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Abstract 

Background:  Monitoring the feeding behavior of animals in the wild is key to understanding their energetics and 
the influence of the environment on their survival. Recently, a novel acceleration transmitter that processes accel-
eration data onboard and outputs identification results has been developed by AquaSound Inc. (Kobe, Japan) to 
investigate feeding biology in fish. To date, few attempts have been made to identify the feeding behavior of fish 
using transmitters, and none of these attempts accomplished classification of alternative feeding behaviors according 
to prey items. The objective of this study was to develop an algorithm that can be incorporated in the acceleration 
transmitter and can identify alternative feeding behaviors in fish, using red-spotted grouper (Epinephelus akaara) as a 
model species.

Results:  Most of the identification algorithms describing feeding behavior in fish developed in previous studies used 
a combination of acceleration and angular velocity. In this study, we constructed an algorithm based on three-axis 
accelerometry data alone, since a gyroscope consumes much more electricity and would shorten the battery life of 
the transmitter. Acceleration data were obtained in tank experiments. Feeding behaviors, induced by feeding three 
types of live prey (Trachurus japonicus, Metapenaeus ensis and Hemigrapsus sanguineus), as well as other behaviors 
(routine and escape movements), were simultaneously recorded at 200 Hz by acceleration data loggers, implanted 
in the abdominal cavities of fish, and by a video camera. A decision tree, including a three-dimensional lookup table, 
was constructed to classify the behaviors into four behavior classes: shrimp-eating, fish-eating, crab-eating and other 
behaviors. The classification accuracy was estimated to be 0.77 (F-measure) for shrimp-eating, 0.73 for fish-eating, 0.71 
for crab-eating and 0.78 for other movements, using fivefold cross-validation.

Conclusions:  The algorithm developed in this study could be incorporated into the transmitter, which would record 
acceleration data at high frequency (200 Hz), process the data onboard and output classification results of behaviors. 
This method would reveal more aspects of fish biology, such as individual feeding strategies.
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Background
One of the key goals in fish biology is to understand feed-
ing behavior. When feeding, most fish exhibit character-
istic changes in acceleration, which are, in most cases, 
distinct from those of routine movements [1]. Feeding 
behavior can thus be investigated in detail by measuring 

characteristic changes in acceleration. Instruments that 
are widely used to measure physical variables in/around 
target fish in the wild are animal-borne data loggers and 
ultrasonic transmitters (aka pingers or acoustic trans-
mitters). Previous studies have shown that animal-borne 
acceleration and/or gyroscope data loggers are useful 
to analyze the feeding behaviors of various species of 
fish [2–4]. However, a data logger has the disadvantage 
that it must be retrieved after attachment to a target fish 
(to download the data); this is often extremely difficult, 
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depending on the species. In contrast, a pinger does not 
have this disadvantage; data are transmitted ultrasoni-
cally. In fact, pingers have been widely used for remotely 
measuring physiological and behavioral variables of free-
living animals [5]. However, the amount of information 
that a pinger can send per unit of time is critically lim-
ited, since underwater communication is compromised 
by multipath propagation and strong signal attenua-
tion. It follows that the sampling frequency of accelera-
tion afforded by a pinger tends to be much lower (by 
5–10 Hz) than that of a data logger. Sampling frequency 
can present a major problem, according to Broell et  al. 
[2], who suggested that the sampling frequency should be 
more than 100 Hz for reliable identification of the feeding 
behaviors of predatory fish.

