecting a fish moving through a line of acous-
tic receivers for different movement rates and receiver 
spacing scenarios. Simulation models were based on 
daily empirical detection range curves derived from one 
of each paired acoustic transmitters deployed in Lake 

Huron and represented each of the four receiver lines in 
Lake Huron used in the field portion of the study. This 
paper represents part of a larger project investigating 
the movement patterns of walleye Sander vitreus in Lake 
Huron [24].

Methods
Acoustic transmitters (Vemco V16-4H, 158 dB re 1 μPa at 
1 m output) were deployed in 2010 and 2011 within four 
receiver lines in Saginaw Bay and central Lake Huron 
(Fig.  1). At each receiver line, two acoustic transmitters 
were deployed approximately 250  m apart for at least 
488 days (Table 1). Acoustic transmitters deployed within 
lines 1 and 2 were located in Saginaw Bay in approxi-
mately 13 m of water and transmitters deployed in lines 
3 and 4 were located in Lake Huron in water ranging 
from 7 to 17 m in depth (Table 1). Two acoustic transmit-
ters were deployed between two receivers such that the 
minimum distance between a transmitter and receiver 
was 200 m. A 2-m stainless steel mooring cable attached 
to a concrete anchor and buoy was used to suspend the 
acoustic transmitter about 1  m above the lake bottom. 
Transmitters were deployed 1  m above the lake bottom 
because we assumed that most walleye would orient near 
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Fig. 1  Locations of acoustic transmitters and receiver lines in Saginaw Bay and Lake Huron in 2010–2012. Red lines are acoustic transmitters and 
small black circles are receivers. Two transmitters were deployed 250 m apart within each receiver line. Transmitters 1–2 were deployed in line 1, 3–4 
at line 2, 5–6 at line 3, and 7–8 at line 4. Inset is Lake Huron
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the lake bottom. Vertical position of transmitter in the 
water column can influence detection probability, but we 
did not evaluate position of walleye in the water column 
or the effects of vertical transmitter position on detec-
tion probability in this study. Acoustic transmitters were 
attached to the mooring cable using an ‘L’-shaped wire 
hanger assembly to offset the transmitter from the moor-
ing cable by approximately 12.5  cm. The wire hanger 
was used to decrease interference of mooring cables on 
acoustic signals. Acoustic transmitters were programmed 
to emit coded acoustic bursts (69 kHz) at random inter-
vals between 300 and 900 s (mean interval = 600 s).

Acoustic transmitters were detected on receivers 
deployed as part of the Great Lakes Acoustic Telemetry 
Observation System receiver network in Saginaw Bay 
and Lake Huron [24]. In 2010–2011, the acoustic receiver 
(VR2W, 69  kHz, omnidirectional, Vemco, Halifax, NS) 
network consisted of 15 lines of receivers deployed in 
Lake Huron with receivers placed at 1000-m intervals 
along a line. Acoustic receivers were attached to steel 
cables and suspended between concrete anchors and 
buoys in waters ranging from 2 to 35  m. All receivers 
were retrieved annually for data download and battery 
replacement. Receivers in water depths of <10  m were 
retrieved during winter 2010 and 2011 to prevent loss 
from ice flows and replaced in the springtime. Receiv-
ers in waters >10 m were retrieved, downloaded, and 
immediately replaced with new receivers. Biofouling of 
recovered receivers was minimal and consisted of a thin 
biological film. Colonization of the external surface of 
the receiver by dreissenid mussel (Dreissena spp.) species 
common in the Great Lakes was minimal.

Detection data from all receivers were screened for 
false detections using a short-interval criterion [18]. The 
short-interval criterion assumed that more than one 

false detection of the same code within a short period 
of time was rare. Single detections for an acoustic trans-
mitter within a 5-h time interval on each receiver were 
identified as possible false detections and removed prior 
to subsequent analysis. Ninety-nine percent of all detec-
tions passed the filter.

Detection range curves for each acoustic transmitter, 
meaning the probability of detecting a single coded sig-
nal as a function of distance from the transmitter, were 
estimated using binomial-response logistic regression 
for each week of the experimental trial (>69 weeks) [19]. 
The number of successful detections for each acoustic 
transmitter within a weekly time interval was calculated 
for all receivers that detected the transmitter at least 
once during the study. The number of missed detections 
for each transmitter and receiver was calculated by sub-
tracting the number of successful acoustic transmitter 
detections from the expected number (calculated from 
average acoustic transmitter delay) of acoustic trans-
missions. Distances from the acoustic transmitter to all 
receivers that detected at least one transmission during 
the study were calculated from geographic coordinates of 
the acoustic transmitter and receivers and ranged from 
202 m to 11.8 km. Firth’s bias-reduced logistic regression 
algorithm, as implemented in the R package ‘brglm,’ was 
used to estimate model coefficients for all range detec-
tion curves [25]. Firth’s bias-reduced algorithm was used 
because acoustic transmissions detected on few (<3) 
receivers in close proximity to the transmitter, and few 
or no transmissions detected on other receivers farther 
away, resulted in infinite maximum likelihood estimates 
using traditional maximum likelihood logistic regression 
[26]. Goodness of fit for logistic regression models was 
assessed using McFadden’s pseudo R2 [27]. McFadden’s 
R2 ranges from 0 to 1 with values close to 1 representing 

