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METHODOLOGY

Head‑mounted accelerometry accurately 
detects prey capture in California sea lions
Mason R. Cole*  , Jenifer A. Zeligs, Stefani Skrovan and Birgitte I. McDonald 

Abstract 

Detecting when and where animals feed is key to understanding their ecophysiology, but our ability to collect these 
data in marine mammals remains limited. Here, we test a tag-based accelerometry method to detect prey capture in 
California sea lions. From synchronized underwater video and acceleration data of two trained sea lions, we isolated 
a combined acceleration and Jerk pattern that reliably indicated prey capture in training datasets. We observed a 
stereotyped feeding motion in underwater video that included (1) mouth opening while approaching prey; (2) head 
deceleration to allow initial suction or prey engulfment, and (3) jaw closure. This motion (1–3) was repeated if a prey 
item was not initially engulfed. This stereotyped feeding motion informed a signal pattern phrase that accurately 
detected feeding in a training dataset. This phrase required (1) an initial heave-axis Jerk signal surpassing a threshold 
based on sampling rate; (2) an estimated dynamic surge-axis deceleration signal surpassing −0.7 g beginning within 
0.2 s of the initial Jerk signal; and (3) an estimated dynamic surge-axis acceleration signal surpassing 1.0 g within 0.5 s 
of the beginning of the prior deceleration signal. We built an automated detector in MATLAB to identify and quantify 
these patterns. Blind tests of this detector on non-training datasets found high true-positive detection rates (91%–
100%) with acceleration sampled at 50–333 Hz and low false-positive detection rates (0%–4.8%) at all sampling rates 
(16–333 Hz). At 32 Hz and below, true-positive detection rates decreased due to attenuation of signal detail. A detec-
tor optimized for an adult female was also accurate at 32–100 Hz when tested on an adult male’s data, suggesting the 
potential future use of a generalized detector in wild subjects. When tested on the same data, a published triaxial Jerk 
method produced high true-positive detection rates (91–100%) and low-to-moderate false-positive detection rates 
(15–43%) at ≥ 32 Hz. Using our detector, larger prey elicited longer prey capture duration in both animals at almost all 
sampling rates 32 Hz or faster. We conclude that this method can accurately detect feeding and estimate relative prey 
length in California sea lions.
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Background
Quantitative feeding observations are key in determining 
an animal’s foraging efficiency, ecophysiology, and eco-
logical impact (e.g., [5, 8, 39]), but our ability to collect 
these data in many marine mammals remains limited. 
Marine mammal foraging behavior has for decades been 

assumed from depth profiles (e.g., ‘Wiggles’) and move-
ment patterns (e.g., area-restricted search) during dives 
and foraging trips [3, 7, 16, 18]. While useful to infer 
behavioral state, these methods cannot resolve individual 
feeding attempts in most species, and must be ground-
truthed to produce reliable quantitative feeding data 
[29, 34, 36]. Animal-borne video cameras can directly 
observe feeding and estimate prey size and species [2, 
4, 26], but are limited by restrictive battery life and may 
potentially bias results if a light source is used at depth. 
Furthermore, high costs and extensive video analysis 
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following collection will limit the extent of deployments 
and may render the use of video cameras impractical or 
unviable for many studies. Prey ingestion can be detected 
in otariids using stomach temperature transmitters [17], 
but short and variable retention times make long-dura-
tion deployments unreliable. Mandibular gape-angle 
sensors (IMASEN) can detect jaw opening in pinnipeds 
[19, 27, 38], but feeding on small prey is often missed, 
and cabling may fail or affect the tagged animal over long 
durations.

