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Abstract 

Background:  Biotelemetry offers an increasing set of tools to monitor animals. Acceleration sensors in particular can 
provide remote observations of animal behavior at high temporal resolution. While recent studies have demonstrated 
the capability of this technique for a wide range of species and behaviors, a coherent methodology is still missing (1) 
for behavior monitoring of large herbivores that are usually tagged with neck collars and frequently switch between 
diverse behaviors and (2) for monitoring of vigilance behavior. Here, we present an approach that aims at remotely 
monitoring different types of large herbivore behavior including vigilance with acceleration data.

Methods:  We pioneered this approach with field observations of eight collared roe deer (Capreolus capreolus). First, 
we trained a classification model for distinguishing seven structural behavior categories: lying, standing, browsing, 
walking, trotting, galloping and ‘others’. Second, we developed a model that predicted the internal states, active and 
resting, based on the predicted sequence of structural behaviors and expert-based rules. Further, we applied both 
models to automatically monitor vigilance behavior and compared model predictions with expert judgment of 
vigilance behavior. To exemplify the practical application of this approach, we predicted behavior, internal state and 
vigilance continuously for a collared roe deer.

Results:  The structural behaviors were predicted with high accuracy (overall cross-validated accuracy 71%). Only 
behaviors that are similar in terms of posture and dynamic body movements were prone to misclassification. Active 
and resting states showed clear distinction and could be utilized as behavioral context for the detection of vigilance 
behavior. Here, model predictions were characterized by excellent consistency with expert judgment of vigilance 
behavior (mean accuracy 96%).

Conclusion:  In this study, we demonstrated the strong potential and practical applicability of acceleration data 
for continuous, high-resolution behavior monitoring of large herbivores and showed that vigilance behavior is well 
detectable. In particular, when combined with spatial data, automated behavior recognition will enrich many fields in 
behavioral ecology by providing extensive access to behaviors of animals in the wild.
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Background
Solid data about animal behavior are essential for many 
fields of science and management. In the past, collecting 
these kinds of data was associated with time-consuming 
field observations and was seldom possible with elusive, 

nocturnal, wide-ranging or aquatic species. Advances 
in animal-borne sensors now allow for an automated 
remote monitoring of animal behavior. Starting in the 
1990s, the use of GPS telemetry stimulated substantial 
progress in animal ecology [1]. By analyzing animal tra-
jectories, researchers also started to gain information 
about animal behavior that was driving the observed 
movement pattern [2–4].

Currently, sensors that measure acceleration in dif-
ferent dimensions and with high frequency are about to 
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provoke a new boost in ecology [5]. Unlike GPS sensors, 
which only allow for detecting behaviors that produce 
distinct movement patterns, acceleration sensors allow 
for monitoring of a wide variety of behaviors by provid-
ing information about an animal’s posture and motion. 
This is technically feasible because acceleration sensors 
measure two types of acceleration: static body accelera-
tion and dynamic body acceleration [6]. Static body accel-
eration originates from the earth’s gravitational field and 
is used to calculate the posture of the sensor (see detailed 
description in [6]). Dynamic body acceleration originates 
from all motions of the body part to which the sensor 
is attached. To obtain valid information about animal 
behavior from acceleration data, it is necessary to identify 
characteristic signatures inside the data that are corre-
lated with the target behaviors. The methodological steps 
for automating this task have been extensively described 
[7, 8] and include data collection, data processing, mod-
eling and model application. Acceleration is either meas-
ured continuously or over discrete time segments of fixed 
width, which are called ‘bursts.’ After data collection, the 
raw acceleration data are processed into meaningful pre-
dictor variables that reflect features of static or dynamic 
body acceleration. When acceleration is sampled contin-
uously, the signal is first divided into segments of fixed 
width (e.g., 5  s) from which the predictor variables are 
then calculated (i.e., the predictor variables summarize 
the acceleration data of the segment, and each segment 
with its set of predictor variables constitutes an obser-
vation). When acceleration is already sampled in bursts, 
the original bursts or subsegments are used for param-
eterization. Modeling is usually based on supervised 
classification models that are trained with a ground-tru-
thed dataset [7–9]. In this case, the behavior of tagged 
animals must be observed in the field, which allows for 
assigning a behavioral category to each segment of the 
training dataset. Alternatively, unsupervised clustering 
combined with a subsequent expert-based interpretation 
of the identified clusters can be used [10]. The resulting 
model can then be used to automatically detect behav-
ior. Automatic classification of animal behavior has been 
successfully applied in many mammals, birds, fish and 
reptiles (see recent summary in [5]). The current state of 
the art of parameterizing the acceleration signal in seg-
ments of fixed width, however, has two major disadvan-
tages. First, segments during which the animal displayed 
several behaviors will deteriorate the performance of the 
resulting model [7, 11]. This is particularly problematic 
in species like roe deer which frequently change behav-
ior. Second, the segment width is ideally adjusted to the 
acceleration signature of the target behavior. When sev-
eral behaviors are targeted (e.g., browsing and standing), 

segments of fixed width are unable to account for behav-
ior-specific signatures of different length.

