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Abstract 

Background:  The study of bioenergetics, kinematics, and behavior in free-ranging animals has been transformed 
through the increasing use of biologging devices that sample motion intensively with high-resolution sensors. Overall 
dynamic body acceleration (ODBA) derived from biologging tags has been validated as a proxy of locomotor energy 
expenditure has been calibrated in a range of terrestrial and aquatic taxa. The increased temporal resolution required 
to discern fine-scale processes and infer energetic expenditure, however, is associated with increased power and 
memory requirements, as well as the logistical challenges of recovering data from archival instruments. This limits the 
duration and spatial extent of studies, potentially excluding relevant ecological processes that occur over larger scales.

Method:  Here, we present a procedure that uses deep learning to estimate locomotor activity solely from vertical 
movement patterns. We trained artificial neural networks (ANNs) to predict ODBA from univariate depth (pressure) 
data from two free-swimming white sharks (Carcharodon carcharias).

Results:  Following 1 h of training data from an individual shark, ANN enabled robust predictions of ODBA from 1 Hz 
pressure sensor data at multiple temporal scales. These predictions consistently out-performed a null central-ten‑
dency model and generalized predictions more accurately than other machine learning techniques tested. The ANN 
prediction accuracy of ODBA integrated overtime periods ≥ 10 min was consistently high (~ 90% accuracy, > 10% 
improvement over null) for the same shark and equivalently generalizable across individuals (> 75% accuracy). Instan‑
taneous ODBA estimates were more variable (R2 = 0.54 for shark 1, 0.24 for shark 2). Prediction accuracy was insensi‑
tive to the volume of training data, no observable gains were achieved in predicting 6 h of test data beyond 1–3 h of 
training.

Conclusions:  Augmenting simple depth metrics with energetic and kinematic information from comparatively 
short-lived, high-resolution datasets greatly expands the potential inference that can be drawn from more common 
and widely deployed time-depth recorder (TDR) datasets. Future research efforts will focus on building a broadly 
generalized model that leverages archives of full motion sensor biologging data sets with the greatest number of 
individuals encompassing diverse habitats, behaviors, and attachment methods.
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Introduction
Biologging tag technologies capable of recording tri-axial 
motion at increasingly fine resolutions have transformed 
quantitative studies of biomechanics, energy expendi-
ture, and behavior in free-ranging animals [1–4]. Ensuing 
datasets are highly detailed, but can be limited in scope 
by their expense, short deployment durations and chal-
lenging data retrieval [5, 6]. Unlike many other tagging 
technologies, high resolution (> 5  Hz) motion-sensitive 
biologgers are currently exclusively archival. These tags 
need to be recovered to access the memory, which can 
prove difficult in wide-ranging species [6, 7]. Widely used 
time-depth recorders (TDRs) [8–10], are less affected 
by these constraints due to lower required sampling fre-
quencies, facilitating data transmissions to satellites [11–
13]. However, without motion-sensitive logging, they 
have lacked the ability to elucidate fine-scale behavior, 
locomotor-kinematics and bioenergetics [14].

The rates at which wild animals expend and acquire 
energy ultimately determine vital rates that are influential 
on survival and fitness [1, 15, 16]. Measuring patterns of 
energy expenditure at an individual scale, thus, informs 
life history [17], foraging [18], biogeography [19], behav-
ioral strategies [20, 21], and ultimately conservation [14]. 
Prior to the advent and expanding use of animal-borne 
biologging sensors [22, 23], energy use and metabolic 
rates were approximated in the laboratory using direct 
and indirect calorimetry, in the field using doubly labeled 
water [24], or heart rate monitoring [25]. In the last dec-
ade, motion-sensing biologging tags have emerged as 
an effective tool for approximating metabolic rate, with 
overall dynamic body acceleration (ODBA) emerging as 
a common proxy of locomotory energy expenditure that 
has been calibrated in numerous taxa [26–30]. Recent 
work has shown ODBA is particularly well suited to esti-
mating energy expenditure in fishes [31–33].