Nevertheless, a few novel acceleration pingers have 
been developed successfully to analyze the biological fea-
tures of various fish. One of the best-known acceleration 
pingers is the V9AP (Vemco Inc., Nova Scotia, Canada; 
sampling frequency: 5 or 10 Hz), which transmits general 
variables such as a root mean square (RMS) calculated 
from three-axis acceleration. The outstanding advantage 
of such a method is that the pinger can detect the move-
ments of a target animal using relatively simple statistics. 
These pingers have been used to study the field activity 
and metabolic rates of bonefish [6] and giant Australian 
cuttlefish [7], the spatial ecology and residency patterns 
of the great barracuda [8], the seasonal residency of juve-
nile sand tiger sharks [9], energy use by wild adult Pacific 
salmon [10], and seasonal changes in the activity levels 
of horseshoe crabs [11]. Another well-known accelera-
tion pinger is the AccelTag (Thelma Biotel, Trondheim, 
Norway; sampling frequency: 20  Hz). This is a custom-
adapted pinger that transmits behavior-specific parame-
ters derived from three-axis acceleration data such as tilt 
angle, roll angle, lateral acceleration and vertical accel-
eration. This method, in which a pinger transmits not 
raw acceleration data but several simplified parameters 
derived onboard from enormous amounts of data, has 
resolved the essential problem of pingers, i.e., the inabil-
ity to transmit large amounts of data. In fact, the Accel-
Tag has been utilized to detect specific behaviors in fish, 
such as burrowing movements of Lusitanian toadfish [12, 
13] and the tail beat activity of red-spotted grouper [14]. 
Despite these advances, pinger-mediated remote meas-
urements of feeding behavior in fish remain challeng-
ing; the sampling frequency is too low (<100 Hz) to allow 
accurate classification of feeding behavior.

Recently, we have developed a new acceleration pinger 
(AquaSound Inc., Kobe, Japan) that samples acceleration 
data at a high frequency (200  Hz), classifies the behav-
iors of target fish via onboard processing and outputs the 
results of such classifications. The pinger must initially 

be programmed with a classification algorithm based on 
three-axis acceleration data. Such algorithms should not 
be elaborate; long processing times may compromise the 
pinger’s other operations (sampling and transmitting). 
In this study, we developed a decision tree, including a 
three-dimensional lookup table that serves as the classi-
fication algorithm. The major advantage of this approach 
is that several key parameters are examined in detail. A 
lookup table alone requires a great deal of program mem-
ory. The combination of a lookup table and a decision 
tree enhances classification accuracy within the extent 
that the algorithm does not consume excessive memory. 
We first conducted tank experiments using acceleration 
data loggers to obtain acceleration data. We chose red-
spotted groupers (Epinephelus akaara) as the model spe-
cies. This fish exhibits strong site fidelity [15] and is a 
typical sit-and-wait predator that remains still until food 
items are found (triggering feeding behavior) or a threat 
is detected (triggering escape behavior). We assumed 
that the foraging tactics of this fish were relatively advan-
tageous for us in developing the algorithm; this species 
does not frequently perform dynamic behaviors, other 
than while feeding. Thus, feeding behavior was expected 
to be distinguishable from other behaviors.

Methods
Study animals
Eighteen mature red-spotted groupers [total length (TL): 
35.0 ± 3.7 mm; body mass (BM): 687 ± 197 g] obtained 
from local fish dealers (in Osaka and Maizuru, Japan) 
were used. Red-spotted groupers grow up to about 60 cm 
in length and are found around the coasts of southern 
Honshu (Japan) and eastern China [16]. Previous stud-
ies of stomach contents have shown that mature fish feed 
principally on smaller fish, shrimps and crabs [15].