Table 1  Summary of range testing at 4 acoustic receiver lines in Saginaw Bay and Lake Huron

Each line included two stationary acoustic transmitters (Tag) located approximately 250 m apart. ‘Start’ and ‘end’ is start and end dates of range testing trial, depth is 
approximate water depth (meters) at stationary transmitters, and duration is length of experimental trial (days). Dates are yyyy-mm-dd format. The total number of 
detections (tot. detections) was calculated by summing the number of detections on all receivers at each station during the trial. Average number of detections per 
day (detections day−1) was calculated by dividing the number of detections recorded for the trial by the duration of the experimental trial. The maximum distance an 
acoustic transmitter was detected at each site (max distance detected) is reported for each transmitter. See Fig. 1 for locations of stations

Tag Line Start End Depth (m) Duration 
(days)

Total detections Detections  
day−1

Max distance 
detected (km)

1 1 2010-11-17 2012-10-01 13 684 358,669 524 11.8

2 1 2010-11-17 2012-10-01 13 684 353,712 517 11.6

3 2 2010-11-17 2012-09-01 14 654 204,032 312 10.8

4 2 2010-11-17 2012-09-01 14 654 262,871 402 11.4

5 3 2011-06-01 2012-11-15 7 533 132,032 248 9.8

6 3 2011-06-01 2012-11-15 7 533 153,376 288 7.6

7 4 2011-06-01 2012-10-01 17 488 212,519 435 6.8

8 4 2011-06-01 2012-10-01 17 488 228,106 467 6.6
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substantial improvement in the fit of the full model com-
pared to the intercept-only model. Values of McFad-
den’s pseudo R2 are smaller than analogous R2 used for 
linear regression, and pseudo R2 values ranging from 
0.2–0.4 and are equivalent to R2 values of 0.4–0.8 in lin-
ear regression [28]. Model coefficients were used to esti-
mate acoustic transmitter detection probability at 1000 m 
distance for each transmitter and weekly time interval 
(hereafter DP1000). GAMs were used to describe nonlin-
ear trends in time series of DP1000 as a function of month, 
acoustic transmitter, and receiver line. GAMs are func-
tionally related to generalized linear models but use non-
parametric smoothing functions to describe nonlinear 
trends between predictor and response variables [29, 30]. 
The ‘gamm’ function in the R package ‘mgcv’ fits addi-
tive models using regression spline smoothers and allows 
incorporation of autocorrelation, variance, and error 
structures. In this study, the ‘gamm’ function was used 
to fit models, and autocorrelation or variance structures 
were included in models when residual plots or autocor-
relation plots indicated that the model did not account 
for heterogeneity or significant autocorrelation structure 
[31]. A cyclic spline accounts for the cyclic relationship 
between levels of a categorical predictor and was used to 
model the nonlinear trend between acoustic transmitter 
detection probability and month (i.e., months 1 and 12 
are consecutive) [31].

Akaike information criterion (AIC) model selection 
was used to identify the best additive model, as defined 
by the smallest AIC score, from a suite of candidate mod-
els constructed from month, acoustic transmitter, and 
receiver line predictor variables to explain nonlinear 
trends in transmitter detection probability [32]. Candi-
date models were selected to determine whether seasonal 
patterns at the monthly time scale were similar for all 
acoustic transmitters, different among receiver lines (i.e., 
were similar between paired transmitters), or different 
for all transmitters. Conceptually, these hypotheses were 
tested by comparing explanatory power of candidate 
models that included a single nonlinear smoothing func-
tion fit to the acoustic transmission detection probability 
versus month relationship for all transmitters combined, 
separate nonlinear smoothing functions (n = 4) for each 
line, and separate nonlinear smoothing functions for 
each transmitter (n = 8).

In addition to modeling nonlinear trends in DP1000 as 
a function of month, terms for ‘transmitter’ and ‘line’ 
were included in candidate models to estimate mean 
DP1000 for each acoustic transmitter or line. Compari-
son of the explanatory power of candidate models that 
included or excluded these terms was used to determine 
whether mean DP1000 differed among individual trans-
mitters or receiver lines. Post hoc comparisons using the 

‘glht’ function in the R package ‘multcomp’ were used 
to simultaneously test for differences among predicted 
mean DP1000 for ‘transmitter’ or ‘line’ model terms [33]. 
Acoustic transmitter detection probability is bounded 
by 0 and 1 and may not be normally distributed; there-
fore, all data were logit-transformed [log(x/1 − x)] before 
model fitting. The delta method was used to approxi-
mate the standard error of back-transformed DP1000 for 
visualization [34]. Our analysis of DP1000 followed a two-
stage approach that used logistic regression to estimate 
the range detection curve at weekly time intervals. These 
results were then incorporated into GAMs to character-
ize seasonal patterns in DP1000. The two-stage approach 
did not explicitly accommodate within-week variability 
in detection probability as a function of distance but did 
allow us to account for autocorrelation structure in the 
data using GAMs.

