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Abstract 

Background:  Recent advances in satellite tagging technologies for marine animals have provided opportunities to 
investigate the spatial ecology of pelagic species including at-sea behavior and predator–prey interactions. Implant-
able Life History Transmitters (LHX tags) provide postmortem data on location and causes of mortalities from tagged 
individuals. Following a mortality event and extrusion of the tag from within an animal, varying amounts of time may 
elapse between the onset of satellite transmissions, the first successful uplinks to the Argos satellite system and the 
first location estimate obtained from multiple uplinks. Externally attached pop-up archival transmitters (PAT tags) also 
only commence transmissions following pre-programmed detachment from a host. The amount of delay for both 
types of tags may vary with programming, sea state (e.g., wind, waves, currents and tides) tag exposure and satellite 
coverage. Thus, actual emergence locations for LHX and other pop-up satellite transmitters are hard to accurately 
determine. Larger errors (~ 10–50 km) may be associated with emergence locations than the errors inherent in the 
Argos system. Here we present a new approach based on a time-reversed state-space model to improving emer-
gence location estimates and quantifying their uncertainty for pop-up satellite transmitters, using data from 24 LHX 
tags deployed at known locations in the Gulf of Alaska.

Results:  Between May and June 2017, we deployed 12 LHX tags in two locations in Resurrection Bay and 12 tags 
in two locations in Prince William Sound, Alaska. When tracking models included all successful uplinks that resulted 
in Argos locations immediately after deployments, the emergence location could be predicted to within 3 km, on 
average. However, increasing transmission delays up to 16 h progressively reduced the accuracy to 6–12 km, and for 
delays of 24 h or longer, the actual emergence locations were outside of the 95% isopleth of estimates.

Conclusions:  Emergence locations for pop-up satellite transmitters can be estimated by a time-reversed state-space 
model. The area confined by 95% isopleth of model output is an effective way to characterize an emergence loca-
tion with an associated uncertainty. Our findings illustrate the importance of programming tags to enhance satellite 
uplinks to provide immediate and high-quality locations.
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Background
Over the past two decades, archival, delayed-trans-
mission satellite telemetry transmitters have provided 
researchers with tools to examine the short- and long-
term movement patterns, stock structure, habitat map-
ping and behavior of a wide variety of pelagic species 
[1–4]. In addition to fundamental spatial ecology ques-
tions, researchers are using pop-up archival transmitters 

(PAT tags) to investigate post-release mortality rates 
from bycatch [5–7] and predation events [8–10]. External 
and internal PATs have benefits over implanted archival 
tags because data are retrieved via transmission through 
the Argos satellite system and the tags do not have to be 
retrieved to recover the data. Although PATs are very 
important research tools, their lower-than-expected 
uplink rates and sometimes incomplete data return 
postemergence remain problematic [9, 11]. Unavail-
able or low-quality location information at the end of an 
extended tracking period can make it difficult to model 
and refine movement paths. Thus, accurately defining an 
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emergence location has the potential of improving upon 
movement models.

For studies using PATs to analyze mortality events (e.g., 
predation, bycatch discard mortality), collecting spa-
tially explicit data is required to accurately model spatial 
aspects of post-release survival. The quantification of 
predation, in particular, from many marine apex preda-
tors has been labeled “empirically intractable” [12]. The 
difficulty associated with identifying the role of predation 
on survival rates is largely due to the cryptic nature of 
pelagic predators and the effort associated with directly 
observing predatory behavior [10, 13, 14]. Rare, indirect 
predation rate estimates are often inferred at very dif-
ferent spatial and temporal scales and are subject to dif-
ferent sampling biases. These scaling constraints often 
result in large sample-size requirements and limited res-
olution with respect to resolving population trajectories 
and the factors driving them.