Sampling dynamic body motion, for ODBA calculation, 
requires infra-second sampling rates and storing these 
data consumes disproportionate amounts of on-board 
power reserves [6]. Large volumes of high-resolution 
data are difficult to relay via satellite or acoustic telem-
etry due to bandwidth restrictions, and the power draw 
of transmissions [6]. As such, standard practice man-
dates device retrieval for full data acquisition, especially 
for many marine animals that surface infrequently and/
or travel beyond land-based transmission infrastructure 
[34]. For species that do not reliably return to locations 
where they can be recaptured, marine scientists primar-
ily use remote release mechanisms (e.g., corrodible wires, 
suction release, etc.) to ensure device retrieval within 
an accessible area [34]. While remote release methods 
are fruitful especially when combined with a localizing 
VHF or satellite beacon [7, 34–36], this approach leads to 

abbreviated tag deployments and largely limits data col-
lection to areas close to the site of capture.

Biologging studies often require tags to condense 
or simplify the data collected in a process called data 
abstraction, which is designed to best represent the origi-
nal data in the fewest number of data points.  However, 
a secondary approach, which is often used during post 
processing is data augmentation, when one dataset is 
used to impute a separately, not directly measured vari-
able. These techniques are a fruitful way to circumvent 
constraints on data richness [37]. Machine learning (ML) 
methodologies may be particularly useful in data aug-
mentation. ML techniques are capable of a wide variety 
of linear and nonlinear approximation and offer advan-
tages in modeling correlative relationships with com-
plex and interactive  behavior, with minimal underlying 
assumption [38]. ML techniques have been applied in 
movement ecology [39–41] and accelerometry studies 
[42–45], primarily for behavioral state or classification 
tasks [46, 47]. Leveraging biologging’s data richness, ML 
could be applied to augment new and existing economi-
cally sampled data streams.

Locomotor activity in swimming animals has been 
shown to vary with the rate of change of depth and this 
relationship is evident in the dive patterns of diverse taxa 
including pinnipeds, sharks [48], and teleosts that do 
not rely on gas-bladders for buoyancy [49]. There are a 
number of mechanisms that likely contribute to this rela-
tionship. First, for organisms with negative buoyancy, 
increased work will be associated with moving against 
gravity during ascent relative to descent at a given rate 
[50, 51]. For organisms with net-positive buoyancy [52], 
this relationship will be reversed as work is now against 
the buoyant force. Second, acceleration associated with 
changes in vertical direction and velocity incur locomo-
tor cost, and this should be reflected in ODBA. Thirdly, 
hydrodynamic resistance is a squared function of speed, 
and changes in depth reflect the vertical component of 
the animal’s swimming speed.

Overall the relationship between vertical movement 
and locomotor cost is based on first principles. There-
fore, at first glance vertical displacement alone seems an 
insufficient predictor of ODBA (Fig. 1) since it represents 
only a single dimension of overall movement, while two 
horizontal planes remain unknown. However, this unidi-
mensional view can be further informed by patterns evi-
dent in the depth time series data. These could include 
repeated behavioral patterns exhibited by the tagged 
organism. Additionally, by including depth data preced-
ing and/or following a moment in time, the dynamics of 
vertical movement can be highly informative; similar to 
the way animation of 2-dimensional representations (i.e., 
multiple images of a rotated object) lends perception 
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into an unobserved 3rd dimension, volume. From these 
secondary signals, a better picture of the unobserved 
dimensions, and their integrated metric, ODBA, might 
be inferred.

Here, we sought to use ANNs and other machine learn-
ing methods to estimate the energetics of free-swimming 
sharks from time-depth measurements of vertical move-
ments alone. Our approach used archival biologging tags 
sampling tri-axial acceleration and depth data from white 
sharks (Carcharodon carcharias). We aimed for sim-
ple model designs that minimized data consumed and 
required minimal model tuning. Our goal was simply 
to (a) test whether artificial neural networks (ANN), in 
comparison to other approaches, could provide an accu-
rate locomotor energy expenditure estimate with a rea-
sonable ration of training data to test data from a single 
individual, and (b) determine whether resulting models 
and performance were robust to generalization when 
deployed on data from other individuals without addi-
tional training data. This proof-of-concept could offer a 
pathway for overcoming constraints that limit activity-
tracking at extended scales (e.g., over a season or year, or 
the full migratory range of an animal’s movement), and 
for enriching large volumes of historical TDR data with 
novel insights into animal activity rates.