Simulation models were constructed to estimate the 
probability of detecting a passing acoustic transmit-
ter moving at a constant rate on one or more stationary 
receivers in a line (hereafter DPpass) and were independ-
ent from analyses of DP1000 described above (Additional 
file 1). Input variables for each simulation model included 
an empirically derived range detection curve (represent-
ing daily detection probability for a receiver–transmitter 
pair), a vector of inter-receiver distances, acoustic trans-
mission frequency, and a constant fish movement rate 
(Additional file 1). The probability of detecting an acous-
tic transmission as a function of the distance between 
the acoustic transmitter and receiver (i.e., detection 
range curve) was estimated empirically by calculating 
the number of successful detections of each transmit-
ter on all receivers that detected the transmitter at least 
once during each day of the study. The number of missed 
detections for each acoustic transmitter and receiver was 
calculated by subtracting the number of successful acous-
tic transmitter detections from the expected number of 
transmitter transmissions (calculated from average trans-
mitter delay). The probability of detecting an acoustic 
transmission for each receiver was calculated by dividing 
the expected number of transmissions by the number of 
successful detections for each receiver. Empirical detec-
tion range curves for each day and acoustic transmitter 
were estimated by linear interpolation of detection prob-
ability calculated at each receiver as a function of dis-
tance. Empirical detection range curves were calculated 
for one acoustic transmitter within each line (acoustic 
transmitters 1,3,5,7) in Saginaw Bay and Lake Huron. 
Our use of empirical range detection curves in simula-
tions did not allow us to estimate uncertainty in detection 
range within days. However, we used separate empirical 
range detection curves for each day of the study such that 
the full extent of variability in detection range among 



Page 6 of 14Hayden et al. Anim Biotelemetry  (2016) 4:19 

days was incorporated in season-wide simulation results. 
Multiple fish movement rates and receiver spacing were 
simulated to explore sensitivity of DPpass to receiver spac-
ing and fish movement rates for daily range detection 
curves observed calculated for each acoustic transmit-
ter. For each day, DPpass was simulated for three inter-
receiver distances (500, 1000, or 3000  m) and two fish 
movement rates (0.5 or 1.0 m s−1). Thus, we evaluated six 
receiver spacing and movement rate scenarios for each 
daily range detection curve. All virtual receiver lines con-
sisted of 10 equally spaced receivers. The 1000-m inter-
receiver distance was chosen to mimic receiver spacing 
of acoustic receivers deployed in a study of walleye 
movements in Lake Huron [24]; 500- and 3000-m inter-
receiver distances were arbitrarily chosen to encompass 
conceivable other receiver deployment scenarios. Swim-
ming speeds of fish were chosen to represent the range 
of swimming speeds observed in walleye [35]. The start-
ing location for each simulated fish was randomly chosen 
but constrained to 1000 m from the virtual receiver line, 
and a distance equal to half of the spacing past receivers 
at both ends of the simulated line and movement of vir-
tual fish was perpendicular to receiver line. The perpen-
dicular arrangement between the simulated receiver line 
and acoustic transmitter provided conservative estimates 
of DPpass. Non-perpendicular paths provided additional 
time to detect virtual fish. Simulated acoustic transmis-
sion frequency mimicked transmitters implanted in wall-
eye to study movements in Lake Huron and was the same 
for all simulations [24]. The time period between coded 
acoustic transmissions was random with a mean of 120 s 
and ranged from 60 to 180 s. Detection or non-detection 
of each simulated acoustic transmission on each virtual 
receiver was determined by a draw from a Bernoulli dis-
tribution, where the probability of detection (success) 
was set from the daily detection range curve (from Lake 
Huron) and the transmitter-to-receiver distance. We also 
removed single detections of each virtual fish on each 
receiver to be consistent with the short-interval filter 
described above. DPpass for each day of the study in Lake 
Huron was calculated for each simulation scenario as the 
proportion of virtual fish detected out of 1000 simulated 
fish at each receiver line.