With the miniaturization of biologging devices, head- 
or jaw-mounted accelerometers have been investigated as 
a promising means to identify feeding or attempted prey 
capture in pinnipeds. These devices are compact, mini-
mally invasive, relatively inexpensive, and have a mid-
range continuous sampling duration, making them an 
attractive alternative to other methods of feeding detec-
tion [13, 24, 40]. For appropriate use, however, accel-
eration signals must be validated against true feeding, 
as accelerations of the head and jaw are not limited to 
feeding motions [11, 29, 35]. Studies vary in their feed-
ing identification criteria. The simplest techniques infer 
a feeding event when raw or filtered acceleration along 
one or two axes surpasses a threshold defined from a 
subset of training data (e.g., [1, 30]). A variation of this 
method calculates the variance of those raw accelera-
tion axes within a moving window and applies a similar 
threshold analysis to those data [13, 33, 35]. The simplic-
ity of these methods makes them attractive but prone 
to false-positive feeding detections, as any sufficiently 
strong acceleration along the axis of analysis is identi-
fied as feeding [35]. A similar method using the triaxial 
norm Jerk (Norm of the differential of acceleration axes, 
m  s−3; [28] was found to reliably indicate prey capture 
and engulfment by a harbor seal in captive trials [40], 
and this method has been applied to harbor porpoises 
as well [39]. However, detection rates were not reported 
explicitly in those studies. Beyond using only a threshold, 
Skinner et  al. [29] trained a model to detect feeding in 
Steller sea lions based on several acceleration measure-
ments in 2-s windows, but relied only on acceleration 
data sampled along the surge axis (32–64 Hz). Like other 
studies, Skinner et al. [29] reported substantial false-pos-
itive detections (86 false-positive detections alongside 75 
true-positive detections).

Here we test a method to detect prey capture with 
head-mounted accelerometers in California sea lions 
Zalophus californianus by searching for a diagnostic 
phrase of combined acceleration and Jerk data. There is 
not currently an acceleration-based method to remotely 
detect feeding in this species, thus the development of 
such a method should aid our ability to study fine-scale 
feeding patterns of this species in space and time. Our 

primary goal was to develop a selective automated feed-
ing detection algorithm that minimized false-positive 
detections without substantially sacrificing true-positive 
detection accuracy. We also aimed to clarify the effect 
of accelerometer sampling rate on detection accuracy, 
as this could inform future efforts to balance detection 
accuracy against biologger battery life in wild deploy-
ments. Additionally, we sought to investigate relation-
ships between prey length and characteristics of the 
detected prey capture signal phrase, since this too could 
help future work make inferences about relative prey size 
in wild deployments. Our final objective was to test the 
performance of the simpler triaxial Jerk method [40] in 
detecting the same feeding events, as detections from 
this method could more easily be relayed via telemetry in 
longer-term wild deployments.

Methods
Experimental procedure
Experiments were carried out at the SLEWTHS facility 
in Moss Landing, CA, with two trained adult sea lions 
(72  kg female ‘Cali’, 135  kg neutered male ‘Nemo’). The 
subjects represented a wide range of movement variabil-
ity within the species: Cali is small and could swim and 
maneuver rapidly in the pool, while Nemo moved more 
slowly due to his larger size and vision impairment (cata-
racts). Both were trained to wear a custom-built 1-mm 
neoprene head strap which held a small accelerometer 
(OpenTag, Loggerhead Instruments, Loggerhead.com) 
snugly against the dorsal surface of the skull (Fig. 1). In 
each experimental trial, the sea lion was sent by a trainer 
to swim across a seawater pool (7.6 × 4.6 × 1.3  m), cap-
ture and consume a dead fish of known total length 
(herring Clupea pallasii or capelin Mallotus villosus, 
15.1–23.5 cm), and return to the trainer. Fish were pre-
sented within 1 m of two underwater GoPro video cam-
eras (60 frames s−1) at the approximate depth of prey 
release and laterally offset in angle by 30 degrees to pro-
duce frames that overlapped spatially and recorded the 
entire trial. A third GoPro video camera recorded the 
entire experimental area from above water. Two types of 
trials were performed: prey capture trials with the accel-
erometer head-mounted as described above (Cali: n = 90; 
Nemo: n = 67), and non-feeding ‘control’ trials to account 
for the acceleration signals of swimming and turning 
without prey capture (Cali: n = 75; Nemo: n = 56). Dur-
ing prey capture trials, sea lions displayed a tendency to 
anticipate the location of the dead fish. The control trials 
were introduced to account for the resulting consistent 
full-body movements; the sea lions were trained to swim 
the same route at the same pace, but no prey item was 
presented and they were called back to the trainer as they 
were approaching the target.
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Data synchronizing and video analysis
In all trials the OpenTag was set to record acceleration at 
333 Hz with 16 bit resolution along 3 axes (heave, surge, 
sway). Static acceleration along each axis was calibrated 
before and after each experimental session (12 ses-
sions, 6 to 23 trials per sea lion per session) by allowing 
the tag to sit steady in each of six stable resting orienta-
tions along each axis, recording maxima and minima for 
each axis, and scaling data to [1, –1], the range expected 
due to gravity [37]. Care was taken to synchronize the 
OpenTag precisely with each GoPro: all GoPros continu-
ously recorded the entire experimental session, capturing 
deliberate acceleration markers (each marker consisted 
of flicking the resting OpenTag four times in 10 s in view 