To overcome these limitations, Horning and Hill [15] 
developed an implantable Life History Transmitter (LHX 
tag) for applications in marine homeotherms. Classic 
telemetry applications on marine vertebrates rely pri-
marily on externally attached, recoverable data loggers or 
transmitters. The retention for these devices is often lim-
ited to 1 year or less. Internal devices have been used suc-
cessfully to monitor animals for periods beyond 1  year, 
but detection range, regional coverage and data recov-
ery options have been limited [15]. Thus, LHX tags were 
designed to combine multi-year, life-long tag retention 
of internal archival devices, with global satellite-linked 
data recovery from tags after postmortem extrusion. 
LHX tags are intraperitoneally implanted under standard 
aseptic surgical conditions and gas anesthesia [16, 17]. 
LHX tags record data throughout the life of the host ani-
mal, and following death of the host, transmit previously 
stored information via satellite after the positively buoy-
ant tags are liberated from decomposing, digested or dis-
membered carcasses. LHX tags provide the equivalent 
of spatially and temporally unrestricted known-fate (end 
of life) resight efforts and allow the at-sea detection and 
quantification of predation [18]. Mortality is determined 
from temperature data, and the resulting time stamp is 
included in data transmitted following tag emergence. 
Tag emergence following mortality is determined pri-
marily via a light sensor [15]. In the case of predation, the 
timing of mortality and tag emergence usually coincide. 
The use of two LHX tags per animal increases data recov-
ery probability and supports estimating event detection 
probability from the ratio of dual-tag data returns over 
single returns.

Results from deployments of dual LHX tags in 45 juve-
niles have provided the first direct, quantitative measure 
of predation by apex predators on an upper trophic-level 

marine mesopredator, the Steller sea lion (Eumetopias 
jubatus) [8, 9, 18]. However, the accuracy of the initial 
emergence estimate (i.e., predation event location) was 
only coarsely estimated at 10–50 km [18, 19]. In most of 
these 45 sea lion deployments, tags were programmed 
to only commence transmissions at local noon. Further-
more, multiple successful uplinks within a single satel-
lite pass are required to estimate a transmitter’s location. 
This resulted in lags between tag extrusion and the first 
calculated location estimate obtained from the Argos ser-
vice provider ranging from 1 h to several days.

The objective of this study was to increase the accu-
racy and quantify uncertainty of the estimated position 
of initial tag emergence for PATs. To meet this objec-
tive, we deployed 24 LHX tags at the ocean surface at 
known, simulated emergence locations and developed 
analytical tools to generate emergence location estimates 
from Argos tracking data. Because the Argos system 
typically provides multiple sequential location estimates, 
often with increasing accuracy, we tested models that 
backtrack and extrapolate to an earlier time from the 
sequence of all locations available. We tested a continu-
ous-time, state-space model in “reverse” to estimate the 
site in which we deployed our tags.

Methods
Tag deployment
LHX tags were programmed to transmit immediately 
and continuously for 10 days (or until battery depletion). 
Repetition period, which is the interval of time between 
two consecutive message dispatches, were programmed 
between 45 and 55(s). A 25 s rate was used on two tags 
to test whether faster rates would increase the likelihood 
of satellite uplinks, and provide a more accurate location 
estimate.

During May–June 2017, we deployed 24 tags at 
two sites in Resurrection Bay (Caines Head, 59.96°N 
149.34°W; Calisto Head 59.88°N 149.43°W) and two 
sites in Prince William Sound, Alaska (Perry Passage 
60.67°N 148.04°W; Lone Island 60.67°N 147.67°W). Both 
regions are characterized as sub-arctic fjord systems with 
direct connections to the oceanic waters of the Gulf of 
Alaska (Fig. 1). Both regions have mixed tides, with two 
high tides and two low tides with significantly different 
heights. However, depending on the location, tidal cur-
rents in Prince William Sound and Resurrection Bay can 
range from weak and variable (< 0.5 knots) to moderate/
strong (1–2 knots) [20].

Tags were deployed at the ocean surface and > 1  km 
from land to avoid tags prematurely washing up on shore. 
Winds were light (~ 1–5 knots) with small, non-breaking 
waves. Prior to operation, we used the position averag-
ing feature on a hand-held GPS unit to record accurate 
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coordinates of the deployment location. Thus, in our test-
ing here, the location of this simulated tag emergence was 
determined to an accuracy of 15  m. We used an Argos 
goniometer to find platforms ~ 1–3 h post-deployment to 
ensure tags were actively transmitting.