Methods
Biologging data collection
Accelometry and vertical movement data were extracted 
from fin-mounted biologging tags deployed on two indi-
vidual white sharks referred to here as shark 1 and shark 

2 deployments. After attracting sharks to a research boat 
using a seal decoy, tags were attached to the dorsal fins 
of two free-swimming white sharks (shark 1–4  m male; 
shark 2–3.4  m female) using a pole-mounted spring-
loaded clamp [35, 36] with a programmable release 
mechanism. Data were collected from deployments in 
November 2015 (shark 1) and November 2016 (shark 
2) at Tomales Point in central California. Tags were 
deployed for 27 and 29  h, respectively. For this study, 
depth and tri-axial accelerations were truncated to a 
standard 24-h continuous record. Raw acceleration and 
depth were sampled at 40 and 20 Hz, respectively. Static 
acceleration was calculated by using a 5-s running mean 
of the raw acceleration data, and dynamic acceleration 
was calculated by subtracting the static acceleration from 
the raw acceleration. ODBA was calculated as the sum of 
the absolute value of smoothed tri-axial dynamic accel-
erations [53]. Both depth and ODBA were down-sampled 
to 1 Hz for model input.

Feed‑forward artificial neural networks (ANNs)
Feed forward artificial neural networks consist of inter-
connected computational units referred to as neurons. 
Simply represented, input data is passed through an input 
layer and subsequently propagated through a defined 
number of hidden layers whereby the sum of the prod-
ucts of the connection weights from each layer approxi-
mate a function to estimate the observed output values 
[54]. Under repeated iteration and adjustment of the con-
nection weights, a function between input (depth) and 
output (ODBA) is as closely estimated as possible given 

a

b

Fig. 1  Depth and locomotor activity of a free-swimming white shark. Sample traces (a) of smoothed overall dynamic body acceleration (ODBA) 
(red) derived from tri-axial acceleration, and vertical movement (black) data for shark 1 show how raw data is subdivided into contiguous blocks of 
training (shaded) and testing sets. Inset (b) shows an expanded 1-h view of the two signals
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the parameter space available in the network (ODBA 
in this case) [55–57]. This ability to approximate a wide 
variety of continuous functions when given appropriate 
parameter space is called the Universal Approximation 
Theorem [38]. Detailed development of model architec-
ture lies in the selection of node functions (i.e. activation 
functions), layer sizes (number of hidden layers and num-
bers of nodes in each layer), learning rate, regularization 
parameters, and parameter dropout.

The workflow for tuning ANNs consisted of two stages: 
(1) training and validation, and (2) testing. As described 
above, the neural network used the input parameters 
as the first layer of neurons, and the last layer of neu-
rons represents the predicted output values. During the 
training and validation phase, the cost (or loss) function, 
in this case the mean squared error (MSE), was used to 
evaluate the performance of the ANNs by comparing 
the instantaneous ODBA data to the output values pre-
dicted by the ANNs. Stochastic gradient descent, a com-
mon optimization method for ANNs, was then used to 
iteratively adjust the weights and biases for each neuron 
to allow the ANNs to best approximate the training data 
output. At each iteration, a backpropagation algorithm 
estimated the partial derivatives of the cost function with 
respect to incremental changes of all the weights and 
biases, to determine the gradient descent directions for 
the next iteration. Note that in our model, the neurons 
of each hidden layer were composed of Rectified Linear 
Units (i.e., a ReLU activation function), to avoid the van-
ishing gradients and to improve the training speed [58]. 
Validation data were not used in the optimization or 
backpropagation algorithms. Instead, the cost function 
was evaluated over the validation data served as an inde-
pendent tuning metric of the performance of the ANN; if 
the cost function of validation data was increasing with 
each iteration, it would suggest that the neural net is 
overfitting the training data.

We used Python toolkit Keras library, which provides 
a high-level application programming interface to access 
Google’s TensorFlow deep learning library. For the exam-
ples chosen here, we used an adaptive moment estima-
tion (Adam) optimization method, a stochastic gradient 
descent algorithm that computes adaptive learning rates 
[59].

ANNs model development
ANNs were tuned across a range of training data vol-
ume, while tested on a standardized 6-h set of 1 Hz depth 
data (n = 21,600 data points) withheld from tuning and 
training procedures (Fig. 1). Initially, ANNs were trained 
exhaustively with all 18 h of data remaining following the 
train-test split (i.e., all data independent of the standard 
6-h test set) while optimal ANN architectures were tuned 

and evaluated. Following an initial evaluation, train-
ing datasets consisted of 1-h increments of 1  Hz meas-
urements of depth and ODBA, with 20% withheld from 
training for a hold-out cross-validation/development set 
(Fig. 1).