Automatic monitoring of vigilance behavior with accel-
eration data is a particular challenge that, to the best of 
our knowledge, has not been addressed so far. Hereafter, 
we refer to structural behavior categories as those that 
are characterized by the structure of the behavior, i.e., by 
a specific motion and posture (e.g., ‘standing with head 
up’) [12]. Further, we refer to an animal’s internal state 
as the operationalized physiological and psychological 
state of an animal [13] that drives the animal to perform 
specific structural behaviors to fulfill one or more needs. 
Many species that are subject to predation perform struc-
tural behaviors that fulfill safety needs by reducing the 
risk of being killed [14, 15]. Large herbivores for exam-
ple frequently display the structural behavior ‘standing 
with head up’ which is commonly interpreted as vigilance 
behavior by which animals aim for monitoring their sur-
roundings for approaching predators and, thereby, reduce 
the probability of an attack [14–16]. Behavioral ecologists 
are most often not per se interested in the display of vigi-
lance behavior but want to measure the internal state of 
vigilance [16] (e.g., different levels of alertness) which is 
also referred to as perceived predation risk [14, 17]. The 
internal state, however, is not directly observable but can 
be assessed by measuring the outward signs (e.g., the 
proportion of time or the frequency an animal displays 
vigilance behavior [16]). During periods when an animal 
is considered as being in state active or in state forag-
ing, displays of the behavior ‘standing with head up’ are 
considered good markers for measuring vigilance/per-
ceived predation risk because herbivores have to switch 
between different structural behaviors (e.g., feeding with 
head down standing with head up; Fig. 1) to fulfill safety 
and other needs (e.g., nutritional needs). Thus, they have 
to balance conflicting needs in their behavioral decision-
making process and should invest more time in vigilance 
when perceived risk increases [14, 17]. While resting 
(prevailing needs are safety, regeneration and processing 
of food), an animal might display the structural behavior 
‘standing with head up’ as well (Fig. 1). Here, it might also 
be dedicated to fulfill safety needs but cannot be used as 
indicator of vigilance because the animal is not forced to 
trade between at least two different structural behaviors. 
Measuring vigilance, therefore, requires (1) monitoring 
of the structural behavior ‘standing with head up’ and (2) 
evaluating the current internal state (i.e., not resting). In 
field observations that focus on vigilance behavior, the 
evaluation of an animal’s current state is usually han-
dled by observer judgment if the focal animal is active or 
foraging [18–20]. When automated remote monitoring 
of vigilance behavior with acceleration data is targeted, 
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procedures that predict the internal state of an animal 
have to be implemented in the modeling framework.

The primary aim of this study is to develop an approach 
for an automated detection of vigilance behavior in large 
herbivores, based on acceleration data. We apply the 
approach to detect vigilance behavior in roe deer (Capre-
olus capreolus). In the first step, we develop and evalu-
ate a classification model that aims at classifying behavior 
of roe deer into structural behavior categories, based on 
video-documented field observations of collared animals. 
In the second step, we develop a model that synthesizes 
the sequence of predicted structural behaviors into the 
internal states ‘active’ and ‘resting’. Finally, we apply both 
models to detect vigilance behavior and compare model 
predictions with expert judgment of vigilance behavior. 
We exemplify the application of this approach by predict-
ing behavior, state and vigilance for a collared roe deer.

Methods
Study area
Fieldwork for this study was conducted in southwestern 
Germany (state of Baden-Wuerttemberg) at two study 
sites (Rhine valley: 48.67, 8.00; Hegau: 47.88, 8.73). Both 
sites were characterized by woody patches that were sur-
rounded by arable fields and meadows. During the winter 
months, the vegetation height in all meadows and most 
fields was very low, allowing for good visibility of several 
100 m. A dense network of paved and gravel roads was 
present at both sites.

Capture and handling of animals
From 2011 to 2013, we captured roe deer in box-traps 
and drive-nets. All deer that weighed more than 15  kg 

and showed good health were equipped with a neck col-
lar. All capture, tagging and monitoring protocols were 
approved by the animal welfare and hunting administra-
tion of Baden-Wuerttemberg. In total, we collared 47 ani-
mals (Rhine valley 35, Hegau 12). The collars were made 
by e-obs GmbH (Munich, Germany), weighed 370  g 
and, thus, reached maximally 2.5% of the body mass of 
tagged deer. The collar itself was made out of leather and 
hosted a GPS sensor, an acceleration sensor and a UHF 
transmitter in a case on top and two batteries (D-cells) 
on each side (Additional file 1: Fig. S1). The weight and 
the low center of gravity of the batteries prevented the 
collar from turning around the neck and positioned the 
GPS/acceleration unit at a dorsal position. The accelera-
tion sensor measured acceleration in three perpendicu-
lar axes. Based on the dorsal position, the axis measured 
acceleration in forward–backward horizontal motion (x 
axis, denoted as surge), left–right horizontal motion (y 
axis, denoted as sway) and up-down vertical motion (z 
axis, denoted as heave). We measured acceleration every 
minute at a sampling rate per axis of 10.54 Hz in bursts of 
9.1 s in length, whereby each axis was sampled alternat-
ingly (xyzxyzxyz…). GPS-positions were taken based on 
an accelerometer-informed schedule [21]. Once the vari-
ance of five consecutive acceleration bursts of the z axis 
was below a threshold of 1000 (inactive animal, collar 
settings ACC_L_THR: 1000), the collar collected a GPS-
position every 2  h, above this threshold every 15  min 
(active animal).