Model development
Tag transmissions received by Argos receivers aboard 
satellites in polar Low Earth Orbit are relayed via ground 
stations to a processing center operated by service pro-
vider CLS America, Inc. From the Doppler frequency 
shift measured in sequential uplinks received by any one 
satellite during a single pass, a likely location is calcu-
lated and assigned an accuracy in the form of one of 5 
location classes (3, 2, 1, A and B), ranging from < 150 m 
(LC 3) to > 1.5 km (LC B). Processed location data were 
downloaded from the service provider via the Wildlife 
Computers Data Portal. These initial location estimates 
were then processed using several steps to remove low-
accuracy locations and to interpolate points in time and 
space. We calculated an average daily drift rate starting 
at time of deployment until batteries shut down or tags 
washed ashore. To remove extreme outliers and meet 
normality assumptions for subsequent state-space mod-
els, we omitted all locations with LC Z (invalid location, 

no error estimate). Tags’ filtered paths were then interpo-
lated into equal intervals (2 h, 12 locations per day) using 
a continuous-time, state-space model in the R (v3.4.0) 
package crawl [21]. This model is fit using the Kalman fil-
ter on a state-space version of the continuous-time sto-
chastic movement process.

Because the emergence location is likely closest to the 
mortality event, we were most interested in accurately 
predicting this location. Since crawl models utilize Bayes-
ian filters to estimate the current location conditional on 
locations from the past [22], output accuracy progres-
sively increases as more locations are considered. Thus, 
we ran the model in reversed time to use all available 
spatial and location quality information: the final loca-
tion obtained was reassigned to be the first location for 
the model, and all subsequent steps were backtracked in 
time. The first actual location estimate obtained by Argos 
was thus used as the last location in the model. Model 
output was then generated up to the time of emergence 
(or time of deployment for the 24 test tracks). In animal 
deployments, time of emergence is programmed (PATs) 
or determined by tags from sensor data and transmit-
ted. This process was repeated 500 times per track, and 
locations were averaged across all simulations for a single 
track for each tag. To account for locations on land, we 
ran the final averaged path for each tag through {fixpath} 
in crawl, a function which moves points on land to the 
closest sea location along the path trajectory [21].

Model validation and error estimation
We used the estimated emergence location generated 
from the 500 simulated tracks to evaluate model accu-
racy. We used the point distances tool in the Geospatial 
Modeling Environment (GME v0.7.2.0) to calculate dis-
tances from each of the 500 estimated emergence loca-
tions and the true latitude and longitude for all tags 
associated with each actual tag deployment site. The 
distance between the crawl-estimated emergence loca-
tions and the actual deployment location from each site 
was used to calculate a mean distance and standard error 
(± SE) for each site. To test differences in location quality 
between tags programmed with fast and slow transmis-
sion rates (see Table 1), we compared the proportion of 
locations within the first 24 h that were assigned a LC 2 
(< 250–500 m) and 3 (< 250).

Additionally, we produced a kernel density surface 
(KDS) from the concentration of estimated emergence 
locations (500 locations/tag) around each 30  m raster 
cell. We plotted the KDS as a series of isopleths that con-
nected areas of equal occurrence. Isopleth values repre-
sent the boundary lines that contain a specified volume 
of points on a surface. Here, we use isopleth values to 
describe the likelihood of encountering the deployment 

Fig. 1  Life History Transmitter (LHX) tag deployment sites in 
Resurrection Bay and Prince William Sound, Alaska



Page 4 of 10Brown et al. Anim Biotelemetry             (2019) 7:4 

site in a particular area. We recorded the closest isopleth 
value to the deployment site locations. We characterized 
models as being accurate if deployment sites were within 
the 95th density isopleth. If deployment sites were out-
side of the 95th density isopleth, we deemed these mod-
els as inaccurate because 95% of generated emergence 
locations were isolated from the deployment site.

Due to the variability in time lags between mortal-
ity time stamps, emergence and the first Argos location 
estimate, we investigated the effects of LHX transmis-
sion delay on the emergence location estimate. We sub-
sampled the original Argos-derived datasets, removing 
the first 8 h, 16 h, 24 h, 48 h, 72 h and 120 h of uplinked 
locations and reran the reverse models to produce esti-
mated emergence locations. We used the timestamp at 
deployment to back-calculate the emergence location 
from crawl models. Again, we calculated the mean dis-
tances between the emergence location and the deploy-
ment sites (± SE) as well as nearest isopleth values from 
the plotted KDS.