Tank experiments
Tank experiments using data loggers were conducted 
in October–November 2013, October–December 2014 
and October–December 2015 at Maizuru Fisheries 
Research Station, Kyoto University, Kyoto, Japan. Eight-
een red-spotted groupers were individually kept in fiber-
reinforced plastic (FRP) tanks (length: 70  cm; width: 
100 cm) in which seawater circulated at a temperature of 
17.2 ± 1.1  °C to a depth of 70 cm. An acceleration data 
logger (size: 60 ×  6 ×  12  mm3; mass: 7  g in air; meas-
urement range: ±16  g; sampling frequency: 200  Hz; 
Biologging Solutions Inc., Tokyo, Japan) was surgically 
implanted into the abdominal cavity of each grouper. 
Surgical treatments were carried out under anesthesia 
induced by 0.05% phenoxyethanol. An incision approxi-
mately 20 mm in length was made in the abdomen (sev-
eral centimeters above the vent) of the fish, and the logger 
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was inserted. The wound was closed using an operating 
needle and sutures. The implant operation took approxi-
mately 5 min. The weight of the logger in water was less 
than 3% of the weight of the grouper. After surgery, the 
groupers were acclimatized for at least 1  week. During 
the acclimatization period, we supplied the groupers 
with three types of live prey: fish (Japanese horse mack-
erel, Trachurus japonicus), shrimps (Metapenaeus ensis) 
and crabs (Hemigrapsus sanguineus). Subsequently, feed-
ing behaviors were logged as three-axis acceleration 
data using the data loggers and simultaneously recorded 
as video images using a video camera (HDR-CX720V; 
SONY, Tokyo, Japan). The video images were used to 
associate all acceleration data with each of three behav-
ioral patterns (fish-eating, shrimp-eating, or crab-eating). 
The data loggers were set to record fish behaviors for 
25 min each day for 5–10 days. Shrimp-eating and crab-
eating events were sampled between 15:00 and 18:00, 
while fish-eating events were sampled between 18:00 and 
21:00. These time frames were chosen based on a study of 
the feeding habits of red-spotted grouper [17].

Data analyses
Data analyses were performed using MATLAB (Math-
Works, Natick, MA, USA). We first extracted all behav-
ioral events from the three-axis acceleration datasets. An 
‘event’ was defined as the 0–250-ms interval commenc-
ing at the time when acceleration on any axis surpassed 
the threshold (2.0 g). This threshold was chosen to ensure 
that we detected all feeding events but not tiny, subtle 
routine movements.

The acceleration along each axis (ax, ay and az) was rela-
beled because an instrument inserted into the abdominal 
cavity of a fish would not be completely fixed. In the tank 
experiments, the y-axis was directed forward, but x- and 
z-axes were not consistently directed vertically and later-
ally, judging from acceleration data from six red-spotted 
groupers over 10 days in which they did not move. There-
fore, we termed the acceleration along the longitudinal 
axis (body axis ab) ay and acceleration in the orthogonal 
direction (ar) 

√

a2x + a2z  (Fig. 1). The vectorial sum of all 

acceleration axes was thus |a| =
√

a2x + a2y + a2z .

Results
Acceleration data
In the tank experiments, we observed 49 shrimp-eating 
events (n =  5 fish), 9 fish-eating events (n =  3 fish), 15 
crab-eating events (n =  3 fish) and 45 other behavioral 
events (n = 8 fish). More details about the feeding events 
are given in Table 1.

A typical example of each behavior is shown in 
Fig.  2. At first glance, it seemed that (a) most of the 

characteristic changes in acceleration ended within 
50 ms after event initiation, (b) the amplitude and dura-
tion of acceleration during fish-eating and other (escape) 
behavior tended to be much greater than those during 
any other behaviors, while (c) acceleration during crab-
eating and other (routine) behavior was lower than that 
during shrimp-eating, and (d) the duration of other 
behaviors (routine and escape) was exceptionally long in 
certain cases. We hypothesized that these characteristics 
were key components when selecting parameters to clas-
sify feeding behaviors.

Classification phase I
We first constructed a lookup table to classify feeding 
behaviors. For accurate classification, parameters used in 
a lookup table not only need to be characteristic of each 
type of behavior, but also somewhat independent of each 
other. In terms of the characteristics mentioned above, 
the amplitude and duration of acceleration are good 
examples of such parameters. Thus, we first divided each 
event into three phases using the border times tS and 
tE: the commencement phase (0 to ts ms); the transition 
phase (ts to tE ms); and the final phase (tE to 250 ms). The 
commencement phase would describe the intensity of a 
movement; the final phase would reflect whether a fish 
became completely stationary or not; and the transition 
phase would support the other two parameters. Parame-
ters from each of the three phases would be independent. 
We chose the standard deviation of ab in the commence-
ment phase as parameter I; the standard deviation of ar 
in the transition phase as parameter II; and the standard 
deviation of |a| in the final phase as parameter III. We 
assumed that ab was the most significant axis early in 
the behavior and that |a| reflected even minimal move-
ment along any axis. The border times tS and tE were 
chosen to be 55 and 120  ms, respectively, based on the 
data of Fig. 3, where the maximum classification accuracy 
(defined below) was evident. Finally, the distribution map 
was created, as shown in Fig. 4.