of all GoPros) before, between, and after trials in each 
session. Precise GoPro and OpenTag timestamps were 
recorded for each acceleration marker, and from these 
the relative drift between the OpenTag and GoPros was 
calculated and corrected between each marked point. All 
signal analyses were performed in MATLAB 2015b or 
2016b (MathWorks, Natick, MA, USA).

Prior to analyzing acceleration data, framewise GoPro 
video analysis (Adobe Premier Pro) was used to record 
timestamps at (1) 5 frames after initial OpenTag submer-
gence once the sea lion left the trainer; (2) initial mouth 
opening for prey capture (if applicable); (3) lower jaw 
closure following suction feeding, or the moment of rap-
torial biting (if applicable); (4) any repetitions of steps 2 

Fig. 1  Diagnostic signal phrase for detecting prey capture in California sea lions. Prey capture is detected from (A) a peak in heave axis smoothed 
Jerk data surpassing a threshold (‘Jerk threshold’) determined from sampling rate (shown in Fig. 2), resulting from a dorsal head tilt as the jaw opens; 
B a deceleration in estimated dynamic surge axis data surpassing −0.7 g (‘Deceleration threshold’) within 0.2 s of the end of A, as the head retracts 
during suction or pierce feeding; and C a surge axis estimated dynamic acceleration surpassing 1.0 g (‘Acceleration threshold’) within 0.5 s of B, as the 
mouth closes and head rocks ventrally. The detected event duration and integrals of heave axis smoothed Jerk and surge axis estimated dynamic 
acceleration, which were evaluated for their relationships with prey length, are shown here graphically
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and 3 (in the case of prey handling following initial cap-
ture); (5) the approximate end of stereotyped prey cap-
ture head movements, marked by final closing of the jaw, 
and (6) 5 frames prior to the OpenTag visually surfacing 
from the water. The 5-frame buffer in timestamps 1 and 6 
was used to avoid acceleration artifacts caused by the tag 
nearing and breaking the water surface. In control trials, 
only timestamps 1 (submergence) and 6 (surfacing) were 
recorded.

Additionally, biomechanics of prey capture were 
noted from video analysis and used to inform the detec-
tor selection process (described below). Stereotyped 
feeding motions of the head, mouth, and neck were 
observed with reference to the movement imposed on 
the OpenTag. These biomechanical observations guided 
the order and timing of the acceleration patterns sought 
by the detector. For both sea lions, framewise video anal-
ysis revealed a consistent, stereotyped feeding motion 
consisting of (1) mouth opening; (2) a nearly concurrent 
rapid head retraction or stalling, peaking approximately 
during maximum gape; (3) a sharp forward head jolt as 
the jaw closed, and sometimes a rapid repetition of steps 
1 through 3, if further prey handling was necessary to 
engulf prey.

Training and testing the prey capture detector
Video and acceleration data were divided into training 
and non-training datasets. The training dataset, which 
was composed of a random subset of each sea lion’s prey 
capture trials (Cali: n = 24, Nemo: n = 22) and control 
trials (Cali: n = 16; Nemo: n = 14), was used to identify 
the combination of acceleration data patterns that most 
accurately identified feeding. We first visually inspected 
OpenTag data marked with video analysis timestamps, 
and identified a suite of patterns that appeared repeat-
edly, aligned with expectations from biomechanical video 
observations, and could potentially indicate prey cap-
ture. These patterns were then used in an iterative test-
ing process to determine which pattern combinations 
most accurately identified true prey capture events in the 
training subset, as described in detail below. This pro-
cess was applied to raw data (333 Hz), as well as raw data 
decimated to 200 Hz, 100 Hz, 50 Hz, 32 Hz, 20 Hz, and 
16  Hz to evaluate the consequences of lower sampling 
rate to prolong deployment time in the field.

