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Estimation of mean movement rates for blue 
sharks in the northwestern Pacific Ocean
Mikihiko Kai*   and Yuki Fujinami

Abstract 

Background:  The blue shark Prionace glauca is a highly migratory species with a circumglobal distribution. Mean 
movement rate, defined by the horizontal tracking distance between two data points over the duration of time, is 
commonly used to understand the horizontal displacement of highly migratory species across a wide range. How-
ever, the estimation of mean movement rates for blue sharks has never been conducted using a statistical model. We 
therefore investigated the mean movement rates using a generalized linear mixed model with data from satellite tags 
to estimate the range of mean movement rates for 10 blue sharks in the northwestern Pacific Ocean and to reveal the 
interaction of mean movement rate with several factors.

Results:  (1) Estimations of mean movement rates for the 10 blue sharks were significantly influenced by behavioral 
differences among individuals; (2) uncertainty in the estimation (i.e., predictive and confidence intervals) of mean 
movement rates for these blue sharks was larger over shorter time periods, and (3) the predictive intervals of mean 
movement rates for the sharks ranged widely from 0.33 to 5.02 km/h.

Conclusion:  Blue sharks are considered to opportunistically change their mean movement rates regardless of differ-
ences in sex, movement direction, or season.
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Introduction
The blue shark Prionace glauca is a highly migratory spe-
cies inhabiting oceanic and circumglobal waters from 
temperate to tropical regions [1]. Understanding the hor-
izontal movement patterns of animals is essential in the 
development of conservation and management measures, 
because such knowledge aids in clearly assessing their 
habitat use as well as their stock structure [2–6]. Satellite 
tags such as smart position only or temperature trans-
mitting tags (SPOTs) and pop-up satellite archival tags 
(PSATs) are highly versatile location trackers commonly 
used to investigate the movement of highly migratory 
species such as tunas, billfishes, and sharks [e.g., 7–9]. 
The movement patterns of blue shark have been globally 

investigated using these tags [e.g., 10, 11], however such 
information from the western and central North Pacific 
Ocean is still lacking [7].

Mean swimming speed (MSS) is one of the vital param-
eters for understanding the behavior ecology of pelagic 
sharks [12]. The values for blue shark had been esti-
mated globally using ultrasonic acoustic telemetry, and 
the resulting observed range was from 1.3 to 3.7  km/h 
[13–15]. The data-loggers with biologging sensors (e.g., 
speed, acceleration, and depth/temperature) enable us 
to observe swimming behavior in three dimensions and 
to record the actual swimming speed, even though the 
records are limited to a narrow area and a short tracking 
duration [13–15]. The past results suggested that MSS 
was highly variable depending on the behavioral differ-
ences among individual sharks, prey and predator inter-
action, water current, and time of day [13–15]. On the 
other hand, the mean movement rate (MMR), defined by 
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the horizontal tracking distance between two data points 
over the duration of time, is frequently calculated using 
the data of satellite tags [e.g., 16]. MSS is a speed rela-
tive to water, whereas MMR is a speed relative to ground. 
MMR is also expected to be strongly influenced by vari-
ous factors such as water currents and behavioral differ-
ences among individual sharks. The advantage of satellite 
tags is that they allow us to collect the point-to-point 
rate of movement across a wide area over a long track-
ing duration, while it is impossible to calculate the actual 
MSS in consideration of active vertical behavior and 
co-existing high site fidelity. The MMR is also used for 
estimating light-based geolocations of highly migratory 
species (https​://wildl​ifeco​mpute​rs.com/blog/using​-gpe3-
to-impro​ve-geolo​catio​n-estim​ates/). The estimation of 
MMR for blue shark, however, has never been conducted 
using a statistical model, and the interaction of MMR 
with various factors such as behavioral differences among 
individuals, sex, movement direction, and seasons is not 
clearly known.

In this study, we focus on the estimation of MMR for 
blue sharks in the northwestern Pacific Ocean using sat-
ellite tracking data obtained from SPOTs, and then we 
examine the uncertainties in the estimation of the MMR 
and the interaction of MMR with the various factors 
using a generalized linear mixed model (GLMM) with 
fixed and random effects.