Results
More than 1.9 million acoustic transmissions were 
detected from eight stationary acoustic transmitters on 
69 acoustic receivers set within four lines in Saginaw 
Bay and Lake Huron from November 2010 to November 
2012 (Fig. 1; Table 1). The expected number of transmis-
sions was 144 for each acoustic transmitter on each day. 
The average number of detections per day was similar 
between paired acoustic transmitters within receiver 

lines and ranged from approximately 250 to 500 for all 
transmitters (Table  1). The expected number of acoustic 
transmissions emitted ranged from 70,272 to 98,496 for 
all acoustic transmitters during the experiment. The high-
est number of detections per day occurred from acoustic 
transmitters 1 and 2 at line 1 and the maximum distance 
at which a transmission was detected varied and ranged 
from 7 km to more than 11 km (Table 1). Minimum trans-
mitter–receiver distances varied among acoustic trans-
mitters and ranged from approximately 200 to 400 m. At 
all lines, detections at maximum detection range (7 to 
>11  km) occurred infrequently (<~5 times/line) during 
the 2-year period. Thus, the detection probability at these 
maximum observed detection ranges was nearly zero.

Detection rate by receivers in Lake Huron was inversely 
related to transmitter–receiver distance for all time inter-
vals and all acoustic transmitters. The median decrease 
in detection rate for a 1-m increase in distance between 
acoustic transmitters and receiver ranged from 0.03% 
to 0.67% (median: 0.12%) for all 678 logistic regression 
models fit to weekly subsets of detections for each acous-
tic transmitter. All model coefficients differed from zero 
(p  <  0.05). Model fit estimated by McFadden’s pseudo-
R2 ranged from 0.11 to 0.99 and was higher than 0.8 for 
87% of models. Only 27 models had McFadden’s pseudo-
R2 values equal to or less than 0.6. Detection rate esti-
mated for transmitter–receiver distances less than 400 m 
was lower than expected for some weekly intervals and 
acoustic transmitter locations.

Estimated values of detection probability at 1000  m 
(DP1000) fluctuated through time and ranged from less 
than 0.2 to 0.9 for all acoustic transmitters (Fig. 2). Pat-
terns of variability in DP1000 time series for paired acous-
tic transmitters within each line were more similar than 
patterns among lines (Fig. 2). The specific timing of high 
and low detection probability varied among lines and was 
characterized by sudden changes in detection probability 
spanning 1–2 weeks when compared to the overall mean 
detection probability at each line (Fig. 2).

The best model, as determined using AIC, included 
four nonlinear smoothing functions that represented 
the relationship between DP1000 and month for com-
bined acoustic transmitters at each line (Table  2). The 
ΔAIC value calculated for this model and the next best 
candidate model was 7.8 (Table 2). A ΔAIC greater than 
six is considered strong support for one model over the 
other and likely reflects a true difference between mod-
els [32]. Comparison of Akaike weights for the two best 
models indicated that the top-ranked model was at least 
49 times more strongly supported by the data than the 
second-ranked model. Strong support of the top-ranked 
model over candidate models that included smoothed 
terms for each acoustic transmitter or a single smoother 
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for all transmitters and lines indicated the relationship 
between DP1000 and month was similar within lines, but 
differed among lines. Inclusion of a ‘transmitter’ term 

in the most parsimonious model explained more vari-
ation in the dataset than candidate models with a ‘line’ 
or an intercept term (grand mean) and was consistent 
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Fig. 2  Detection probability time series estimated for 1000 m transmitter–receiver distance (DP1000) in Lake Huron. DP1000 was estimated for weekly 
intervals using logistic regression. Dashed and solid lines represent paired acoustic transmitters within each receiver line. Two transmitters (tag) were 
moored approximately 250 m apart at each line (panes). See Fig. 1 for locations

Table 2  Summary information for candidate models summarizing the probability of detecting a transmitter at 1000 m 
as a function of month and transmitter location (receiver line or transmitter)

DP1000 is the probability of detecting an acoustic transmission at 1000-m transmitter–receiver spacing. Subscript i represents individual transmitters (n = 8), and 
subscript s is the unit of time. Each line represented a geographic location in Lake Huron and included 2 acoustic transmitters (tag) located approximately 250 m 
apart. Residual error (ɛ) represents residual error unaccounted by model. The variable month was represented numerically as the month of the observation during the 
experimental trial. All models included an AR1 autocorrelation structure to account for autocorrelation structure in data. Model degrees of freedom (df), log likelihood 
(LL), Akaike information criterion (AIC), delta AIC, Akaike weight, and estimated coefficient of determination (R2) are summarized for each candidate model

Candidate model df LL AIC ΔAIC Akaike weight R2

DP1000is = α + fline(months)+ tagi + εis 14 −526.74 1081.49 0.0 0.980 0.63

DP1000is = α + f (months)+ tagi + εis 11 −533.66 1089.32 7.8 0.020 0.57

DP1000is = α + ftag(months)+ tagi + εis 18 −530.36 1096.73 15.24 0.000 0.59

DP1000is = α + fline(months)+ line+ εis 10 −541.55 1103.11 21.62 0.000 0.54

DP1000is = α + f (months)+ line+ εis 7 −547.85 1109.71 28.22 0.000 0.51

DP1000is = α + ftag(months)+ line+ εis 14 −543.79 1115.57 34.08 0.000 0.53

DP1000is = α + fline(months)+ εis 7 −590.51 1195.02 113.53 0.000 0.01

DP1000is = α + f (months)+ εis 4 −596.57 1201.14 119.66 0.000 0.00

DP1000is = α + ftag(months)+ εis 11 −590.62 1203.23 121.75 0.000 0.00
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with differences in average detection probability among 
acoustic transmitters.