For visual pattern inspection, accelerometer data were 
plotted for each trial in the training subset as both raw 
and estimated dynamic acceleration along each axis, the 
Jerk (product of sampling rate and the absolute value of 
the differential of acceleration) of each acceleration axis, 
and the triaxial norm Jerk (square-root of the sum of the 
squared differential of each axis, as defined in [40]). Esti-
mated dynamic acceleration was calculated as the raw 

acceleration minus approximate static acceleration, with 
approximate static acceleration estimated by a moving 
mean using a window size of 0.5 s. Triaxial norm Jerk and 
individual axis Jerk vectors were then smoothed over a 
window size of 0.05 s (sampling rate/20) to filter out high-
frequency fluctuations due to either minor tag measure-
ment error or potential accelerometer vibration resulting 
from the head strap. Visual inspection and comparison 
with concurrent video indicated that this window size 
produced an approximate static acceleration signal that 
estimated the changes in tag orientation during the rapid 
turning, rolling, and stalling motions that sometimes 
accompanied prey capture. All plots were overlain with 
timestamps recorded from video analysis for visual pat-
tern inspection. This process identified a suite of possible 
indicative patterns (magnitude, duration, and direction-
ality of signals) from each data form, yielding numerous 
combinations or ‘phrases’ of these patterns.

An iterative testing process (Additional file 1) was used 
to select the combination of acceleration and Jerk pat-
tern that best identified true prey capture events (TP 
detection rate = true detections/actual prey captures) 
in the prey capture training dataset, and ignored other 
motions associated with swimming or turning in the 
experimental training dataset (FP detection rate = false 
detections/actual prey captures) and the control training 
dataset (Control FP detection rate = control trial detec-
tions/control trials). This process occurred separately 
for Nemo and Cali. In each test iteration at each sam-
pling rate, a different combination of thresholds and tim-
ing requirements were applied to the training subset as 
search criteria in custom-written MATLAB script, and 
the accuracy of prey capture detection (TP, FP, and Con-
trol FP detection rates, as defined above) was recorded. 
All pattern combinations identified from visual inspec-
tion were tested. For each sea lion at each sampling rate, 
the best pattern combination was manually selected 
using combined testing results from feeding trials (TP 
and FP detection rates) and control trials (Control FP 
detection rate) in the training dataset.

This iterative testing of the training datasets produced 
a consistent set of detection criteria that described the 
observed prey capture motion well across all sampling 
rates, for all feeding types observed (suction, pierce, and 
raptorial), in both Cali and Nemo (Fig. 1). The resulting 
detector required that data contain three components 
(A–C), each corresponding to a rapid motion during prey 
capture:

A.	Spike in heave-axis Jerk An initial spike in heave-axis 
(dorso-ventral relative to the head) smoothed Jerk 
signal surpassing a threshold. This component traced 
a sharp increase in vertical acceleration due to mouth 
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opening (step 1). Because Jerk values are dependent 
on sampling rate, it was necessary to describe this 
heave-axis Jerk threshold as a function of sampling 
rate. Threshold values were first determined sepa-
rately for each sea lion, as part of the iterative testing 
process described above (Additional file 1). For both 
sea lions, a power curve best described the heave-
axis jerk threshold as a function of accelerometer 
analysis rate (Fig. 2).

B.	 Surge-axis deceleration Within 0.2 s of the end of (A), 
surge-axis (parallel to forward swimming direction) 
estimated dynamic deceleration must surpass −0.7 g 
(1 g = 9.81 m s−2). This component results from head 
retraction to facilitate full or partial prey engulfment 
(step 2).

C.	Final surge-axis acceleration Following within 0.5 s of 
(B), surge-axis acceleration must surpass 1.0  g. This 
component reflects a forward head movement con-
current with jaw closure (step 3).

The sequence of components A–B must exceed 0.05 s, 
to prevent detection of some rapid motions such as shak-
ing or impact. In the case of prey handling, in which the 
sea lion does not successfully engulf prey during initial 
prey capture (steps A–C), the pattern of steps A–C is 
repeated one or more times until prey is consumed. To 
be considered prey handling, any detected repetitions 
of A–C must begin within 1  s of the end of the previ-
ous A–C sequence; otherwise it is categorized as a new 

feeding event. In this case of multiple A–C sequences 
comprising one detection, the entire detected event must 
correspond to true feeding movements on video; detec-
tions that correspond to both feeding and clearly non-
feeding motions (e.g., prey searching) are categorized as 
both true positive and false positive.