Tuning ANN input features and structures involved 
varying and evaluating a range of model architectures. 
Input features are passed to the neural net within mov-
ing windows that consist of depth data from t = 1: n 
(n = 5:60 input data points) to predict ODBA output at 
t = 1 (Fig. 2). Similarly, we tested a range from “shallow” 
to “deep” structures, varying the interconnected neurons 
per hidden layer and number of hidden layers (Addi-
tional file  1: Table  S1). Following initial exploration of 
model architecture, architectures with good performance 
were fine-tuned individually to improve results on each 
deployment’s test set. We used k-fold cross-validation 
(k = 10) to ensure consistent predictive performance 
in the test set and prevent overfitting. Artificial Neural 
Network tuning proceeded to identify minimally trained 
model structures that produced acceptable R2 values in 
the test set and was the basis for selecting moving win-
dow size of 30 inputs of depth measurement, and three 
layers of 40 hidden nodes as a standard architecture for 
this proof-of-concept study. We then investigated the 
sensitivity of model results to the volume of training data, 
tailoring development towards leaner approaches (mini-
mal training) that continue to maintain comparable pre-
dictive performance on the standard test set. Common 
techniques were used to minimize overfitting, such as 
early-stopping [60, 61] and dropout [62].

ANN benchmarking
Additionally, we benchmarked ANN formulations 
against other common modeling approaches, includ-
ing tree-based algorithms, such as random forests [63], 
and gradient boosting [64], as well as support vector 
machines [65], and linear regression. Here we applied 
the same workflow to predict ODBA and compared the 
performance with the ANN approach. Brief descriptions 
of each method and its implementation are described 
below, as well as in similar applications in ecological lit-
erature [66–68].

Random forest analysis is a supervised ensemble clas-
sifier that generates unpruned classification trees to pre-
dict a response. To address issues of overfitting, random 
forests implements bootstrapping sampling of the data 
and randomized subsets of predictors [63]. Final predic-
tions are ensembled across the forest of trees (n = 100) 
on the basis of an averaging of the probablistic prediction 
of each classifier. No maximums were set for tree depth, 
number of leaf nodes, or number of features in order to 
weight prediction over interpretability, similar to ANNs.
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Gradient boosting is another tree-based method 
that uses a forward stage-wise additive model [64] to 
iteratively develop predictions from previous “shal-
lower” trees. At each boosting stage (n = 100, learning 
rate = 0.1), subsequent trees are fit to the negative gra-
dients of the loss function to improve prediction and 
optimize parameters [69]. Again no maximum was set 
for tree depth, number of estimators or number of fea-
tures to encourage maximal prediction.

Support vector machines (SVM) are supervised dis-
criminative classifiers defined by a separating hyper-
plane [65]. Given labeled training, the algorithm 
categorizes new examples according to optimal hyper-
planes that maximize the distance separating the near-
est training data of any class. This method has been 
used in regression problems (‘support vector regres-
sion’, [70]) and, as with other methods, was allowed to 
operate as freely as possible to maximize prediction 
(degree of polynomial kernel = 5).

Linear regression (LR) is a common method that 
estimates a predictive relationship between variables 
by fitting a linear equation. Ordinary least squares 
were used to estimate parameters defining a linear 
relationship between the explanatory and response 
variable.

Evaluation metrics
Model performance in the context of real-world use cases 
depends on the selection of an appropriate evaluation 
metric. A range of options exist, and the selection relies 
on one that is consistent with the estimation needs. Two 
evaluation metrics were used to understand model per-
formance in the test set, a point estimation, and an accu-
mulative, or “time-integrated,” measure. The coefficient 
of determination (R2) was used as a straightforward eval-
uation metric to measure pointwise fitting performance 
of predicted ODBA with the corresponding observed 
ODBA at each 1 Hz time step. While point estimate per-
formance is valuable for assessing model reliability in 
predicting instantaneous kinematics and short bursts of 
activity, we also sought to evaluate the models on broader 
time scales more relevant to understanding energetic 
expenditure over ecological temporal and spatial scales. 
Therefore, we also developed a metric to measure the 
performance of time-integrated accumulation of pre-
dicted and observed ODBA. For intervals with increasing 
widths (5–10,000 s at 5 s increments), we calculated the 
area under the curve (AUC) by summing 1 Hz measure-
ments of predicted and observed ODBA. Resampling was 
used to evaluate overall performance throughout the test 
set, with 2000 randomly placed replicates of each interval 