Results
Twelve LHX tags were deployed at two locations in Res-
urrection Bay (Caines Head, n = 6; Calisto Head, n = 6) 
and twelve tags at two locations in Prince William Sound 
(Perry Passage, n = 6; Lone Island, n = 6). The mean num-
ber of days that tags uplinked in Resurrection Bay was 
9 days (ranging from 3 to 13 days) and 7 days in Prince 
William Sound (ranging 3–10  days, Table  1). The dis-
tance that LHX tags drifted on the water surface from 
time of deployment to battery shutdown was highly 
variable across sites. Tags that were deployed in Resur-
rection Bay on average drifted daily 6.6 ± 1.1  km from 
Calisto Head (Table 1) and 13.3 ± 1.6 from Caines Head. 
In Prince William Sound, tags deployed in Perry Passage 
drifted daily an average of 22 ± 3.4  km and 9 ± 3.4  km 
from Lone Island (Table  1). All tags generated at least 
one location fix with a LC class 2/3 in the first 24 h after 
deployment; however, tags that were programmed with 
the faster repetition rates had a greater overall propor-
tion of high-quality location fixes than the tags with the 

Table 1  Life History Transmitter (LHX) tag summary (n = 24)

*Represents tags with “fast” transmission rate versus **tags with slow repetition rates. Proportion of location class (LC) 2/3 represents the proportion of location 
classes 2 (< 250–500 m) and 3 (< 250 m) within the first 24 h. The first location and deployment distance designates the distance between the first computed location 
we obtained via satellite and the deployment site along with the resulting location class

Tag Deployment site Transmission 
rate (s)

Average daily 
drift (km)

First location 
and deployment 
distance (LC)

Prop. LC 2/3 # hours to first 
location

# hours 
to first LC 
2/3

LHX692* Caines Head 25 15 0.8 (2) 0.40 < 1 4

LHX699 Caines Head 46 12 3.1 (1) 0.20 2 2

LHX675 Caines Head 53 13 5.3 (A) 0.30 3 17

LHX695 Caines Head 47 14 6.2 (B) 0.10 3 6

LHX685** Caines Head 56 11 2.1 (0) 0.20 < 1 19

LHX681 Caines Head 48 15 2.5 (0) 0.60 < 1 15

LHX673 Calisto Head 52 5 3.0 (B) 0.32 2 7

LHX693 Calisto Head 45 10 8.1 (A) 0.12 3 19

LHX810* Calisto Head 26 6 5.2 (0) 0.70 2 2

LHX691** Calisto Head 55 7 2.2 (3) 0.45 2 2

LHX676 Calisto Head 49 6 2.0 (A) 0.60 2 4

LHX686 Calisto Head 50 6 2.9 (B) 0.40 2 2

LHX680* Lone Island 26 10 1.2 (0) 0.30 < 1 < 1

LHX698 Lone Island 45 7 2.9 (1) 0.20 < 1 5

LHX683 Lone Island 47 6 1.3 (0) 0.10 < 1 2

LHX690 Lone Island 49 8 3.7 (0) 0 < 1 4

LHX696** Lone Island 51 10 1.8 (1) 0.20 < 1 2

LHX702 Lone Island 53 9 4.5 (A) 0.30 2 4

LHX674* Perry Strait 25 16 2.1 (3) 0.50 < 1 < 1

LHX682 Perry Strait 46 20 3.1 (3) 0 < 1 < 1

LHX684 Perry Strait 48 21 4.5 (A) 0 < 1 3

LHX689 Perry Strait 50 25 15 (B) 0.10 5 24

LHX694 Perry Strait 52 26 3.0 (3) 0.25 1 1

LHX701** Perry Strait 54 21 1.4 (3) 0.15 < 1 < 1



Page 5 of 10Brown et al. Anim Biotelemetry             (2019) 7:4 

slower rate (Table 1). The time between deployment and 
the first computed locations obtained via satellite uplink 
ranged from 30 min to 5 h. The distance between the first 
obtained location of any class and the deployment sites 
ranged from 0.77 to 15  km (Table  1). For most tags, it 
took longer (1–24 h) to produce locations with a class 2/3 
designation (Table 1).