Methods
In May 2019, we attached 12 SPOTs (SPOT-196; Wild-
life Computers Inc., Redmond, WA, USA) on blue sharks 
in the northwestern Pacific Ocean (38–39° N, 146–147° 
E) using a chartered Japanese commercial vessel (No. 37 
Den-Maru). Live blue sharks (exhibiting active, strong or 
responsive movements) captured by longline gear were 
brought on board for tagging. During the tagging pro-
cedures, sharks were ventilated using a saltwater irriga-
tion hose, and their eyes were covered with a black damp 
cloth to reduce stress. Sex was visually determined by the 
presence or absence of male claspers. Dorsal length (DL, 
to the nearest cm) was measured as the straight distance 
from the first-dorsal-fin origin to the second-dorsal-fin 
origin. For the data analysis, DL was converted to pre-
caudal length (PCL, the distance to the tip of the pre-
caudal pit) using a conversion equation [17]. The SPOTs 
were fixed to the first dorsal fin using three nylon bolts 
and locknuts through holes that were drilled. The SPOTs 
were programmed to always transmit signals to Argos 
satellites when the dorsal fin broke the sea surface. The 
Argos satellite system categorizes location accuracy into 
seven classes from high to low quality. The set-by-set 

data used in this analysis includes ID number, quality 
of location accuracy, sex, PCL, recorded date, time, and 
location.

Commonly used data filtering was conducted to 
remove accuracy estimations of lower quality (i.e., no 
accuracy estimation, invalid location, or estimation 
errors larger than 1500  m) from SPOTs to improve the 
quality of the location data. Subsequent standard statis-
tical data filtering was conducted using the interquartile 
rule, which determines whether the point is higher or 
lower than the 1.5 interquartile range, to remove outli-
ers in the data and avoid under- and over-estimation of 
MMRs. The MMR between two locations for an individ-
ual shark was calculated using the data on location and 
elapsed time transmitted from the SPOT via the Argos 
system. The tracking distances and direction of move-
ment between two locations (i.e., locations of two con-
secutive data regarding the recorded time after data was 
filtered) were calculated using the ‘geosphere’ package 
[18] in software R 3.6 [19].

MMR was estimated through a modeling of the rela-
tionships between the tracking distances of two locations 
and the elapsed times to avoid the adverse effects of divi-
sion, such as losing information on observation errors, 
when distance was divided by time. Several factors such 
as sex, movement direction, season, and behavioral dif-
ferences among individuals were added to the model to 
investigate the effects on the response variable. To han-
dle repeated observations from the same individuals, we 
used the GLMM:

where �s,d,q,r,h represents the mean tracking distance 
for sex s (where s = 1 and s = 2 signify male and female), 
movement direction d (where -135 ≤ d < -45, -45 ≤ d < 45, 
45 ≤ d < 135, and 135 ≤ d < 180 and -180 ≤ d < -135 signify 
eastward, northward, westward, and southward direc-
tions), season q (where q = 1, 2, 3, and 4 signify Jan–Mar, 
Apr–Jun, Jul–Sep, and Oct–Dec), individual shark r, and 
the time intervals of transmission between two locations 
h. The variation of individual shark δ(r) was treated as a 
random effect, and the other explanatory variables were 
treated as fixed effects.

Expected distance �i for the ith observation was com-
pared with the observed distance Di (km). Since D is a 
continuous positive value, we assumed that the �s follow 
a gamma distribution with a log-link function. The esti-
mation was conducted using the ‘lme4′ package [20] in 
software R-3.6. The best model was selected based on the 
Akaike Information Criterion (AIC) [21] and Bayesian 
Information Criterion (BIC) [22]. The selected model was 
diagnosed using standard regression diagnostic statistics. 

�s,d,q,r,h = es+d+q+δ(r)+log(h),

https://wildlifecomputers.com/blog/using-gpe3-to-improve-geolocation-estimates/
https://wildlifecomputers.com/blog/using-gpe3-to-improve-geolocation-estimates/
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A quantile–quantile (QQ) plot was used to visually assess 
the goodness of fits (i.e., normality). The percentage of 
deviance explained (%DE) by model was used to meas-
ure the proportion of goodness of fits to the data that the 
model accounts for. The equation is

 where residual deviance is the difference in deviance 
between the saturated model (which has as many param-
eters as data values) and the analyzed model, and null 
deviance is the difference in deviance between the satu-
rated model and the null model that includes only the 
intercept. To quantify uncertainties in the estimates, 
95% confidence intervals (95% CI) were estimated using 
a bootstrapping method with 1000 iterations, and 95% 
predictive intervals (95% PI) were calculated from the 
parameter estimates of gamma distribution.