Fig. 2  Structure of the feed-forward artificial neural network (ANN) model. Best performing parameters and hyperparameters to obtain the best 
prediction outputs were as follows: (1) input features = 30 (t = 1 − t = 30), (2) hidden layers = 3, (3) neurons = 40 in each layer, and (4) connection 
and bias weightings
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width. For each replicate, we calculated AUC of predicted 
and observed ODBA; then computed the percentage 
error. The model accuracy of time-integrated ODBA at a 
given interval is then defined as:

We also used this metric to test the generalizability of 
ANNs trained on one individual to predict ODBA from 
the depth only data of a second individual. Finally, we 
compared these results to a null model comprising the 
median computed ODBA value over the same integrated 
time-scale.

Results
Pointwise estimates of ODBA provided an initial metric 
for model accuracy at an instantaneous timescale. Fol-
lowing 1 h of training the standard ANN model resulted 
in an R2 of 0.54 for shark 1 and 0.25 for shark 2 (Fig. 3). 
For the time-integrated ODBA predictions, accuracy 
increased as a function of increasing observation win-
dow. In this case test accuracy approached 90% and the 
range of errors narrowed in both datasets with ODBA 
binned between 15 and 30 min (Fig. 4). At finer resolu-
tions (e.g., intervals between < 1 and 15  min), model 
accuracy exceeded 85% and 70%, respectively, in both 
datasets. Asymptotic performance was evident in both 
datasets after binning ODBA over 90  min but occurred 
earlier in shark 1 (Fig. 4 and Additional file 1: Figure S1). 
Model accuracy was relatively insensitive to training 
duration over 1  h (Fig.  4; and see Additional file  1: Fig-
ure S1 for full suite of model accuracy plots from ANNs 
trained with 1–17  h of data). In a test of generalizabil-
ity, the model trained on each shark and used to predict 

Accuracy = 1−

∣

∣observed AUC − predicted AUC
∣

∣

observed AUC

ODBA in the other, produced similar time-integrated 
results with model accuracy ranging from 80% to 85% 
between < 1 and 30 min bins, respectively (Fig. 5). Moreo-
ver, the 10-fold cross-validation tests show consistent 
predictive performance and appear to have no overfitting 
issues in our model (Additional file 1: Tables S1 and S2).

At all timescales the ANN model outperformed the 
null median ODBA model for both the native and gen-
eralized model predictions. In comparison to other 
common ML algorithms, final ANN models performed 
similarly in native applications (Additional file  1: Figure 
S2) or exceptionally better in generalized (Additional 
file  1: Figure S3) cases, respectively. Instaneous perfor-
mance of the ANN in the test set (R2 = 0.54) was similar 
to random forest (R2 = 0.57) and gradient boosting tech-
niques (R2 = 0.55; Additional file  1: Table  S3). Each of 
these methods demonstrated greater than 85% accuracy 
across temporal scales as well (Additional file  1: Figure 
S2). Unlike ANN’s robust performance in a generalized 
case (Additional file 1: Figure S3, R2 = 0.22), these meth-
ods failed when deployed on data wholly independent 
of its training (Additional file  1: Figure S3; R2

RF = 0.001, 
R
2
XGB = 0.001, R

2
SVM = 0.004, R

2
LR = 0.002), confirming 

other findings that tree-based methods are less generaliz-
able [71]. Linear regression failed to produce acceptable 
results in both native and generalized cases (Additional 
file 1: Table S3, Additional file 1: Figure S3).