Behavioral observations
All behavioral observations were made in the winter 
months of 2011 and 2012 by two observers. In the field, 

Fig. 1  Illustration of structural behaviors (bottom line and pictures), internal states (top line) and vigilance behavior (red rectangles). Large herbivores 
switch between different structural behaviors to satisfy prevailing needs (e.g., nutritional and safety needs) when being in state active. Here, a 
display of the structural behavior ‘standing with head up’ is referred to as vigilance behavior and can be utilized as index for perceived predation risk. 
‘Standing with head up’ is also displayed during resting states (e.g., when animals stand in the sun for longer periods of time). Here, it can not be 
used as indicator of vigilance, because the animal is not forced to trade different structural behaviors to fulfill prevailing needs
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the observer first located the collared animals within 
range via UHF triangulation and afterward placed him-
self in a favorable position inside a car and waited for 
approaching animals. To increase the amount of accel-
eration data during field observations, some collars 
were rescheduled to measure acceleration bursts every 
15 s for the observation period. Almost all observations 
were done on meadows due to the low visibility inside 
the forest. We documented the observed behavior with 
a video camera (Panasonic Lumix DMC-TZ 10, Pana-
sonic HC-V500). Before or after each observation, a 
digital radio-controlled clock, which automatically syn-
chronized to the German DCF77 time signal, was filmed 
to facilitate easy synchronization of acceleration data and 
video segments.

Data processing
In the laboratory, we first synchronized the acceleration 
signals with the video recordings and allocated a struc-
tural behavior category to each acceleration measure-
ment. For this purpose, we used the programs Windows 
Movie Maker 5.1 in combination with R [28] and the 
program Observer® XT 10 by Noldus Information Tech-
nology. We described behavior based on the structural 
behavior categories: lying, standing, browsing, walking, 
trotting, galloping and ‘others’ (Table  1 with detailed 
description).

Additionally, we classified the posture of the animal’s 
neck in head down, head middle, head up and head mov-
ing (Table 2 with detailed description), because roe deer 

can display all behaviors with different neck postures. 
All behavior and posture categories were exhaustive and 
exclusive.

The acceleration data were sampled in units of milli-
volts. We transformed the raw acceleration data in units 
of g (1  g =  9.81  m/s2) with a linear transformation fol-
lowing the user manual [22]. As every sensor is a little 
different, it is recommended to calibrate each collar by 
successively aligning every axis perpendicular toward 
the earth’s gravitational field. This allows for calculating 
sensor-specific offset and slope (see detailed description 
in [22]). We were not able to do the calibration for half 
of the collars, because we did not calibrate them before 
collaring the animals and afterward did not get all col-
lars back from the field. Instead, we used the average 
calibration values of 30 calibrated collars as constants 
for the linear transformation. Calibration revealed small 
differences in the collar-specific offsets which influenced 
measurements of static body acceleration. To prevent 
potential bias in the classification model, we calculated a 
collar-specific correction value (see detailed description 
in Additional file 2: Fig. S2) that was used to calculate a 
centered static body acceleration of the x axis (sba_x_c, 
Table 3). We calculated static body acceleration, dynamic 
body acceleration, mean dynamic body acceleration, 
mean difference and variance between adjacent data 
points, variance of static body acceleration, variance 
and maximum of dynamic body acceleration, dominant 
power spectrum and the frequency of the dominant 
power spectrum (see Table 3 with detailed description). 
Most predictor variables were already used in former 
studies [7, 23, 24].

Instead of assigning predictor variables to segments of 
fixed width, we calculated those for each data point based 
on moving windows with variable width (Fig.  2). Static 
body acceleration was calculated with a moving aver-
age using a window width of seven data points (0.66  s). 
This window width showed fine smoothing when animals 
changed posture [25]. All other predictor variables were 
calculated with window widths of 10 data points (~1  s, 
labeled as w1), 22 data points (~2  s, labeled as w2), 45 
data points (~4 s, labeled as w5) and 96 data points (~9 s 
labeled as w9).

Modeling
The modeling approach consisted of three modules. In 
the first module, we developed and evaluated a classifica-
tion model that classified the observed acceleration sig-
nal into structural behavior categories. We expanded this 
module with another classification model that targeted 
the posture of an animal’s neck. In the second module, we 
developed a model to synthesize the predicted sequence 
of structural behaviors into the internal states active and 

Table 1  Ethogram of animal structural behavior

Behavior Label Description of behavior

Lying l Lying on the ground without body movements

Standing s Standing without body movements

Browsing b Ingestion of food alternated with single steps 
between food sources

Walking w Walking

Trotting t Trotting

Galloping g Galloping

Others o Shaking, scratching with antler, scratching with hoof, 
grooming

Table 2  Ethogram of animal posture

Posture Label Description of posture

Head up u Head is kept above shoulder height

Head middle m Head is kept at shoulder height

Head down d Head is kept below shoulder height

Head moving mo Head is moving from one posture to another 
(e.g., from down to up)
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Table 3  Description of predictor variables

(i = data point within the burst, w = window width). Each predictor variable is calculated for each acceleration axis (except odba_xyz) and for different window widths 
(except sba). These are indicated by specific suffixes (e.g., meandl_x_w2 stands for the meandl that is calculated over the acceleration data from the x axis with a 
window width of 2 s)