Detectors were tested on the non-training trial and 
control subsets to determine their accuracy in identify-
ing true-positive prey capture events (TP detection rate), 
ignoring false-positive detections during feeding trials 
(FP detection rate), and minimizing false-positive detec-
tions of the qualitatively similar rapid head and body 
movements in control trials (Control FP detection rate). 
Tests were conducted at 333, 200, 100, 50, 32, 20, and 
16 Hz.

To assess another promising prey capture detection 
method for comparison, we also calculated TP, FP, and 
Control FP detection rates for the same non-training 
datasets using the root mean square (RMS) of triaxial 
norm Jerk over an averaging window of 250 ms (square 
root of the mean of all squared triaxial norm Jerk values 
in the 250-ms window), a simpler method that works well 
in harbor seals and harbor porpoises [39, 40]. As with 
the detector, the optimal cutoff threshold was manually 
selected following iterative testing in training datasets 
(Additional file 1) for each sea lion and sampling rate.

Confident use with wild subjects requires a single gen-
eral detector, but optimum heave-axis Jerk thresholds dif-
fered between sea lions (Fig. 2). Because Cali approached 
and captured prey more quickly and deliberately, she was 
judged to be the more representative model of a wild sub-
ject. We therefore tested the detectors calibrated for Cali 
against Nemo’s data, across the full range of sampling 
rates, to determine the robustness of Cali’s model to vari-
ation among subjects.

Predicting prey size
We investigated if variations in prey size were correlated 
with characteristics of the prey capture detection sig-
nal, and whether these characteristics varied between 
small and large prey size groupings. We reasoned that 
variations in prey size may produce differences in gape 
angle, feeding type (suction, pierce, or raptorial), speed 
of movement, and prey handling time prior to consump-
tion [9, 10, 15, 20], and that these differences may affect 
prey capture detection signals [40]. Using the selected 
prey capture detectors for Nemo and Cali, a suite of 
possible indicators was calculated from acceleration 
and Jerk signals at each sampling rate; these indica-
tors were (i) total prey capture duration; (ii) maximum 
heave-axis smoothed Jerk; (iii) maximum surge-axis esti-
mated dynamic acceleration; (iv) the integral of heave-
axis smoothed Jerk, and (v) the integral of the absolute 

Fig. 2  Relationships between sampling rate and empirically 
determined heave axis smoothed Jerk thresholds. The curves for 
Cali and Nemo diverge as sampling rate increases, suggesting that 
model performance is more robust to individual differences at lower 
sampling rates
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value of estimated dynamic surge-axis acceleration. We 
used simple (univariate) linear regressions to examine 
relationships between these indicators and prey length 
at each sampling rate, and we used T-tests (Student’s 
or Welch’s depending on equality of variance) to deter-
mine if each of these indicators could determine between 
smaller and larger prey size groups more generally. For 
both Cali and Nemo, prey shorter than mean prey length 
for that individual was categorized as ‘small’, and prey 
larger than mean prey length was categorized as ‘large’.

Results
Prey capture detection accuracy
Personalized detectors were accurate at mid-to-high 
sampling rates (Fig.  3A). For both Cali and Nemo, TP 
detection rate was high at 50–333  Hz (91.1–100%) and 
peaked at 100–200  Hz (Cali 100%; Nemo 97.8%). TP 
detection rate was also moderately high at 32 Hz (86.7–
91.5%). A slight dip in TP detection rates at 333 Hz rela-
tive to 100 and 200 Hz is due to the need for a relatively 
stricter heave axis Jerk threshold to help filter out non-
feeding signals. TP detection rates were similar between 
Cali and Nemo across all sampling rates, though slightly 
higher in Cali (except 333  Hz). There were no feed-
ing trial FP detections (0% FP detection rate) for either 
sea lion, at any sampling rate, indicating that propulsive 
strokes and head movements while searching for prey 
were not mistaken for feeding.