Discussion
Our results demonstrate the ability of supervised 
machine learning techniques to extract reliable predic-
tions of ODBA from vertical movement data (Figs.  3, 
4). ODBA is a valuable proxy of energetics derived from 
accelerometry data that is generally more challenging to 

a b

Fig. 3  a Predicted locomotor activity of a white shark following deep learning. The observed (blue) overall dynamic body acceleration (ODBA) 
measured from tri-axial acceleration data is overlaid by the predicted (red) values over 6 h obtained from the artificial neural network (ANN) model 
trained with 1 h of data. b The distribution of observed (red) and predicted (blue) ODBA values over the 6-h test set
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collect, in comparison to vertical movement data. Our 
approach was particularly suited for predicting ODBA 
aggregated over timescales of minutes (Fig.  4). At these 
integrated time scales accuracy neared 90% after 1  h of 
training data on a single individual and modest model 
tuning.

The predictive power of deep learning techniques gen-
erally improves with the increasing diversity of data [72], 
leaving further room for increasing predictive accuracy 
and more broadly generalizing across individuals and 
perhaps taxa as training sets accumulate. Gains in pre-
dicative power through more systematic model architec-
ture selection, tuning, and model ensembles could also 
improve performance. Here we consider the implications 

of this ANN-enabled data augmentation procedure for 
broader amplification of biologging data from sharks 
and other taxa swimming or flying in 3-dimensional 
environments.

Vertical movement and the temporal scale of ODBA
We demonstrate deep learning in the ANN can be ade-
quately trained to predict locomotor activity in sharks 
from vertical displacement and may be generalizable 
to other swimming or flying organisms. Animals mov-
ing in fluid environments (i.e., swimming, flying) share 
a common set of energetic tradeoffs [73] and exhibit 
convergent properties in gait and locomotion related to 
optimal energetic efficiency [48, 49]. The strength of the 

a b

c d

e f

Fig. 4  Model prediction accuracy over increasing integrated time periods. Resampled estimates of the time-integrated accuracy metric for 
locomotor activity predictions from artificial neural network (ANN) model for shark 1 (red) and shark 2 (blue) following (a, b) 1 h, (c, d) 3 h, and 
(e, f) 12 h of training data. A dashed line (a, b) traces the performance of a null model—the median calculated value of ODBA across increasing 
integrated time periods. Overall performance was insensitive to increased training above 1 h. Accuracy increased with time over which ODBA was 
integrated (a–f, x axes) in all cases. Generally, only marginal gains were achieved above time scales of 5 to 10 min
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a b

c d

Fig. 5  Generalized versus native model performance. Comparable model predictions resulted when artificial neural networks (ANNs) were trained 
on vertical movements from one shark and applied to estimate the locomotor activity of both the same individual and a second shark, for which 
there was no training. Observed (black line) overall dynamic body acceleration (ODBA) for a shark 1 and b shark 2 were estimated following training 
on the same (blue; native) and the other (red; generalized) individual. Residual plots (shark 1 and 2; c and d, respectively) from the observed/
predicted comparisons for the same (blue) and the other (red) individual demonstrate no bias when generalizing the model to predict locomotor 
behavior across individuals. Both native and generalized models outperformed a null model—the median calculated value of ODBA across 
increasing integrated time periods
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deep learning approach in predicting ODBA relies on the 
physics of flying/swimming [74], directional acceleration, 
and pattern recognition [75]. Therefore, this approach 
may be accordingly applicable and could be transfer-
able cross-taxonomically with further development. For 
flying/swimming, the constant buoyancy of sharks is 
responsible for the strong link between locomotor activ-
ity and the kinematics of vertical movements [52, 73, 74]. 
This link should also apply to other swimming organ-
isms that have limited or no buoyancy compensation (i.e. 
gas bladder), for example, ram-ventilating teleosts [49]. 
Applicability to organisms with compressible volume 
(e.g. breath-holding organisms) should also be feasible 
[48], since in this case volume (and therefore buoyancy) 
will be a predictable function of pressure (vertical posi-
tion). However, since these animals can alter gas volume 
between breath-holds, it may be necessary to train data 
across a broader set of conditions.

The increasing accuracy of our prediction as a func-
tion of ODBA time-aggregation (Fig. 4) suggests that this 
approach is optimally suited for questions and processes 
on these corresponding time-scales. For example, the 
locomotor activity of prey acquisition and handling in 
white sharks can be visualized when ODBA is integrated 
over minutes [76], and sustained unidirectional migra-
tion is reflected in distinctive dive patterns on the scale 
of weeks to months [77, 78]. On the other hand, studies 
that require resolution of ODBA on scales of seconds 
may be less suited for this approach. For example, resolv-
ing peak bursts of locomotor activity or individual tail-
beat strokes [76] requires sub-second resolution. Indeed, 
in our results, the areas of mismatch in prediction were 
largely attributed to short bursts and peaks in ODBA 
(Fig. 3). Such fine-scale dynamics, however, often can be 
addressed with short-term studies, where there are few 
limitations for using the full suite of available biologging 
tools.