Just as the distance of drift varied across sites, the mean 
distances between the estimated emergence location and 
the actual deployment sites were also highly variable. The 
most accurate emergence location estimates came from 
tags deployed at Calisto Head (2.3 ± 0.02  km) in Resur-
rection Bay and Lone Island (2.9 ± 0.03  km) in Prince 
William Sound (Table  2). Estimated emergence loca-
tions in Perry Passage gave the least accurate estimates 
(5.2 ± 0.06  km). Mean distances between estimates and 
actual locations in Perry Passage were almost twice as 
large as the mean distances from Caines Head, Calisto 
Head and Lone Island.

Models that used the full dataset of all locations (i.e., 
using all valid locations generated soon after deployment) 
generated the closest emergence location estimates to the 
actual deployment sites (Fig.  2). However, when initial 
Argos tracking locations were removed, simulating cases 
with delayed transmissions or uplinks, the mean distance 
between the estimated emergence locations and actual 
deployment locations increased substantially (Table  2). 
For example, when removing the first 24  h of location 
data, the distance between the estimated emergence 
locations and actual deployment sites increased three- to 
fourfold for all sites (Table  2). This trend was especially 
pronounced in Perry Passage, where the mean distance 
between estimated emergence locations and the deploy-
ment site increased to 50.9 ± 0.17 km after a 5 day (120-
h) delay.

Nearest isopleth values generated from the full geospa-
tial dataset ranged from 0.1 (Lone Island) to 0.6 (Caines 
Head) and confirmed that the inclusion of all data pro-
vided the most accurate emergence locations (Fig. 3). As 

locations were removed from the dataset, the nearest iso-
pleth value at deployment sites increased, suggesting a 
wider, less-concentrated spread of points (Fig. 4). Across 
all sites, the deployment location stayed within the 95% 
isopleth boundary for the first 16  h post-deployment 
(Table  3). In some cases, the deployment location was 
within the 95% isopleth value for 24 h post-deployment 
(Fig. 4). Isopleth values for Lone Island ranged from 0.1 
to 0.7, suggesting these were the most accurate model 
predictions among sites.

Table 2  Mean distance (± SE) between crawl-estimated emergence locations and the actual deployment site

“All locations” represent the full ARGOS location dataset, whereas 8-, 16-, 24-, 48-, 72- and 120-h delay represents a truncated dataset with removed locations to 
simulate transmission or uplink delays

Dataset Caines Head (km) Calisto Head (km) Perry Passage (km) Lone Island (km)

All locations 2.9 ± 0.03 2.3 ± 0.02 2.6 ± 0.04 2.9 ± 0.03

8-h delay 5.1 ± 0.04 5.2 ± 0.03 3.5 ± 0.05 4.6 ± 0.04

16-h delay 11.8 ± 0.04 6.4 ± 0.04 10.6 ± 0.07 6.7 ± 0.06

24-h delay 12.8 ± 0.05 6.7 ± 0.04 20.5 ± 0.09 8.1 ± 0.08

48-h delay 15.9 ± 0.09 11.4 ± 0.04 36.8 ± 0.19 13.3 ± 0.15

72-h delay 14.4 ± 0.09 10.4 ± 0.05 49.7 ± 0.14 13.9 ± 0.16

120-h delay 17.8 ± 0.13 12.3 ± 0.13 50.9 ± 0.17 15.4 ± 0.23

Fig. 2  Predicted pseudo-locations averaged across 500 simulations 
for a single track per tag (n = 6) in Perry Passage. Red star represents 
the location of the deployment site. Black dots represent estimated 
emergence locations
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Discussion
The application of LHX tags, in addition to mod-
eling the spatial locations of mortality events, has 
advanced our ability to classify mortality by cause 
and location. We were able to apply a time-reversed 
state-space modeling technique to back-calculate an 

initial, point-of-origin spatial location (the tag emer-
gence location) and to provide an empirical error esti-
mate, following varying lengths of transmission delay. 
Results from our models to backtrack spatial loca-
tions from implanted satellite telemetry tags revealed 
optimal accuracy of emergence location estimates of 