Name Formula Description

sba sbai =
1
7
∗
∑i+3

j=i−3 accj
Static body acceleration

sba_x_c sba_x_ci = sba_xi − correction_valuetag Corrected static body acceleration of x axis

dba dbai = |acci − sbai | Dynamic body acceleration

mdba
mdbai =

1
w

∑i+ w
2

j=i− w
2

dbai
Mean dynamic body acceleration

mdba_xyz
mdba_xyzi =

∑i+ w
2

j=i− w
2

(

dba_xj + dba_yj + dba_zj
) Overall mean dynamic body acceleration of the x-, y- and z-axis

meandl
meandli =

1
w

∑i+ w
2

j=i− w
2

∣

∣accj+1 − accj
∣

∣

Mean absolute difference between adjacent data points

vardl
vardli =

1
w−1

∑i+ w
2

j=i− w
2

(∣

∣accj+1 − accj
∣

∣−meandli
)2 Variance of the absolute difference between adjacent data points

varsba
varsbai

1
w−1

∑i+ w
2

j=i− w
2

(

sbaj − sba
)2 Variance of the static body acceleration

vardba
vardbai =

1
w−1

∑i+ w
2

j=i− w
2

(

dbaj − dba
)2 Variance of the dynamic body acceleration

maxdba
maxdbai = MAX

i+ w
2

j=i− w
2

(

dbaj
) Maximum of the dynamic body acceleration

dps See R-Script (Additional file 8). Dominant power spectrum

fdps See R-Script (Additional file 8). Frequency of the dominant power spectrum
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Fig. 2  Acceleration signal of the x- (black), y- (red) and z-axis (blue). Left plot shows the raw acceleration data transformed to values in g. Top right 
shows static body acceleration (sba, calculated with a window width of seven data points); bottom right shows mean dynamic body acceleration 
(mba_w2, calculated with a window width of 22 data points) of the same burst (see Table 3 for a detailed description of the predictor variables). 
In the first 5 s the animal is browsing with the head below shoulder height. Afterward, the head is raised above shoulder height and the animal is 
standing
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resting. In the third module, we combined the previous 
modules to predict vigilance behavior.

Previous studies that tested different classification 
techniques to classify behavior from acceleration data did 
not find substantial differences in terms of model perfor-
mance [8, 26]. Therefore, we employed classification trees 
(CART algorithm, R package rpart [27, 28]) which are 
relatively fast-running and straightforward to interpret. 
The amount of behavior-tagged acceleration data differed 
between the observed animals (Additional file  3: Fig. 
S3). In case of differences in the individual acceleration 
signatures, this would have caused biased splitting rules 
toward animals with more data. Hence, we homogenized 
the dataset and randomly selected a subset of 1500 data 
points per behavior category and animal. We evalu-
ated the minimum amount of data points per subset and 
observed a stabilization of the splitting rules after 1000 
data points. For some animals, we had less than 1500 
data points for the behavior categories trotting, gallop-
ing and ‘others’. Here, we used all available data points. 
The resulting dataset was split into 2/3 training and 1/3 
validation datasets. We were not particularly interested 
in the behavior category ‘others’ and reduced the weight 
(model parameter ‘weight’) for these data points until 
‘others’ behavior was classified into a single leaf. Prelimi-
nary testing showed that model calibration based on ran-
dom tenfold cross-validation led to substantial overfitting 
of the models. We therefore used cross-validation based 
on the individual animals to determine the optimal tree 
size. Here, the model is trained successively for x  −  1 
animals and tested for the out-of-bag animal. We let the 
classification tree grow to full size and then pruned it to 
the smallest tree whose cross-validation error is less than 
the minimum cross-validation error plus one standard 
deviation (‘1-SE rule,’ [27]). We evaluated model perfor-
mance by predicting the pruned classification model to 
the validation dataset and calculated model accuracy

sensitivity

and positive predictive value

accuracy

=
number of true positives + number of true negatives

total number of datapoints
,

sensitivity =
number of true positives

number of true positives + number of false negatives

=
number of true positives

number of all positives
,

ppp =
number of true positives

number of true positives + number of false positives

=
number of true positives

number of positive calls

for each animal separately. Furthermore, we developed 
and evaluated a classification model that predicted the 
posture of the animal’s neck (posture model). For this 
model, we selected parameters that reflect neck posture 
(sba_x, sba_x_c and sba_z) as predictor variables and 
excluded data points when the head was moving (posture 
‘head moving’). We applied the same model procedure as 
for the behavior model.