Cali’s detector identified Nemo’s feeding quite accu-
rately between 32 and 100 Hz (Fig. 3A). TP detection rate 
peaked at 50 Hz (91.11%), equivalent to Nemo’s detector 
at the same sampling rate. At 50 Hz and below, TP detec-
tion rates tracked those of Nemo’s detector. From 100 to 
333  Hz, TP detection rates decreased with higher sam-
pling rate. This is expected given individual differences: 
at higher sampling rates, it becomes increasingly difficult 
for Nemo’s heave axis Jerk data to reach the threshold set 
by Cali’s detection model (Fig. 2).

Control FP detection rates were below 5% across all 
sampling rates for both animals, including when Cali’s 
detector was applied to Nemo’s data (Fig.  3A; Cali: 
0–1.51%, Nemo: 0–4.76%). The control trials that were 
falsely detected were qualitatively similar to prey capture 
in head movement: in these trials, and in several others 
that were not detected, the sea lion stationed at a target 
(rapid deceleration) and then actively pushed the target 
(acceleration) before returning to the trainer.

In contrast to the detectors, the triaxial RMS 
Jerk method [40] produced high TP detection rates 
(91.4–100%), but elevated Control FP detection rates 
(15–66.7%) and FP detection rates (up to 17.2%), at 
all sampling rates (Fig.  3B). TP detection rate did 
not decrease at lower sampling rates, but Control FP 

detection rate did increase substantially below 50  Hz. 
Unlike the detector method, non-feeding movements 
were falsely detected during feeding trials (Fig. 3B) with 
the RMS Jerk method.

Predicting prey length
Prey length was related to some indicators quantified in 
TP detections by the detector, but results varied between 
Cali and Nemo and across sampling rates (Table  1, 
Fig.  4). In Cali’s data, prey capture duration, as well as 
integrated heave-axis Jerk and integrated absolute value 

Fig. 3  True positive (TP), control trial false-positive (Control FP), and 
feeding trial false-positive (FP) detection rates in the test datasets 
(excluding the training datasets) across sampling rate. Control FP 
detection rates were found by dividing the number of false-positive 
detections during control trials by the number of control trials. TP 
and FP detection rates were found by dividing the numbers of true 
and false-positive detections during feeding trials by the number of 
feeding trials. TP, Control FP, and FP detection rates are expressed here 
as percentages (i.e., multiplied by 100). TP and Control FP detection 
rates of Nemo’s data using Cali’s detector are labeled ‘Nemo (C)’. 
Shown are detection rates using (A) the detectors (Fig. 1) optimized 
for each sea lion, and B) RMS Jerk summed over a 250-ms window 
with individually optimized thresholds (adjusted from Ydesen et al. 
[40] to produce detection rates)
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of surge-axis estimated dynamic acceleration signals 
increased significantly with prey length, but these and 
other linear relationships were mostly absent in Nemo’s 
data (simple linear regressions; Fig. 4, Table 1).

When data were grouped by prey length, larger fish 
were found to produce significantly longer detected prey 
capture durations across a majority of sampling rates in 
both Cali and Nemo (Student’s or Welch’s T-tests; Fig. 4, 
Table  1). The larger prey group also produced signifi-
cantly larger integrated heave-axis Jerk and integrated 
surge-axis estimated dynamic acceleration signals in 

Cali’s data across sampling rate, but not in Nemo’s data 
(Fig. 4, Table 1).

Discussion
Using supercranial acceleration data at mid-to-high 
sampling rates (32  Hz or higher), the stereotyped head 
movements of prey capture can be identified with high 
accuracy in California sea lions. While similar acceler-
ation-based procedures for detecting prey capture (or 
attempted prey capture) in pinnipeds exist, the detector 
outlined here builds upon these methods by searching 

Table 1  Relationships between prey length or prey length grouping and characteristics of true-positive detections

Lin. Reg. indicates simple linear regressions. T-test refers to 2-sample Student’s t-tests assuming equal variance, comparing among large and small prey length 
groupings. T-test(W) indicates that Welch’s t-tests were used when variance was unequal among large and small prey length grouping. Df numbers in parentheses 
are degrees of freedom in Welch’s t-tests. Df varies with sampling rate within individual because only data from true-positive detections were included in statistical 
analyses. T-test df = (n−2) and Lin. Reg. df = (n−1)