Based on the distribution (Fig. 4), we estimated the sta-
tistical population using a three-dimensional Gaussian 

Fig. 1  Directions of acceleration (longitudinally and orthogonally)
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distribution (Fig. 5). The probability density of each type 
of behavior was calculated. Other (routine) behavior was 
condensed into very narrow ranges of all three parame-
ters. Fish-eating spreads toward the directions of param-
eters I and II, but was noticeably limited in the direction 
of parameter III. Shrimp-eating was between other (rou-
tine) and fish-eating behavior. Crab-eating overlapped 
somewhat with shrimp-eating and other (routine) behav-
ior. Other (escape) behavior spanned almost the entire 
distribution, although the density thereof was rather low.

The classification algorithm, i.e., the lookup table, was 
derived from the probability density distribution. First, 
the three-dimensional volume was divided into cells. The 

Table 1  Number of feeding events per individual that per-
formed the behaviors

Indiv. no. Crab-eating Shrimp-eating Fish-eating

1 3 3 5

2 0 11 0

7 0 0 3

12 0 11 0

14 0 11 0

15 8 13 0

17 4 0 0

18 0 0 1

Fig. 2  A typical example of changes in three-axis acceleration associated with a shrimp-eating, b fish-eating, c crab-eating, d others (routine) and 
e others (escape). f A schematic diagram of three phases, i.e., commencement phase (CP), transition phase (TP) and final phase (FP), demarcated by 
border times tS and tE. The horizontal axis shows the time elapsed from the trigger point, and the vertical axis acceleration
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probability density of each behavioral pattern in each cell 
was calculated. Each cell was labeled with the behavioral 
pattern for which the probability density was greatest. 
We thus obtained the 3D lookup table shown in Fig. 6.

We ran a classification test using fivefold cross-valida-
tion (Table 2). Of all behaviors, 38/49 (78%) shrimp-eating, 
6/9 (67%) fish-eating, 10/15 (67%) crab-eating and 25/45 
(56%) other behaviors were correctly classified. However, 
many shrimp-eating and other behaviors were misclassi-
fied as crab-eating. This was because some aspects of crab-
eating were very similar to those of shrimp-eating and 

other behaviors. Therefore, we chose additional parame-
ters to discriminate among shrimp-eating, crab-eating and 
other behaviors classified as crab-eating.

Classification phase II
The strongest candidate for parameter IV was the ar of the 
early portion of behaviors; acceleration that was orthogo-
nal to the body axis was rather independent of parameter 
I. We calculated p values between (a) shrimp-eating and 
crab-eating, (b) crab-eating and other behaviors and (c) 
other behaviors and shrimp-eating, as functions of the 
border times (the times from event initiation) (Fig.  7a). 
We found that other behaviors could be reasonably well 
separated (p < 0.01) when the border time was 15 ms. We 
set the threshold where the Mahalanobis distances (a sta-
tistical distance from the mean [18]) of crab-eating and 
other behaviors were equal (Fig. 7b).

Figure 7a shows that the p value comparison between 
shrimp-eating and crab-eating decreased as the border 
time exceeded 70 ms. This indicated that the later part of 
ar might serve as parameter V, which could distinguish 
shrimp-eating from crab-eating. We calculated p values 
as functions of the time to the end of an event (250 ms) 
(Fig. 8a). We found that the p value for the comparison 
between shrimp-eating and crab-eating reached its low-
est level (p < 0.01) when the border time was 140 ms. We 
thus set this as the threshold so that true-positive crab-
eating events were not discarded (Fig. 8b).