We categorized the internal state of an animal into 
active and resting. We based state classification on the 
predicted sequence of structural behaviors from the 
behavior model. We defined an animal in state active, 
when it primarily displays the behaviors browsing, walk-
ing, trotting, galloping and ‘others’ (in the following sum-
marized as active behaviors because all involve physical 
motions) for a duration of at least 7  min. We decided 
for a minimum duration to exclude short peaks of active 
behaviors (e.g., relocation, scratching) during resting 
states. Similarly, we consider an animal in state resting, 
when it displays primarily lying or standing behavior (in 
the following, summarized as passive behaviors) for a 
duration of at least 7  min. We used standing and lying 
behavior because roe deer displayed both behaviors while 
resting (personal observations). Here, the minimum 
duration of 7  min compromises between roe deer that 
sometimes rest (e.g., lay down) between two browsing 
periods for short periods and deer that are highly alert 
(stand and scan the surrounding) for several minutes (see 
discussion). The length of 7  min was derived from dis-
cussions with several roe deer experts. We implemented 
these rules in the following way. First, we applied the 
behavior model to the acceleration data of interest. We 
merged the predicted behaviors lying and standing as 
passive behaviors and all other behaviors as active behav-
iors and calculated the proportion of active behavior per 
burst (pactive). We then calculated a moving average with 
a window width of seven minutes over the time series 
pactive. The generated time series showed obvious peri-
ods with high activity and periods with low activity (a 
graphical illustration is provided in Additional file 4: Fig. 
S4). To find the transition points between active and rest-
ing states, we calculated the crossing points between the 
moving average and a threshold value. As selection cri-
terion for the optimal threshold value, we calculated the 
total proportion of time in state active for a sequence of 
threshold values (0, 0.05, 0.1, …, 1) and plotted both. Due 
to the primarily ‘passive’ and thus very homogeneous 
character of resting states, we wanted to select a thresh-
old value that (1) maintains low variation within resting 
states and (2) reliably discriminates resting and active 
states. We, therefore, argue for the smallest threshold 
value after the sharp decline in the proportion of time in 
state active that occurs, when resting states are separated 
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from active states. The choice of the window size and the 
threshold value affected the starting/ending points of 
active states. To better match the exact starting/ending 
points, we scanned the time windows where the thresh-
old value was intersected a second time and assigned the 
final starting/ending points of active states to the times-
tamp of the last/first burst at which its pactive actually 
exceeds the threshold value. This procedure also detected 
active states that were shorter than 7 min. According to 
our definition of active states, we finally removed these.

According to the common definition of vigilance 
behavior, we defined an animal as vigilant when it is 
standing still, with the head raised above shoulder height, 
while being in state active [15]. The final behavior model 
had difficulties to differentiate between the behaviors 
standing and lying. This resulted in many standing events 
being classified as false lying events. It is very unlikely 
that an animal lies down for short periods of time (e.g., 
a few seconds) while being in state active. Hence, all 
predicted lying events inside an active state are presum-
ably true standing events. Based on this assumption, 
we merged both behaviors for vigilance detection and 
joined the corresponding splitting rules. Additionally, the 
behaviors standing and lying were solely classified based 
on parameters that reflect the dynamic body acceleration. 
For vigilance detection, we explicitly wanted to integrate 
the posture head up as a classification rule to separate 
out events where the animal is standing with the head in 
low or middle position. Hence, we constructed the vigi-
lance model by manually combining the splitting rules 
that predicted the behaviors standing and lying from the 
behavior model, and the splitting rules that predicted the 
posture head up from the posture model. We predicted 
vigilance behavior inside all active states. To evaluate 
this approach, an experienced person assessed two video 
recordings per animal and tagged all occurrences of vigi-
lance behavior according to expert judgment. After, we 
compared these with the predictions from the vigilance 
model and calculated accuracy, sensitivity and positive 
predictive value for each animal.

Model application
We predicted animal behavior, state and vigilance behav-
ior for a two-year-old male roe deer (animal id 53) in 
March of 2013. To spatially and temporally plot vigilance 
levels, we projected the collected GPS-positions onto 
the time series of active and resting states and assigned 
each GPS-position to one of the two states. We then cal-
culated the proportion of time spent vigilant in a time 
window of 10 min around each active GPS-position. We 
selected only active GPS-positions that were situated at 
least 15 min away from the transition points in order to 
prevent potential bias when the animal switches from 

a resting to active state and vice versa. Additionally, we 
plotted the detected active states over the time of day 
(actogram), calculated the proportion of time in state 
active during day vs night and time budgets for the pre-
dicted structural behavior categories.

Results
We documented all behavior categories of interest for 
eight animals in the field. Five additional animals were 
observed just for short periods of time with an incom-
plete set of behaviors and were therefore not considered 
for this analysis. In total, we behavior-tagged more than 
15  h of acceleration data. The amounts of behavior-
tagged acceleration data differed substantially between 
the animals (Additional file  3: Fig. S3). Browsing and 
lying were observed most frequently.

The final classification model discriminated all behav-
iors of interest (Fig.  3; cross-validation plot: Additional 
file  5: Fig. S5 left). The model separated the behaviors 
standing and lying from the active behaviors by the mean 
dynamic body acceleration (mdba_xyz_w2). Browsing 
behavior was subsequently split by the corrected static 
body acceleration of the x axis (sba_x_c) and, thus, by 
the posture of an animal. The behaviors walking, trot-
ting and galloping were again discriminated by predictor 
variables that correspond to the dynamic body accelera-
tion. Applied to the test dataset, the classification model 
correctly predicted all behaviors in 71% of the cases 
(range between animals 66–79%). The confusion matrix 
(Table 4) revealed that most erroneous predictions were 
distributed in behavior categories that are characterized 
by similar body posture and dynamic body acceleration. 
Thus, the model mixed standing with lying, browsing 
with walking and trotting with galloping. Errors con-
cerning the behavior ‘others’ were distributed over all 
behaviors. For most behavior categories, sensitivity and 
positive predictive value were comparable between ani-
mals (Fig. 4, left).  