Results
Information on tagging data such as tag deployments and 
track durations is summarized in Table 1. The data were 
collected from 10 blue sharks (7 males and 3 females). 
The track durations for all sharks were between 24 and 
243 days with travel distances of 1013–7578 km. The hor-
izontal movement of tracked blue sharks covered a large 
portion of the northwestern Pacific Ocean (Fig. 1). Four 
sharks (Sharks 1, 3, 7, and 8) migrated southwestward 
from temperate (30–40°N) to sub-tropical waters (10–30° 
N) (Fig. 1), and the other sharks (Sharks 2, 4–6, 9, and 10) 
stayed in temperate waters (30–50° N), moving in east–
west directions (Fig. 1). The mean observed MMRs ± SD 
for all sharks was 1.64 ± 0.91 km h−1, n = 796.

Two stages of data filtering reduced the number of 
datasets from 6142 to 878 after the first stage and to 796 
after the second stage. The simpler model (Model 3) was 
selected by AIC and BIC as the most parsimonious model 
(Table 2). These results suggested that there was no sig-
nificant relationship between the MMR of each shark 
and multiple effects such as season, sex, and movement 
direction. The QQ-plot showed a good fit of the residu-
als to the expected normal values (see inset in Fig. 2) and 
the %DE by GLMM was approximately 89% (Table  2). 
These results suggested that the selected model (Model 
3) fully accounted for the goodness of fits to the data. The 
observed tracking distance and MMR against the elapsed 
time were mainly concentrated in the shorter time peri-
ods (Figs. 2 and 3). The MMRs varied widely, and the 95% 
PIs of the MMRs were wider along the y-axis, especially 
over the shorter time periods (Fig.  3). The mean ± SD 
of the lower and upper bounds of the 95% PI was 
0.48 ± 0.15  km/h and 3.85 ± 1.17  km/h, n = 796, respec-
tively. The estimated tracking distances from the best 

%DE = 100×
(

1− residual deviance× null deviance−1
)

,

model were proportional to the time interval of transmis-
sion (Fig. 2), while the MMRs were inversely proportional 
to the time interval of transmission (Fig. 3). The estimated 
MMR ± SD for all sharks was 1.64 ± 0.37 km/h, n = 796. 
The 95% CI of the estimated tracking distance became 
wider as the elapsed time increased (Fig. 2), whereas that 
of the estimated MMR was almost constant throughout 
the elapsed time (Fig. 3). The mean ± SD of the lower and 
upper bounds of the 95% CI was 1.42 ± 0.38  km/h and 
2.15 ± 0.73  km/h, n = 796, respectively. Additionally, the 
estimated MMR varied considerably among individual 
sharks (Table 1).

Discussion
Our results suggested that (1) the estimations of MMR 
for blue sharks were significantly influenced by behavio-
ral differences among individuals; (2) the uncertainty in 
the estimation (i.e., the 95% CI and the 95% PI) of MMR 
was larger over the shorter time periods; (3) the 95% PIs 
of MMRs for blue sharks were wide (0.33–5.02  km/h, 
n = 796); and (4) blue sharks opportunistically changed 
their MMRs regardless of differences in sex, movement 
direction, or season.

Although only data from 7 male and 3 female blue 
sharks were used in this analysis, the effects of sex (i.e., 
the two levels of male and female) were included in the 
model because we had a total number of 796 tracking 
data comprising repeated measurement data for 10 indi-
viduals, 535 for the males and 261 for the females, which 
were quantities that merited their inclusion. The model 
diagnostics such as %DE (approximately 89%) and the 
QQ-plot indicated that the number of samples was suf-
ficient to examine the effects of explanatory variables 
including sex on the estimation of MMR.

As mentioned above, the estimated MMRs for 10 
sharks (i.e., 1.64 km/h) do not accurately reflect the actual 
MSSs between two locations. Site fidelity in a limited 
area, oscillatory diving behaviors, and zigzag swimming 
may cause an underestimation of MMRs compared to the 
actual MSSs. Watanabe et  al. [12], for example, pointed 
out that horizontal MMR can be an underestimation in 
the water column, because fishes generally move verti-
cally as well. These facts suggest that there is a high pos-
sibility that the MMR estimated from wide ranges of 
elapsed time was underestimated compared to the actual 
MSS. It is therefore inappropriate to determine an actual 
swimming speed of blue shark from our analysis, but 
the predicted value can provide the horizontal displace-
ment of blue shark over a long tracking duration in a 
wide area such as the entire northwestern Pacific Ocean 
(Fig. 1). This information may be useful in understanding 
the migration behavior of blue sharks in relation to their 
biology and ecology. Our results including predictive and 
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confidence intervals also clearly demonstrated that the 
estimated MMR over shorter time periods tended to be 
faster than over longer time periods (Fig. 3). Burst move-
ments due to prey and predator behavior, or transient 
directed movements over shorter time periods such as 
seasonal migrations for parturition, might contribute to 
an increase in the MMR.