Nonlinear trends were observed in all additive model 
smoothers derived from the most parsimonious model 
for the month-transmitter detection probability (DP1000) 
relationship for all lines (Table  3). At line 1, predicted 
DP1000 was lowest in January and December, increased 
during the spring, and was highest during May–June 
(Fig. 3). In contrast, DP1000 at lines 2 and 4 were relatively 
constant during the spring, fall, and winter but decreased 
during summer (Fig.  3). Line 3 had a similar pattern as 
observed at lines 2 and 4, but the magnitude of differ-
ence among months was less (Fig.  3). Predicted DP1000 
ranged from approximately 0.6 to 0.9 at line 1 and 0.2 
to 0.7 at lines 2–4 (Fig. 3). Mean DP1000 using the most 
parsimonious model ranged from 0.35 to 0.8 (Fig. 4) for 
each acoustic transmitter and was substantially higher for 
transmitter at line 1 than all other transmitters (Fig.  4). 
Mean predicted DP1000 differed significantly among lines 
but did not differ within lines except for acoustic trans-
mitters 3 and 4 in line 2 (Table 4).

The simulated probability of detecting a fish moving 
through a line of receivers DPpass varied as a function of 
range detection curve used (i.e., transmitter), receiver 
spacing, and movement rates of virtual fish (Fig. 5). In all 
simulated scenarios, decreases in DPpass consisted of dis-
crete short-duration (i.e., days) events and did not mir-
ror seasonal and multi-year patterns observed in DP1000 
from Lake Huron. As movement rate of simulated fish 
increased, DPpass decreased regardless of inter-receiver 
spacing; however, increasing inter-receiver spacing and 
differences in range detection curves among stations 
were dominant factors that influenced DPpass. All vir-
tual fish moving at 0.5 or 1.0  m  s−1 were detected on 

all simulated days with 500-m inter-receiver spacing 
for acoustic transmitter 1 (Table  5). Acoustic transmit-
ter detection probability on a virtual line (DPpass) with 
receivers spaced 500  m apart for transmitters 3, 5, and 
7 was slightly lower than observed for transmitter 1. For 
transmitters 3, 5, and 7, all fish were detected on more 
than 90% of simulated days at both simulated movement 
rates and a virtual line of receivers spaced 500  m apart 
(Table 5). More than 85% of days modeled had estimated 
DPpass of 1.0 at 1000-m inter-receiver spacing with 0.5 
or 1.0 m s−1 movement rates (Table 5). The lowest per-
centage of days in which all simulated fish were detected 
occurred at 3000-m inter-receiver spacing and ranged 
from approximately 43% at transmitter 3 to 95% at trans-
mitter 1 (Fig. 5, Table 5). Simulated DPpass at 1000 m was 
higher for all fish movement rates compared to transmit-
ter detection probability (DPpass) estimated for the same 
receiver line in this study.

Discussion
Our study was unique in that we documented seasonal 
changes in acoustic transmitter detection probability for 
nearly 2 years at four separate locations in Lake Huron. 
Detection probability differed among months, but this 
variation was inconsistent through time and among 
receiver lines. Therefore, results from short-term range 
detection studies (e.g., few weeks or months) would not 
have been representative of transmitter detection prob-
abilities over longer time intervals of at least 1  year. In 
systems like Lake Huron, deployment of range testing 
transmitters at several locations and for the duration of 
a study may be necessary to identify locations and peri-
ods of time (at monthly temporal scales) when detec-
tion probability was low enough for fish to have passed 
without detection. Observed fluctuations in acoustic 
transmitter detection probability are likely system spe-
cific and related to fluctuating environmental conditions 
(e.g., waves, ice, vegetation, and precipitation) between 
transmitter and receiver at the time of the acoustic trans-
mission, although the time resolution at which detection 
probability is calculated may influence the magnitude of 
fluctuations [17, 19, 36, 37].