Fig. 3  Isopleth values generated from kernel density surface for all locations. a Perry Passage, b Lone Island, c Caines Head, d Calisto Head. Black 
stars represent the deployment site
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2.3–2.9  km, which on average, was an improvement 
over using the first location obtained (Table 1) and pre-
vious work that utilized the state-space models 95% 
confidence output [19]. These techniques worked espe-
cially well for datasets that began transmitting locations 
immediately at the ocean’s surface. For example, we 

were able to generate a tag emergence estimate that was 
within 250 m of the Lone Island deployment site. Thus, 
our findings highlight the importance of optimizing tag 
programming to maximize probability of early uplinks 
in cases where research questions require immediate 
and high-quality locations of emergence.

Fig. 4  Isopleth values generated from kernel density surface for a 24-hour delay. a Perry Passage, b Lone Island, c Caines Head, d Calisto Head. Black 
stars represent the deployment site
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However, transmission delays greater than 24  h sub-
stantially reduced accuracy of the emergence location 
estimates across three of 4 sites. We did find that all tags 
irrespective of the assigned repetition rates had at least 
one high-quality location class within 24  h of emer-
gence which suggests that tags with slower transmission 
rates were able to provide a sufficient number of satel-
lite uplinks. At time of deployment, we experienced light 
winds with little to no wave action, which likely maxi-
mized tag antenna exposure and the likelihood of trans-
missions being received by satellites. If successful uplinks 
are delayed > 16  h, the large gap in spatial information 
between the first location and the emergence site for 
crawl models will likely reduce the accuracy of the ini-
tial location estimates. To increase the likelihood of ini-
tiating satellite uplinks under more challenging wind and 
sea state conditions that may reduce antenna exposures, 
faster repetition rates are advisable. However, obtaining 
higher-resolution data usually compromises the longev-
ity of the battery life. This trade-off might be ameliorated 
by programming tags to transmit rapidly during the first 
12  h of emergence and then using a slower retransmit 
rate > 12 h.

Our results also provided insight into the surface 
movement patterns of implantable tags postmortem and 
the influence of environmental and oceanographic vari-
ables on location accuracy. Since tidal currents are typi-
cally highest at the mouth of most fjord systems [23], tags 
that were deployed at the heads of passages or fjords with 
large tidal fluxes were subject to greater surface drift over 
the life of the tag. For example, the waters surrounding 
Lone Island were classified as having “weak and variable” 
currents [20]. As a result, tags drifted an average of 9 km/
day whereas tags from Perry Passage drifted over 20 km/
day. The waters surrounding Perry Passage, in particular, 
can have strong surface currents especially in conjunc-
tion with high winds. Additionally, this correlates with 

our data that showed emergence location estimates were 
more accurate for Lone Island tags than for Perry Passage 
tags. In addition to drift distance, ocean conditions at the 
time of the predation event will likely impact the spatial 
error associated with the emergence locations. Studies on 
marine mammals have found that spatial error is associ-
ated with surfacing behavior [24]. Given the small size 
of implantable satellite tags, it is likely that conditions at 
the ocean surface (e.g., wave height) will also affect the 
accuracy of the locations. To replicate conditions across 
sites, we only deployed tags in calmer conditions (winds 
speed: 1–5 knots; wave height 0–0.3  m). Thus, it is still 
unknown what effects rougher or choppy surface condi-
tions will have on the accuracy of the emergence location.