Finally, we fixed the classification flow as described 
in Fig.  9. The classification test results were revised as 
shown in Table 3. Compared to Table 2, eight events of 
other behavior and four events of shrimp-eating were 

Fig. 3  A contour map identifying the optimum border times tS and 
tE. The horizontal, vertical and colored axes show border time 1 (tS), 
border time 2 (tE) and the harmonic mean of the F-measure for all 
types of behaviors, respectively

Fig. 4  Scatter plots of all behaviors. Each circle is plotted at a location specified by three parameters. The terms ‘ab_SD_0-55 ms,’ ‘ar_SD_55-120 ms’ 
and ‘|a|_SD_120-250 ms’ are the standard deviations of body-axis acceleration from 0 to 55 ms, the standard deviation of orthogonal acceleration 
from 55 to 120 ms and the standard deviation of the length of the acceleration vector from 120 to 250 ms, respectively
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successfully eliminated from the totals of crab-eating. 
Finally, the F-measures, the harmonic means (thus bal-
anced indicators) of precision and recall, came down 
to 0.77 ±  0.11 for shrimp-eating, 0.73 ±  0.19 for fish-
eating, 0.71 ±  0.22 for crab-eating and 0.78 ±  0.04 for 
other behaviors (the figures are means with standard 
deviations).

Discussion
We found that the feeding behaviors of red-spotted 
groupers could be detected and classified to accuracies of 
0.77 for shrimp-eating, 0.73 for fish-eating and 0.71 for 
crab-eating in the F-measures, employing only accelera-
tion data along the body axis and orthogonal direction. 
These accuracies were somewhat less but still comparable 
to those produced by employing both acceleration and 

angular velocity [4]. We selected five parameters, i.e., the 
standard deviation of ab of 0‒55 ms, the standard devia-
tion of ar of 55‒120 ms, the standard deviation of |a| of 
120‒250 ms, the standard deviation of ar of 0‒15 ms and 
the standard deviation of ar of 140‒250 ms, for the classi-
fication algorithm. The behavioral patterns of red-spotted 
groupers are associated with fairly specific amplitudes 
and durations of acceleration. Thus, we could classify 
feeding behaviors accurately using time-specific param-
eters derived from only acceleration data.

Although target fish need to be within the range of a 
receiver (several hundred meters for example; cf. AQRM-
1000, AquaSound Inc., Kobe, Japan) when data are trans-
mitted, it would be possible to count and log the number 
of each behavior in the memory of a pinger. These data 
could then be transmitted to the receiver when the fish is 

Fig. 5  Probability densities of shrimp-eating, fish-eating, others (routine) and others (escape). The probability of each type of behavior is high in the 
red zones and low in the blue zones. a Shrimp-eating, b fish-eating, c crab-eating, d others (routine), e others (escape)
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within its detection range. Therefore, the feeding behav-
iors of a target fish do not always need to be performed 
within the detection range of the receiver.

Many previous studies assessing the feeding behavior 
of fish utilized data loggers. A data logger can measure a 
comparatively wide range of variables, such as accelera-
tion, angular velocity and magnetic parameters at high 
frequency. Such variables have enabled us to accurately 

Fig. 6  Three-dimensional lookup table that determines behavioral types. The most probable behavioral pattern at each point is assigned. For exam-
ple, if the acceleration data parameters are 2, 0.5 and 0.1, respectively, the behavior is classified as shrimp-eating