Optimal tree size of the posture model according to the 
one standard deviation rule was 12 (Additional file 5: Fig. 
S5 right). This and the next smaller model did not yield an 
obvious improvement to the model. We, therefore, pruned 
the tree to a size of three (Fig. 5). The model discriminated 
all three postures based on the corrected static body accel-
eration of the x axis. The overall model accuracy for the 
posture model was 88% (range between animals 78–91%). 
The posture model made most errors by mixing head 
down with head middle, and head middle with head up, 
but rarely mixed head up with head down (Table 5). Sen-
sitivity and positive predictive value were comparably high 
for all animals and postures (Fig. 4, right).

According to the criteria for an optimal threshold 
value to discriminate between active and resting states, 
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we selected a threshold value of 0.05 (Additional file  6: 
Fig. S6). Thus, when an animal displayed more than 5% 
active behaviors within a time window of 7 min, it made 
the transition from resting to active and vice versa (with 
the exception that the resulting state lasted for at least 
7  min). We constructed our classification model for 
vigilance detection by combining the splitting rule that 
discriminated the behaviors standing and lying (mdba_
xyz_w2 < 0.11, behavior model) with the splitting rule for 
posture head up (sba_x_c < −0.4, posture model). Com-
pared to expert judgment of vigilance behavior (in total 
230  min of video recordings evaluated), the model pre-
dicted vigilance behavior with a mean accuracy of 96.02% 
(range between animals 92.56–98.95%), mean sensitivity 

of 98.35% (95.39–100%) and mean positive predictive 
value of 96.85% (91.61–98.97%).

In March of 2013, animal 53 displayed 309 active states 
(Fig. 6, left) with a mean number of 10.3 active states per 
24 h (sd 2.53). On average, the active states accounted for 
42% of the day (sd 0.05). We observed a slight tendency 
to higher activity levels during nighttime on most days 
(Fig. 6, right). The mean duration of an active state was 
59  min (sd 41). An average resting state lasted 81  min 
(sd 48 min). According to the predicted behaviors from 
the behavior model, during active states, animal 53 
spent most time browsing (62%), followed by standing 
(16%), lying (6%), walking (7%) and ‘others’ (6%) (Addi-
tional file 7: Fig. S7). Trotting and galloping behavior was 

mdba_xyz_w2 < 0.11

dps_x_96 < 0.014

sba_x_c1 >= −0.85

sba_x_c1 >= 0.15

vardba_z_w5 < 0.095 meandl_z_w5 < 0.39

mdba_z_w5 >= 0.075 vardba_z_w5 < 0.19l s

s

b g

w o t g

yes no

Fig. 3  Classification tree of the behavior model. The model classified behavior into lying (l), standing (s), browsing (b), walking (w), trotting (t), gal-
loping (g) and ‘others’ (o). See Table 3 for a detailed description of the predictor variables

Table 4  Confusion matrix of the behavior model

The confusion matrix divides all data points according to the reference (x axis, true behavior) and the behavior prediction from the classification model (y axis). The 
number of data points correctly classified is shown in italics

Reference

Lying Standing Browsing Walking Trotting Galloping Others

Prediction  Lying 3545 1142 0 6 0 0 91

 Standing 272 1811 103 71 0 3 297

 Browsing 2 133 3450 469 11 4 191

 Walking 11 354 310 2719 96 32 773

 Trotting 0 9 0 102 974 86 29

 Galloping 1 37 7 29 153 1317 126

 Others 169 514 130 400 3 4 1287
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observed less than 1% of the time. During resting states, 
animal 53 was mostly lying (94%) and standing (4%). 
The spatial distribution of resting GPS-positions was 
clearly more clumped than that of active GPS-positions 
(Fig. 7, left). Animal 53 was, on average, vigilant for 8.5% 
of the time during active states. Spatial differences in 
the observed vigilance behavior were not clearly visible 
(Fig. 7, right). However, when vigilance levels are plotted 
temporally (Fig.  8), it appears that animal 53 was more 
vigilant during daylight and reduced its vigilance level 2 h 
after sunset.   

Discussion
The primary aims of this study were to develop and eval-
uate models for an automated classification of animal 
behavior, internal state and vigilance behavior based on 
raw acceleration data of Roe deer. We were able to suc-
cessfully implement all three tasks.

The classification model for animal behavior discrimi-
nated all structural behaviors with an overall accuracy 
of 71%. However, the model struggled with reliably dis-
criminating between behaviors that share similar accel-
eration signatures. This was especially the case for the 
behaviors standing and lying, where 29% of the standing 
data points were erroneously classified as lying. In both, 
the animal is characterized by almost no body movement 
and an identical neck posture that makes differentiation 
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Fig. 4  Boxplots show variation in sensitivity and positive predictive value for each behavior category of the behavior model (left) and for each 
posture category of the posture model (right) between the animals. Boxplots depict the median (horizontal line), first and third quartiles (box), maxi-
mum and minimum values (whiskers) and extremes (open circles)

sba_x_c1 >= 0.14

sba_x_c1 >= −0.4d

m u

yes no

Fig. 5  Classification tree of the posture model. The model classified 
the posture of an animal’s neck into down (d), middle (m) and up (u). 
See Table 3 for a detailed description of the predictor variables