A recent study based on satellite electronic tags for 
juvenile silky sharks Carcharhinus falciformis in the 
South Pacific Ocean [23] revealed a faster MMR (7.0–
11.0  km/h). Meanwhile, other pelagic sharks such as 

whale sharks Rhincodon typus with satellite tags [24] 
showed slower MMR (1.9  km/h). Another study on the 
MMR of shortfin mako Isurus oxyrinchus in the eastern 
Pacific Ocean [25] indicated that there was a significant 
difference between small sharks (0.97  km/h) and large 
sharks (1.33  km/h). The large differences among spe-
cies may be caused by a rough calculation of MMR that 
does not consider behavioral differences among indi-
viduals and elapsed time. These results may fully sup-
port the wide ranges of MMR for blue shark. However, 
the extremely faster MMR for blue and silky shark may 

Fig. 1  Migration pathways of 10 blue sharks tracked from SPOT tags in the northwestern Pacific Ocean. Open triangles denote locations of sharks 
released with a tag, and solid triangles denote locations of last transmission from SPOT tags

Table 2  Summary of model selection information with 10 blue sharks in the northwestern Pacific Ocean

DF degree of freedom, %DE percentage of deviance explained, ΔAIC and ΔBIC the reduction in AIC and BIC from the best-fitting model; log (hours) logarithmic elapsed 
time in hours between two locations, ID random effects of behavioral differences among individuals. The selected model is Model 3

Model Linear predictor DF ΔAIC ΔBIC Convergence

0 Null 795 1984 1974 Yes

1 log(hours) 794 10 5 Yes

2 Random (ID) 793 1883 1878 Yes

3 Random (ID) + log(hours) 792 0 0 Yes

4 Random (ID) + log(hours) + as.factor (sex) 791 2 7 Yes

5 Random (ID) + log(hours) + as.factor (movement direction) 789 0 14 Yes

6 Random (ID) + log(hours) + as.factor (season) 789 1 15 Yes

7 Random (ID) + log(hours) + as.factor (season) + as.factor (movement direction) 786 2 30 No

8 Random (ID) + log(hours) + as.factor (sex) + as.factor (season) 788 3 21 Yes

9 Random (ID) + log(hours) + as.factor (sex) + as.factor(movement direction) 788 2 21 Yes

10 Random (ID) + log(hours) + as.factor (sex) + as.factor (movement direction) + as.
factor (season)

785 4 36 No
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not support the linear relationship between MSS and the 
maximum annual migration range for ectothermic fishes 

[12]. The extremely faster MMR during long periods of 
elapsed time may therefore be unrealistic for blue shark.

Fig. 2  Tracking distance (km) between two locations (red points) of blue shark against time interval of transmission (hours). The curve represents 
the estimated tracking distance against the time interval. Shadow denotes the 95% confidence intervals of the estimated curve. The inset shows 
the QQ-plot used to check the fit of the model to the data

Fig. 3  Mean movement rate (km/h) of blue shark (blue points) against time interval of transmission (hours). The blue curve represents the 
estimated mean movement rate against the time interval. Blue shadow denotes the 95% confidence intervals of the estimated curve. Red dotted 
curves denote the estimated mean movement rate of individual sharks. Broken black lines with light blue shadow denote upper and lower 95% 
prediction lines
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Blue sharks are well known to exhibit spatial segrega-
tion by sex and ontogenetic stages in addition to the sea-
sonal migrations [26, 27]. These ecological characteristics 
could change the relationships between elapsed time and 
tracking distance through changes in the duration of resi-
dence and migration. Our results for blue shark, however, 
could not find clear effects of season, sex, and movement 
direction on the estimation of MMRs. Accumulations 
of long-term tracking data with SPOT tags for different 
life-history stages of blue shark in the entire north Pacific 
Ocean will be necessary in future work to clarify the rela-
tionships between MMRs and the ecological characteris-
tics of this species.
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