Our preliminary assessment of generalizability sug-
gests this approach is capable of ODBA predictions for 
individuals wholly independent of the ANN’s train-
ing set. Our simple exploration swapped ANNs trained 
from one individual’s training set on the testing set of the 
other individual (Fig.  5). Distributions of the residuals 
were unbiased relative to the native instance and time-
integrated performance comparable (Fig.  5 and Addi-
tional file 1: Figure S1). As a proof of concept, this initial 
generalizability evaluation demonstrates the feasibility 
and importantly distinguishes the ANN approach from 
ML alternatives (Additional file  1: Figure S2, Additional 
file  1: Figure S3). Though less interpretable comparably, 
the ANN’s unmatched performance in predicting on 
data wholly independent of the training source (Addi-
tional file  1: Figure S3) demonstrates its broader utility 

as an augmentation tool. Ultimately the applicability of 
these methods will be limited by the comprehensiveness 
(diversity) of their training datasets and further develop-
ment should focus on expanding the individuals, behav-
iors, and habitats accounted for during training.

Data augmentation through artificial intelligence
The advent of diminutive motion-sensing loggers has rev-
olutionized activity tracking in wild animals and greatly 
advanced ecological understanding in natural settings. 
However, given the current state of technology, there 
remain power, memory, and device placement and size 
constraints limiting the temporal and spatial scale as 
well as the size of subjects in current studies. As a result, 
the advances that these sensors promise have yet to be 
broadly realized at landscape-level scales (e.g. across the 
full migratory range of a subject, or for a full year). Data 
augmentation procedures can operate powerfully in tan-
dem with animal-borne instrumentation to bridge these 
constraints extending their use in future studies and 
potentially leverage novel information from large vol-
umes of historical TDR data.

Our results suggest that ANN models could enable effi-
cient duty cycling of motion-sensing loggers’ sensors that 
reduce informational loss regarding bioenergetic proxies. 
We show that between duty cycles, ODBA can be rea-
sonably predicted with an inexpensive (power and data) 
pressure transducer continually logging at ≥ 1 s intervals. 
Full motion-sensor data cycles could then be minimized 
to provide adequate amounts of training data. For esti-
mating ODBA we found ANNs to be relatively insensi-
tive to the volume of training data above the 1 h and were 
robust even when augmenting 6 times as much data as 
it was trained with (Fig.  4 and Additional file  1: Figure 
S1). Such lean augmentation procedures provide promis-
ing duty cycling approaches that make efficient use of tag 
resources with minimal overt information loss. We antic-
ipate that the cumulative addition of more and diverse 
training data sets over time will vastly increase this ratio 
while improving prediction accuracy.

Augmentation procedures that leverage deep learn-
ing could also be generalized to apply to independent 
datasets lacking associated motion-sensing data needed 
to measure ODBA. For example, historical TDR data. 
Our initial generalization found comparable predic-
tive performance for an ANN trained on a different 
shark of similar size (Fig. 5). Where computation is not 
a constraint, training sets can be enlarged to encompass 
the widest breadth of individuals, behaviors, and habi-
tats available [45]—and contribute to an ever-growing 
library and development of a powerful ensemble model. 
Leveraging this information in a deep learning context 
holds great potential for augmenting decades worth of 
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existing TDR datasets once cross-generalization has 
been thoroughly validated. An entire biologging database 
with deep ANN structures [79, 80] implementing trans-
fer learning [81] thus holds great promise as a power-
ful approach for augmenting biologging data relevant to 
larger ecological and spatiotemporal scales. This broadly 
generalizable approach would be much in the same spirit 
of well-known image recognition models trained the on 
web database of over 14 million labeled images or the 
word vector models trained on large volumes of text 
scraped from vast breadths of the internet [82, 83].