Table 5  Confusion matrix of the posture model

The confusion matrix divides all data points according to the reference (x axis, 
true posture) and the posture prediction from the classification model (y axis).
The number of data points correctly classified is shown in italics

Reference

Down Middle Up

Prediction  Down 3615 225 16

 Middle 378 3214 447

 Up 7 350 3537



Page 10 of 15Kröschel et al. Anim Biotelemetry  (2017) 5:10 

difficult. Posterior plausibility checks are an option to 
correct for presumably misclassified behaviors that 
are unlikely to occur in the specific context. We imple-
mented this approach for vigilance detection and joined 
the classification rules that predicted lying and stand-
ing behavior due to unlikely occurrence of lying behav-
ior while being classified as state active. In doing so, we 
could reduce false predictions during active states, but 
were not able to reduce them during resting states. Using 
internal states as contextual information for error correc-
tion could be beneficial for many species whenever inter-
nal states are featuring the presence or absence of specific 
behaviors. Visual inspections of model predictions also 
revealed that false predictions often affected only a few 
data points that were surrounded by true predictions. 
This could provide further options for posterior model 
improvement by implementing moving windows that 
vote for the most frequent behavior inside the window. 
Detailed evaluation of model performance is especially 
important, if the model is to be extrapolated to other 
animals or outside the observation period. Variations in 
the acceleration data between and within animals might 
be caused by varying sensor measurement, collar tight-
ness, collar position, individual-specific variations in 
behaviors or changing environmental conditions (e.g., 

seasonal changes in vegetation height or changing habi-
tat availability). Shamoun-Baranes et al. [7] therefore sug-
gested to develop individual-based models, which is most 
often technically unfeasible, especially in terms of time-
consuming field observations and elusive study species. 
Instead, we aimed at constructing one population-based 
model and controlled potential bias by implementing 
collar-specific parameter correction (parameter sba_x_c), 
homogenization of the training dataset and cross-vali-
dation based on the animals. Additionally, we calculated 
animal-specific performance parameters for each behav-
ior category. These were in similar ranges, indicating that 
overfitting toward individual animals was hardly present. 
Only for a few animals we observed varying values for the 
behaviors trotting and galloping, which were most likely 
caused by the low number of data points. The behavior 
category ‘others’ was less predictable. Here, we pooled 
several behaviors despite their divergent acceleration sig-
natures. These probably interfered with the acceleration 
signatures of the main behavior categories. Once one of 
these behaviors is targeted, we recommend to split ‘oth-
ers’ into more homogeneous behavior categories. Finally, 
the choice of a rather simple modeling technique allowed 
for an easy evaluation of the classification rules. We iden-
tified one split, in particular, that needs special attention 
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Fig. 6  Left Actogram of animal 53 in March of 2013, blue bars represent time windows when the animal was in state active. Yellow lines represent 
sunrise and sunset. Right Proportion of time in state active calculated for each day, separately for daytime (yellow), nighttime (blue) and both (black). 
Sunrise and sunset mark the transition from daytime to nighttime and vice versa. Sunrise also determines the switch between two days so that 
each day consists of one daytime and the following nighttime
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Fig. 7  Animal locations categorized according to resting and active states (left), and active locations categorized according to different vigilance 
levels (right) for animal 53 in March of 2013. A GPS-location is marked as an active/resting location when it was collected during an active/resting 
period of animal 53. Vigilance is calculated as the proportion of time spent vigilant during active states, calculated in a time window of 10 min 
around each active GPS-location

time of day
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Fig. 8  Boxplot of the predicted proportion of time spent vigilant while being in state active, separated for each hour of the day, for animal 53 in 
March of 2013. Yellow lines represent sunrise and sunset. Box widths are adjusted proportionally to the number of data points
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when model prediction for other seasons is intended. An 
animal is classified as browsing when the dynamic body 
acceleration is in a specific range (odba_xyz_w2  <  0.11 
and var_dba_z_w5  <  0.1) and, more importantly, when 
the head moves down (sba_x_c  ≥  0.15). This specific 
splitting rule might have been influenced by our obser-
vation period during the winter months when the veg-
etation is normally low. During the growing season or 
in environments that are characterized by high vegeta-
tion, animals might not be forced to lower their heads to 
ingest food. This would produce false predictions of cate-
gory walking or ‘others’ under the current model. Unfor-
tunately, we were not able to do behavioral observations 
during the growing season or in other habitat types due 
to the low visibility of the animals. Thus, when model 
extrapolation is intended, effective evaluation of model 
predictions is required and could be further supported by 
seasonal or habitat-specific histograms of the predictor 
variables to check for data consistency (see Kroeschel in 
preparation).

In comparison with previous studies, which established 
the predictor variables based on the acceleration burst or 
segments of fixed width, we modified the classification 
procedure by calculating the predictor variables for each 
data point with moving windows of varying widths. We 
did not aim at comparing this approach with an approach 
using fixed segments. However, we expect that using 
each data point was advantageous because we gener-
ated an extended set of predictor variables that allowed 
for finer adaption to behavior-specific acceleration sig-
natures. Further, we delegated the choice of the optimal 
width for each behavior to the classification model. We 
were also able to reliably detect changing behaviors inside 
a burst. However, parameters that capture features of 
the dynamic body acceleration within a moving window 
were still prone to cause false predictions at the transi-
tion points of two behaviors. This was apparent when 
the model would sometimes predict short intervals (usu-
ally less than one second) as false moving or false ‘oth-
ers’ behavior when animals switched from ‘standing with 
head up’ to ‘browsing with head down.’ But even in these 
cases, the true change of behavior was usually detected 
very quickly, allowing for easy post-processing of the 
false prediction (see “Discussion” section above).