Bold, italicized font and the * symbol denotes either a significant relationship (Lin. Reg.) or a significant difference among prey length group (T-test or T-test(W))

Sampling rate Test DF Prey capture 
duration

Max. heave 
Jerk

Max. surge 
deceleration

Heave Jerk integral Surge accel. 
integral

p R2 p R2 p R2 p R2 p R2

CALI

 333 Hz Lin. Reg 54  < 0.0001* 0.254 0.214 0.029 0.098 0.051 0.0003* 0.221  < 0.0001* 0.346
T-test 53  < 0.0001* 0.419 0.334 0.008*  < 0.0001*

 200 Hz Lin. Reg 54  < 0.0003* 0.226 0.351 0.016 0.079 0.057  < 0.0001* 0.271  < 0.0001* 0.399
T-test 53  < 0.0001* 0.648 0.294 0.002*  < 0.0001*

 100 Hz Lin. Reg 55  < 0.0001* 0.284 0.487 0.009 0.056 0.066  < 0.0001* 0.269  < 0.0001* 0.435
T-test 54  < 0.0001* 0.772 0.253 0.003*  < 0.0001*

 50 Hz Lin. Reg 54  < 0.0001* 0.357 0.224 0.028 0.221 0.028  < 0.0001* 0.28  < 0.0001* 0.482
T-test 53  < 0.0001* 0.660 0.348 0.004*  < 0.0001*

 32 Hz Lin. Reg 50  < 0.0001* 0.314 0.292 0.025 0.275 0.024 0.002* 0.18 0.0004* 0.225
T-test 49  < 0.0001* 0.938 0.695 0.019* 0.012*

 20 Hz Lin. Reg 34 0.243 0.041 0.372 0.024 0.89  < 0.001 0.026* 0.142 0.027* 0.14
T-test 33 0.108 0.609 0.756 0.016* 0.002*

 16 Hz Lin. Reg 25 0.157 0.082 0.416 0.028 0.667 0.008 0.005* 0.285 0.006* 0.277
T-test 24 0.316 0.155 0.994 0.004* 0.013*

NEMO

 333 Hz Lin. Reg 41 0.098 0.067 0.841 0.001 0.151 0.051 0.084 0.073 0.111 0.062

T-test 40 0.018* 0.837 0.066 0.079 0.097

 200 Hz Lin. Reg 43 0.108 0.06 0.774 0.002 0.113 0.059 0.044* 0.093 0.078 0.072

T-test 42 0.036* 0.924 0.062 0.095 0.123

 100 Hz Lin. Reg 43 0.087 0.068 0.838 0.001 0.114 0.059 0.049* 0.089 0.049* 0.089
T-test 42 0.028* 0.949 0.079 0.125 0.086

 50 Hz Lin. Reg 38 0.234 0.038 0.387 0.02 0.2 0.044 0.165 0.051 0.244 0.037

T-test(W) 37(26) 0.090 0.294 0.039* 0.141 0.144

 32 Hz Lin. Reg 18 0.105 0.147 0.36 0.05 0.64 0.013 0.169 0.108 0.238 0.081

T-test 17 0.014* 0.905 0.312 0.208 0.166

 20 Hz Lin. Reg 17 0.619 0.016 0.528 0.025 0.06 0.205 0.697 0.009 0.791 0.005

T-test (W) 16(10) 0.026* 0.151 0.192 0.069 0.196

 16 Hz Lin. Reg 7 0.386 0.127 0.127 0.343 0.782 0.014 0.364 0.139 0.936 0.001

T-test 6 0.335 0.186 0.732 0.734 0.881
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Fig. 4  Relationships between prey length and signal characteristics for Cali (A) and Nemo (B). Y-axis units are indicated at the top of each column. 
Raw signal characteristic data from TP detections at each sampling rate are shown with grey dots. Significant univariate linear relationships are 
shown with black lines through the raw data. Box plots comparing signal characteristics among small (red) and large (blue) prey length groupings 
are overlain on each plot; asterisks indicate plots where these groupings differed significantly
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Fig. 4  continued
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for a specific phrase of signals to minimize FP detections 
while maintaining high TP detection rates.