Future applications should test the effects of tidal pat-
terns, wave height and surface currents on the accuracy 
of emergence location estimates, especially in the case 
of long transmission delays. If regions have accurate and 
localized tide and current predictions, researchers could 
incorporate oceanographic drift models (e.g., Lagran-
gian drift models) into emergence location estimates. 
For example, recent research has used hydrodynamic 
drift models to predict mortality locations from sea tur-
tle satellite-tag data [25, 26]. Experimental tests using 
drift models that account for wind and tide were also 
used to estimate at-sea mortality locations of cetaceans 
and resulted in differences in accuracy of approximately 
30  km between true stranding locations and estimated 
locations [27]. However, the lack of baseline current 
and tidal data in coastal Alaska, especially at fine spatial 
scales, can make it challenging for researchers conduct-
ing such studies [28]. For example, we noticed that several 
LHX tags in Resurrection Bay spent several days floating 
in and out of small inlets and coves. This was likely due 
to localized, circuitous current pattern along the coastal 
coves versus the straight-line paths dictated by ebb and 
flood patterns within the fjord channels. As a result, the 
KDS generated from tags in Resurrection Bay revealed 
several localized hot spots (see Fig. 3), suggesting that the 
densities of initial location estimates were variable and 
spread over multiple areas. In the future, higher-resolu-
tion ocean models in conjunction with high-quality loca-
tions offer a promising alternative to backtrack and refine 
predation/pop-up locations.

Despite model accuracy decreasing with simulated 
transmission delays, our results have provided a direct, 
quantitative approach to estimate the location of pre-
dation events. Our empirical validation shows that for 
delays up to 16 h, actual emergence locations are included 
in the 95% isopleth of model outputs. Our results can be 
applied to other studies that use implanted satellite tags 
or pop-up archival tags. Quantifying the location of pre-
dation events can provide insight into how the spatial 

Table 3  Nearest isopleth value to known deployment site

“All locations” represent the full ARGOS location dataset, whereas 8-, 16-, 24-, 48-, 
72- and 120-h delay represent a truncated dataset with removed locations to 
simulate transmission or uplink delays

Dataset Caines Head Calisto Head Perry 
Passage

Lone Island

All locations 0.60 0.50 0.20 0.10

8-h delay 0.80 0.80 0.70 0.70

16-h delay 0.90 0.90 0.90 0.50

24-h delay < 0.95 0.90 < 0.95 0.40

48-h delay < 0.95 < 0.95 < 0.95 0.40

72-h delay < 0.95 < 0.95 < 0.95 0.40

120-h delay < 0.95 < 0.95 < 0.95 0.30
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scale of safe and risky areas influences the ability of prey 
to manage predation risk while foraging, moving and 
selecting habitats [29]. Predation risk mapping has been 
used in terrestrial ecology to investigate the influence of 
predation on resource selection decisions [30] and ani-
mal movement studies [31]. Although there is increas-
ing evidence that marine animals modify their behavior 
under predation threat [32], few data or analyses exist 
showing how predators affect the movement of tracked 
marine animals. If predators are affecting the behavior of 
a tracked animal, especially in habitats where exposure 
to predation risk is persistent, results from habitat use 
studies may be incorrect or biased [33]. Finally, acquiring 
spatial information from mortality events may provide 
valuable information regarding the influence of preda-
tion on localized population declines. Recognizing the 
effects of predation on population recovery is essential 
for successful management and conservation of a range 
of threatened and endangered marine species. Thus, the 
application of LHX tags to classify mortality events in 
addition to modeling spatially explicit predation risk has 
potential to advance our ability to measure predation by 
apex marine predators on other upper trophic marine 
mammal species.

Conclusions
We were able to generate spatially explicit location esti-
mates for simulated predation events by using a time-
reversed state-space modeling technique that maximizes 
the use of all available location and quality information. 
In our empirical testing in four locations and for time 
delays up to 16 h postemergence, the actual points of ori-
gin were located within the 95% isopleth of model out-
puts. This suggests that the area confined by 95% isopleth 
of model output is an effective way to characterize an 
emergence location with an associated uncertainty.

Our results highlight that for studies prioritizing the 
emergence location, programming tags to optimize 
immediate, high-quality locations is critical. When using 
these methods, researchers should consider the amount 
of transmission delay as well as the quality (e.g., associ-
ated error) of the first few locations. Our findings also 
show that oceanographic conditions (e.g., current) may 
influence the accuracy of initial location estimates. In 
the future, researchers should consider testing how sur-
face conditions can impact the accuracy of the initial 
transmission location. As it stands, these results provide 
valuable starting point to guide future research efforts 
seeking to identify the emergence location of pop-up sat-
ellite tags. The model can be applied more specifically to 
estimate the locations of predation or bycatch mortality 
events for a wide range of species including sea turtles, 
marine mammals and large pelagic fish.
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