Detection of an acoustic transmission is a complex 
process that depends on numerous variables operat-
ing at regional and local scales [19]. Although our pat-
terns in acoustic transmitter detection probability did 
not differ for transmitters deployed within 250  m of 
each other, predicted mean DP1000 calculated for the 
entire time series differed for paired acoustic transmit-
ters at line 2. Differences in mean detection probability 
of transmitters located within 250 m of each other likely 
reflect local processes operating at small spatial scales 
such as patchy plankton blooms, emergent vegetation, 

Table 3  Model output of  nonlinear component of  most 
parsimonious generalized additive model (selected 
from  among nine candidate models, see Table  2) 
to describe monthly patterns in 1000-m transmitter detec-
tion probability at 4 receiver lines in Lake Huron

A smoothed term for each receiver line was included in the most parsimonious 
model. Estimated degrees of freedom (edf ) represent the degree of nonlinear 
patterns in the smoother line (linear relationship = 1, edf values >1 indicate 
increasing nonlinear structure). F and p represent summary of statistical tests 
for a relationship between months and the probability of detecting an acoustic 
transmitter for each smoothing function (i.e., test of null hypothesis = 0 for each 
smoothing function). Autocorrelation structure was included to account for 
patterns in model residuals. See Fig. 1 for map of study area

Smooth term edf F p

Line 1 4.952 4.973 0.000

Line 2 3.912 1.843 0.001

Line 3 3.550 0.702 0.084

Line 4 4.072 1.294 0.007
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ambient noise, or the specific configuration of the phys-
ical environment, especially the presence of hard, rocky 
substrate that results in echoes, or variation among 
configurations of mooring systems [7, 37, 38]. Weather 
conditions or other environmental conditions acting 
at a regional scale were unlikely to have differentially 
influenced detection of multiple acoustic transmitters 
deployed in close proximity. The environmental causes 
for the variation in transmitter detection probability 
were not obvious in this study despite initial attempts to 
link transmitter detection probability with fluctuations 
in wind, waves, and precipitation. The inability to link 
transmitter detection probability with environmental 
conditions was likely the result of complex interactions 
among multiple environmental and biotic variables. 
Fluctuations in environmental characteristics were also 

not measured at appropriate spatial and temporal reso-
lution to link fluctuations in transmitter detection prob-
ability with environmental and abiotic conditions. Other 
sources of noise that may influence detection probabil-
ity include noise from operating boats in the vicinity 
of the receivers and noise associated with grinding ice 
during winter or the angle between receiver and trans-
mitter. Although we did not quantify boat traffic near 
our receivers, intermittent noise associated with boats 
passing near the receivers was unlikely to have impacted 
transmitter detection probability calculated at weekly 
time intervals. Likewise, we did not quantify noise asso-
ciated with grinding ice flows near our receivers. Sea-
sonal trends observed in acoustic transmitter detection 
probability in this study may be partially explained by 
ice formation and break-up in Lake Huron. We assumed 
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Fig. 3  Predicted transmitter detection probability at 1000 m (DP1000) estimated by Generalized Additive Model (back-transformed) for monthly 
patterns at each line in Lake Huron. A cubic regression smoother was fit to each station as a function of month and used to predict the probability 
of detecting an acoustic transmission for each week of the study. Figure represents predicted probabilities for most parsimonious GAM model 
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that the fluctuations in the angle between receiver and 
transmitter owing to the design of our transmitter and 
receiver mooring did not influence detection probabil-
ity. Observations of acoustic receivers by SCUBA divers 
at locations throughout the Great Lakes suggest receiv-
ers remain nearly motionless and within a few degrees 
of vertical when surface conditions are safe for diving. It 
is unknown how receivers reacted when surface condi-
tions were unsafe for diving.

DPpass varied substantially at daily time intervals 
in simulations with 3000-m receiver spacing and for 
all simulations with empirical detection range curves 
from line 3. Simulated DPpass incorporated daily range 

detection curves, and observed variability in DPpass 
strongly depends on the shape of the detection range 
curve. Therefore, the suite of abiotic and biotic variables 
at sub-day temporal scales (i.e., patchy algal blooms, 
wind, waves, and ice dynamics) that resulted in vari-
able daily detection range curves also impacted DPpass. 
Furthermore, it is not surprising that day-to-day vari-
ability in DPpass was highest for simulations at 3000-m 
inter-receiver distances because of the strong negative 
relationship between detection probability and distance 
between transmitter and receiver.

The probability of detecting an acoustic transmis-
sion on a single receiver within a line is often used as 
an index of transmitter detection probability of a line, 
likely because static range testing procedures are easier 
to conduct over multiple-day time periods or inclement 
weather conditions compared to mobile range testing 
[23]. If receiver spacing, acoustic transmission scheme, 
and fish movement rate provide multiple opportunities 
for transmitting and detecting a transmitter while the 
fish is moving through a receiver line, the probability of 
detecting the transmitter on each receiver may be low but 
can result in high acoustic transmitter detection prob-
ability for the line because only a single detection is nec-
essary to confirm the presence of a fish [23]. In contrast, 
high probability of detecting a non-moving transmitter 
on an individual receiver may correspond to low trans-
mitter detection rates on a line of multiple receivers if fish 
movement rates are high and the time interval between 
acoustic transmissions is long with the result of a fish 
moving through a line without transmitting an acoustic 
signal [23]. Few studies consider the relationship between 
acoustic transmitter detection probability of receivers 
and lines when assessing receiver line performance. The 
probability of detecting an acoustic transmission may not 
accurately reflect the probability of detecting a fish mov-
ing through a line of receivers, so simulations like the one 
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Fig. 4  Back-transformed mean predicted probability of detecting 
an acoustic transmission estimated from generalized additive model 
at 1000 m (DP1000) transmitter–receiver distance in Lake Huron. 
Predicted probability was estimated for 8 transmitters (tag). Error bars 
represent back-transformed 95% confidence intervals