Discriminating behavior into structural behavior cat-
egories is usually straightforward because it involves 
clearly observable behavior categories. In state detection, 
this is often not the case, as we are not yet able to moni-
tor an animal’s mind directly. Nevertheless, states can 
be discriminated, particularly, when they differentiate in 
the value range of observable and, in case of automated 

classification, measurable parameters. We differenti-
ated states based on expert-based rules that were applied 
to a sequence of structural behaviors. After exploratory 
comparison of model predictions and video recordings, 
we are confident that model predictions coincided with 
expert judgment in most circumstances. However, the 
model will fail when animals are either in state active 
but mainly vigilant for more than 7 min (results in false 
resting and thus missed vigilance) or lying down for less 
than 7  min between active states (results in false active 
and false vigilance). Adjusting either the width of the 
time window or the threshold value would not substan-
tially improve the model because false model predictions 
simply shift to one or the other case. In these situations, 
human observers are superior because they are able to 
acquire additional information (e.g., posture of ears, body 
tension, external stimuli) that facilitate correct discrimi-
nation. Unfortunately, we lacked this information with 
our sensors, although techniques like measurements of 
micromovements [29] or heart beat [30] promise to fill 
this gap soon. Additionally, animals sometimes gradu-
ally transition from one state to another or display active 
behaviors (e.g., grooming) after lying down. These inter-
mediate states, which mainly occur at the transition 
points, poorly fit into a binary discrimination in active 
and resting and can only be overcome by a finer discrimi-
nation of states. Not only the proportion but also the 
temporal sequence of specific structural behaviors prom-
ises to hold important information for discriminating 
these more complex states. The wide array of techniques 
being developed for state detection in movement ecology 
[4] might provide helpful tools to process this extended 
set of parameters.

In recent years, the concept of internal states gained 
increasing recognition in behavioral ecology, because it 
allows for the integration of alternating needs into statis-
tical models [13, 31]. So far, internal states were always 
deduced from movement pattern [2–4], physiological 
measurements [32] or activity measurements [11, 33, 
34]. Combining these with behavioral parameters could 
substantially improve state detection, because fine-reso-
lution behavioral data facilitate plausible interpretation 
and, thereby, detailed discrimination of states.

Very high agreement with expert judgment of vigilance 
behavior confirmed that even complex behaviors can be 
predicted with acceleration data. Moreover, the observed 
vigilance levels were comparable to previous field studies 
with roe deer ([35]: median vigilance 10.5%, range <0.01–
72.7% (Poland); [20]: mean 24.21%, sd 14.55% (France), 
both sampled outside the hunting period). In contrast 
to these, we were able to continuously monitor vigilance 
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behavior in focal animals, even when the animal was hid-
den in cover, and without introducing any disturbance 
caused by observer presence in the field. However, when 
applying the presented approach, a few points have to be 
considered. The transition points between active and rest-
ing states are especially prone to misclassification errors 
when resting animals are erroneously classified as active. 
To prevent bias, we omitted the transition points by exclud-
ing a buffer of 10 min around these and, thus, focused on 
the core active states. Unfortunately, we were not able to 
control for false predictions of vigilance behavior when ani-
mals were lying down for short periods of time. Here, we 
currently recommend being cautious about sampling inter-
vals of very high vigilance due to the risk of misclassified 
lying behavior. Many researchers focused field observations 
of vigilance on animals that were foraging. We differenti-
ated active and resting states and excluded resting states 
for monitoring of vigilance. Thus, we relaxed strict foraging 
periods and also allowed for periods when the animal was, 
e.g., primarily moving. We do think that this simplification 
was adequate because (1) active states of roe deer during 
wintertime are mainly dedicated to gaining energy (which 
was indicated by high proportion of browsing behavior in 
animal 53 during those states) and (2) other active behav-
iors besides foraging (e.g., moving) are likewise character-
ized by limited predator detection probabilities [36] and, 
thus, should be traded with vigilance behavior to main-
tain safety. State classification, nevertheless, can be easily 
modified by targeting structural behaviors that are distinc-
tive for more specific states (e.g., state foraging can be dis-
criminated by a minimum proportion of browsing behavior 
inside the moving window).

We pioneered this approach with data from roe deer, 
but each step of the approach can be easily adapted to 
other large herbivores. Other species, however, require 
separate behavioral observations to train classification 
models and species-specific rules to discriminate internal 
states.

Conclusion
By predicting behavior, state and vigilance to an exem-
plary dataset, we demonstrated diverse applications and 
the huge potential behind acceleration data that can be 
assembled with the presented approach. In particular, 
continuous monitoring of vigilance behavior, in combi-
nation with detailed behavior budgeting and spatiotem-
poral allocation of both, will provide new insights in how 
large herbivores perceive and control predation risk [14, 
17], will allow to test scientific hypotheses and models 
[e.g., 37] and, additionally, will provide helpful tools for 
wildlife management [e.g., 38].
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