Table 2  Classification test results using the lookup table

True events Classified as

Shrimp Fish Crab Other

Shrimp 38 2 6 3

Fish 1 6 0 2

Crab 4 0 10 1

Other 11 0 9 25

Fig. 7  a p values by the border time from event initiation. The p value between crab-eating and other behaviors was minimal when the border 
time was 0.15 ms. b A box plot of the parameter ar_SD_0-15 ms, which describes the standard deviation of orthogonal acceleration from 0 to 15 ms. 
Events in which this parameter was less than 0.84 were classified as other behaviors
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detect and identify specific behaviors, including feeding 
behaviors, of fish [4, 19]. However, a data logger must 
be retrieved after being attached to a target animal to 
download data. On the other hand, a pinger can transmit 
data remotely, while the amount of data it can transmit 
are technically limited [13]. Previous studies have suc-
ceeded in assessing the field activity of fish using a V9AP 
(VEMCO Inc., Nova Scotia, Canada), along with several 

specific behaviors of fish such as burrowing movements 
and tail beat activity using AccelTag (Thelma Biotel, 
Trondheim, Norway). However, remote assessment of 
feeding behavior in fish has remained challenging.

In this study, we developed an algorithm for a new 
acceleration pinger that classifies the feeding behav-
ior of fish. The algorithm will be incorporated in the 
pinger, which records acceleration data at high frequency 
(200  Hz), processes the data onboard and outputs clas-
sification results of behaviors. We used red-spotted 
groupers as a test species and showed that their feeding 
behaviors could be classified with accuracies of more 
than 0.7 (in the F-measures) using acceleration data. 
However, the behavior of red-spotted groupers in experi-
mental tanks will differ somewhat from that in the wild. 
The frequency of each type of behavior could vary with 
the surrounding environment. In addition, each fish will 
interact with other individuals, creating other move-
ments in addition to the routine and escape movements. 
Thus, the accuracy of classification may be reduced to 
some extent in the field. Nevertheless, our method could 
be applied to any animal of sufficient size to accommo-
date the experimental instrument by adapting the clas-
sification algorithm, although it might be fairly difficult 
to apply this method to fish that do not employ ambush 
hunting strategies, as these species may be more likely to 
move completely out of the receiver’s range and may not 
make striking acceleration when feeding. The results of 
previous studies support the applicability of our method 
(e.g., [3, 4]). The method by which this procedure could 
be adapted to use in other species would be as follows: (1) 
conducting tank experiments using acceleration data log-
gers and a video camera, (2) analyzing acceleration data 

Fig. 8  a p value versus the border time to the end of the event. The p value between crab-eating and shrimp-eating was minimal when the border 
time was 140 ms. b A box plot of the parameter ar_SD_140-250 ms, which describes the standard deviation of orthogonal acceleration from 140 to 
250 ms. Events for which this parameter was less than 0.04 were classified as crab-eating

Fig. 9  Flow of classification. The first fork presents the three-dimen-
sional lookup table and the other forks illustrate the decision tree
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to find the motions common to each behavioral pattern, 
(3) choosing several relevant parameters to construct a 
classification algorithm (either a lookup table or a deci-
sion tree) and (4) programming the algorithm into an 
acceleration transmitter. This method could also poten-
tially be applied to animals other than fish. For example, 
the feeding strategies of seabirds and marine mammals 
are also of interest to biologists (cf research using accel-
eration data loggers and/or ARGOS transmitters [20–22] 
and a review paper [23]), but research in this area has 
been hindered by problems such as the difficulty of tag 
retrieval and low frequencies of data transmission. Meth-
ods for remote sensing of accelerational events in such 
animals could also be broadened using this method.

Conclusions
Feeding is one of the most fundamental elements of 
fish biology, as are breeding and death [15]. The feed-
ing behavior of fish critically affects growth and matu-
ration and plays an important role in estimating the 
environmental accommodations of their habitats. How-
ever, methods used to assess the feeding behavior of 
fish in the field have mainly been limited to enumerat-
ing stomach contents [15, 24, 25] and video-recording 
[26]. We developed a new method, using an acceleration 
pinger, to assess the feeding behaviors of fish in the wild 
and showed that it may be possible to use this method 
to investigate other aspects of fish biology, such as indi-
vidual feeding strategies.
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