Table 4  Simultaneous pairwise comparisons of  mean detection probability for  acoustic transmitters (tag) deployed 
at eight locations within four lines in Lake Huron (see Fig. 1)

Values represent the probability of µa − µb = 0, where µa is the mean detection probability for any transmitter and µb is the mean detection probability for any other 
transmitter. Comparisons of paired transmitters within a line are italicized

Tag 1 2 3 4 5 6 7 8

1 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

3 <0.001 <0.001 <0.001 0.061 <0.001

4 0.995 0.024 0.357 1.000

5 0.219 0.097 0.999

6 0.001 0.999

7 0.356

8
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described here are needed to evaluate receiver line per-
formance in the context of fish movement, rather than 
acoustic transmissions.

Identifying a model that accurately represents detection 
range curves is a primary challenge in detection range 

analysis because appropriate curves may differ among 
aquatic systems, locations within systems, and time of 
year. Detection range curves have been described using 
various linear and nonlinear functions based on empiri-
cal observations or the physics of sound propagation in 
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Fig. 5  Simulated probability of detecting an acoustically tagged fish on a receiver line (DPpass) estimated using empirically determined daily range 
detection curves at 4 lines in Lake Huron (see Fig. 1 for receiver line locations). Fish (1000 individuals day−1) were simulated moving through an 
equally spaced 10-receiver line at two constant velocities (0.5, 1.0 m s−1) and three inter-receiver distances (500, 1000, 3000 m)

Table 5  Percent of days with line detection probability (DPpass) >0.80 or (DPpass) equal to 1.0 estimated by simulating vir-
tual fish moving through a receiver line

Simulation results included three distances (500, 1000, and 3000 m) and two movement rates (0.5, 1.0 m s−1). Virtual fish (N = 1000/day) were swum through virtual 
receiver line, and detection of acoustic transmissions was simulated using daily range detection curves at four locations in Lake Huron

Tag Line Receiver  
spacing

Days ≥ 0.80 Days = 1.0

0.5 m s−1 1.0 m s−1 0.5 m s−1 1.0 m s−1

1 1 500 100.0 100.0 100.0 100.0

3 2 500 99.8 99.7 99.0 96.2

5 3 500 96.4 95.1 94.0 90.6

7 4 500 100.0 100.0 100.0 99.0

1 1 1000 100.0 100.0 100.0 99.3

3 2 1000 99.8 98.8 96.6 87.5

5 3 1000 95.9 94.0 92.3 86.7

7 4 1000 100.0 100.0 99.4 96.7

1 1 3000 98.4 98.1 95.0 86.7

3 2 3000 85.0 79.5 61.2 43.1

5 3 3000 92.3 88.4 78.5 66.5

7 4 3000 96.3 93.7 80.2 62.6



Page 12 of 14Hayden et al. Anim Biotelemetry  (2016) 4:19 

an aquatic environment [19]. A comparison of several 
linear and nonlinear models to describe detection range 
revealed that a sigmoidal model best modeled detec-
tion range in a marine system using transmitters rang-
ing from 136 to 158 dB [7, 36]. Although the best model 
for representing detection range was not explicitly tested 
in this study, the majority of pseudo-R2 (i.e., goodness 
of fit) values for logistic models used in this study were 
higher than 0.8, suggesting that the logistic function was 
reasonable for modeling detection range [36]. However, 
the logistic function did not accommodate decreased 
detection probability at receivers (N = 1 for each trans-
mitter) when receivers were located less than 400 m from 
transmitters, as was observed during several time inter-
vals in this study. This result may seem odd, consider-
ing that acoustic transmissions were often detected well 
beyond 1 km. Non-detection of acoustic transmissions at 
close range was consistent with close proximity detection 
interference caused by echoes originating from acoustic 
transmissions, preventing successful decoding [39]. This 
phenomenon is linked to the composition of substrate 
(e.g., mud, rock, and sand); presence of other reflective 
materials; orientation of the substrate, acoustic trans-
mitter, and receiver to each other; and the power of the 
acoustic transmission. Close proximity detection inter-
ference is limited to transmitter-to-receiver distances 
of less than 400 m [39]. The experimental design of this 
study resulted in a maximum of one receiver within 
400 m of each transmitter; logistic regression coefficients 
were similar for detection range curves modeled with 
and without receivers less than or equal to 400  m from 
the transmitter. Therefore, it is unlikely that close prox-
imity detection interference (as per [39]) strongly influ-
enced detection range curves in this study.