Future directions
We leveraged machine learning to augment sparse ver-
tical movement data informed by ecologically-valuable 
proxies measured by costly and sophisticated biologging 
technologies. By using these advanced post-processing 
techniques to bridge the complementary vertical move-
ment and ODBA data, biologging studies can exploit 
strengths of various tagging technologies to extend 
and generate greater understanding of activity rate and 
underlying bioenergetics at broader scales. Energy land-
scapes, for instance, which are mechanistic frameworks 
to connect animal movement, behavior, and energetic 
costs [84], have deepened the understanding of cost-
effective movement, resource acquisition, and behavio-
ral decisions (e.g., selection of tail-winds in soaring birds 
[85]), but require extending our ability to estimate loco-
motor activity over increased spatio-temporal scales.

Following this proof-of-concept study, to gain the 
greatest leverage in prediction accuracy, augmentation 
ratio, and generalizability (including historical data), 
future work should focus on leveraging a maximum 
number of full-motion sensor biologging data sets with 
the greatest number of individuals encompassing diverse 
habitats, behaviors, and attachment methods. This, cou-
pled with a systematic approach for optimal model tun-
ing will maximize utility. A more in-depth validation of 
this technique should help determine optimal duty-cycle 
ratios for augmentation to guide future tag programming 
and experimental design. Determining the relationship 
between TDR sampling rate and ODBA predictive accu-
racy will also help determine the minimal data resolution 
that can be used to estimate locomotor activity.

Alternate deep learning techniques and structures 
could improve the relatively simple formulation we 
implemented in this study. Future work can investigate 
applications of techniques specialized for time series 
data, such as recurrent neural networks (RNNs) or long 
short-term memory (LSTM). RNNs have been proved 
to be very efficient at exploring the dynamic temporal 
behavior for a time sequence. Similarly, LSTM main-
tains a memory of values over arbitrary time intervals 

[86] and can be implemented as a layer within an RNN. 
Such approaches have found success when applied 
to tasks in speech recognition, handwriting recogni-
tion, and polyphonic music modeling as well as finan-
cial forecasting problems [87–89]. Other convolutional 
and recurrent network structures are finding increased 
traction in ecological and behavioral studies [45, 90]. 
Despite the inherent time-series nature of our data, we 
find its simple network structure an ideal first step in 
applying these techniques in biologging data augmenta-
tion schemes.

Conclusion
Here, we have presented a deep learning approach to 
predicting ODBA from vertical movement data alone 
and applied resulting neural networks to approximate 
energetic expenditures of tagged white sharks. For each 
individual, resulting neural networks proved highly capa-
ble at recognizing and learning patterns in vertical move-
ment data that were predictive of ODBA measurements 
calculated from tri-axial accelerometry data. Testing 
these trained networks against withheld data demon-
strated the neural network’s performance estimating 
energy expenditure, particularly over broader temporal 
intervals. Performance was also robust to generalization 
across individuals. Along with other pioneering eco-
logical studies capitalizing on artificially intelligent data 
processing [45, 90, 91], these approaches can take full 
advantage of the power of machine learning to push and 
enhance ecological inference from animal-borne instru-
mentation to new scales.

Additional files

Additional file 1: Figure S1. Effect of training data volume on model 
performance. Consistent response curves and marginal performance 
gains with increasing training data volume supported minimizing training 
datasets, and maximizing prediction periods. Figure S2. Native model 
performance compared between the manuscript’s ANN (a) and alternate 
methods (b-d) that produced similar levels of accuracy over longer 
time-integrated intervals. In particular, tree-based models (c-d) produced 
equivalent results to the ANN when predicting data within a native case 
(i.e., the same individual provided the training and testing data). Figure 
S3. Generalized model performance compared the manuscript’s ANN 
approaches (b) outperform other methods when trained on data wholly 
independent (i.e., generalized) from the data used in training. ANN predic‑
tions (a) from a native use (i.e., same individual’s data used in training and 
testing) were slightly more accurate than testing on data from an entirely 
different deployment (b). No other method (c-e) produced similar results, 
in spite of strong performance in the native case (Supplement Figure 2). 
Table S1. Preliminary results from ANN’s sensitivity to volume of training 
data show marginal improvements (and, in cases, loss) after 1 hour of 
training. Table S2. Metrics evaluating the effects of different ANN model 
design and tuning on the test set prediction through k-fold validation. 
Table S3. Accuracy of predictions within the training and testing sets 
for various model implementations in a native case, where the model is 
trained and tested on the same 1 hour of data from the same individual.
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