We used a two-stage analysis that combined logistic 
regression to estimate detection range curves and GAMs 
to characterize seasonal patterns in DP1000. Alternatively, 
we could have used a mixed-effect binomial GAM model 
to characterize seasonal patterns in DP1000. This approach 
would have allowed us to account for variance in the 
detection probability–distance within weeks. However, 
an attempt to fit a mixed-effect binomial GAM using 
the ‘mgcv’ package (version 1.8–12) to our data failed to 
converge on a result. This is not surprising because the 
‘GAMM’ function in ‘mgcv’ is known to perform poorly 
with binary data [40]. Modeling the detection prob-
ability–distance relationship separately and subsequent 
analyses of transformed estimates of DP1000 with GAMs 
allowed us to characterize the variability in the probabil-
ity of detecting an acoustic transmission at 1000 m at the 
expense of including within-week variability in detection 
probability. Not including this source of variability in 
GAMs could bias results. However, inspection of logistic 

model results and goodness-of-fit metrics suggests that 
unexplained variation in weekly distance–detection 
probability relationship was minimal and unlikely influ-
enced the results of the GAM. Furthermore, our analy-
sis allowed us to easily incorporate standard alternative 
error structures to accommodate time autocorrelation in 
DP1000.

This study assumed that transmitter collisions, or the 
simultaneous detection of multiple acoustic transmis-
sions that results in undecipherable transmitter codes, 
did not occur. The frequency of transmitter collisions 
is dependent on the number of transmitters detected 
simultaneously on the same receivers, the duration of 
each coded signal, and average duration of time between 
acoustic transmissions [18]. Paired transmitters at each 
line were detected on the same receivers, and if trans-
missions occurred at the same time, these transmissions 
could have resulted in transmitter collisions. However, 
simulations of transmitter collisions for increasing num-
bers of transmitters simultaneously transmitting (aver-
age delay =  600  s) suggested that transmitter collisions 
were unlikely when fewer than four transmitters were 
present in the system (Vemco online collision calculator, 
http://vemco.com/collision-calculator/, accessed June 25, 
2015). In addition to transmitter collisions resulting from 
paired transmitters, walleye tagged with acoustic trans-
mitters were released in Lake Huron and Saginaw Bay in 
spring 2011 and could have caused transmitter collisions 
if the fish were in proximity of the same receivers that 
detected stationary transmitters [24]. During our study 
period, the maximum number of tagged walleye detected 
on any receiver within the same hour was 12. Using the 
same transmitter collision calculator, 12 fish transmit-
ters simultaneously transmitting with an average delay 
of 120  s simultaneously could result in a 38% reduction 
in detections. Therefore, actual detection probabilities 
during our study could have been up to 38% higher than 
estimated, but such occurrences were rare. Inspection of 
detection probability time series before and after release 
of tagged fish in Lake Huron and Saginaw Bay also did 
not reveal any indication of excessive transmitter colli-
sions caused by tagged walleye passing by our stationary 
acoustic transmitters during the study. However, future 
range testing studies should be cognizant of potential 
effects of code collisions on detection range estimates 
and should attempt to separately account for effects of 
collisions and other processes that affect signal attenua-
tion and interference.

Conclusions
Researchers should consider the effects of fluctuat-
ing transmitter detection range on interpretation and 
design of telemetry studies at temporal and spatial scales 

http://vemco.com/collision-calculator/
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consistent with their study objectives. Short-duration 
preliminary range testing at limited spatial and temporal 
scales may not capture variation in acoustic transmitter 
detection probability observed at large spatiotemporal 
scales. The irregular variation in transmitter detection 
probabilities we observed among receivers in Lake Huron 
makes designing receiver lines in similar systems chal-
lenging and emphasizes the need for retrospective 
analysis of acoustic transmitter detection probabilities. 
Although transmitter detection probability of individual 
receivers in a line may fluctuate at seasonal timescales, 
incorporation of multiple receivers in a line can serve to 
buffer these fluctuations and improve the probability of 
detecting a transmitter. Based on the results of our simu-
lations, in waters ranging from 10–30 m in depth in Lake 
Huron with 69  kHz transmitters operating at 158  dB, 
receivers placed 1000  m apart will ensure a 90% prob-
ability of detecting a tagged fish on a receiver line over 
a 2-year period. Planning for, and inclusion of, static 
range testing using stationary transmitters as a part of a 
study design facilitates retrospective analysis of detection 
probability over the full range of environmental condi-
tions during a study and allows the researcher to identify 
periods of time when performance of the acoustic trans-
mitter–receiver system may have been poor. Combin-
ing static range testing with simulation modeling of line 
detection probability provides a framework for research-
ers to optimize telemetry system design prior to releas-
ing fish and retrospectively evaluate the performance of 
existing receiver lines.
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