For California sea lions, a selective signal detector 
appears necessary to discern feeding from other move-
ments. Though triaxial Jerk (a single signal surpassing a 
threshold) was sufficient for high TP detection (Fig. 3B), 
searching for a specific signal combination for use in 
a detector (Fig.  1) was key to minimizing FP detection. 
Precisely synchronized acceleration data and high-speed 
video allowed us to isolate acceleration and Jerk data 
patterns, occurring at time scales of tens to hundreds of 
milliseconds, that reliably aligned with head movements 
during prey capture and thus allowed detectors of this 
detail.

Our finding that specific, biologically informed pat-
tern recognition decreases false positives is consist-
ent with the observed sources of detection error in 
previous studies in otariids. Skinner et al. [29] found that 
dynamic surge-axis acceleration (at 32 or 64  Hz) cor-
rectly detected > 80% of actual fish capture attempts (75 
of 92), but also made 86 FP detections over the same trial 
period. Eighty-five of their 86 FP detections occurred 
while chasing fish, highlighting the need for specific pat-
tern recognition to better discern between high-accelera-
tion behaviors. Similarly, Viviant et al. [33] observed that 
many of the false-positive detections in their study, which 
used the calculated variance of individual-axis filtered 
acceleration from both head- and jaw-mounted acceler-
ometers on captive Steller sea lions, reflected occasions 
of mouth opening unrelated to feeding.

Sampling rate influenced the detector’s accuracy. While 
FP and Control FP detection rates remained low across 
all sampling rates, TP detection rate decreased sharply 
below 32 Hz, due to loss of details in the acceleration sig-
nal and corresponding dampening of the heave-axis Jerk 
signal (Fig. 5). Because key signals required by the detec-
tor (i.e., Fig. 1) occurred over approximately 0.05 to 0.2 s 
each, sampling at a low rate resulted in acceleration and 
particularly Jerk signals that mischaracterized the true 
head movements. At our highest sampling rates (333 Hz), 
however, the detector was less robust to inter-individual 
differences (Fig.  3A). These combined results suggest a 
‘sweet spot’ at around 50 Hz for this detector.

The duration of the detected signal appeared to be 
able to differentiate, on average, between relatively 
smaller and larger prey at moderate sampling rates in 
both sea lions (Fig.  4, Table  1). This is consistent with 
results from a captive method validation with elephant 
seals (Mirounga angustirostris) that found larger prey 
size groups elicited a greater number of prey capture 
signals [1]. Their results, alongside those presented 
here, likely follow from the extended prey handling 

needed to capture and consume larger prey, as sug-
gested by Ydesen et al. [40]. Other signal characteristics 
tested in this study were either not different among prey 
length categories, or showed inconclusive trends due to 
inter-individual differences (Fig. 4, Table 1). In particu-
lar, the greater noise in Nemo’s data overshadowed the 
effect of prey length on the integral of detected heave-
axis Jerk and the integral of detected surge-axis acceler-
ation, which were among the strongest relationships in 
Cali’s data (Fig. 4, Table 1. The strength of those trends 
in Cali’s data may hint that larger prey also elicit larger 
magnitude detection signals; however, the integrals of 
heave-axis Jerk and surge-axis acceleration are influ-
enced by the detected prey capture duration (Fig.  1), 
and maximum detected surge-axis acceleration and 
heave-axis Jerk values did not vary with prey length 
nor among size classes (Fig. 4). It is likely, too, that the 
restricted prey lengths available for this study limited 
our ability to detect effects of prey length in some sig-
nal characteristics.

Fig. 5  The effect of sampling rate on signals used in the detector. 
Timing of key prey capture movements as noted from video 
analysis are shown with dotted lines. Surge axis estimated dynamic 
acceleration signals are relatively conserved, whereas heave axis 
smoothed Jerk signals are strongly attenuated by decreased sampling 
rate, with timing and magnitude particularly obscured below 32 Hz
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Limitations and use on wild otariids
This detector recognizes the stereotyped signal patterns 
of initial prey capture and should therefore be applica-
ble to studies of feeding patterns in wild California sea 
lions. As with any accelerometry-based feeding detection 
method, video validation in wild subjects will be needed 
to confirm the method’s performance in wild settings. 
Captive studies like this are logistically limited in sample 
size (e.g., 2 sea lions here) and therefore in scope of infer-
ence. In addition, other limitations exist when applying 
methods validated in controlled settings to wild animals; 
these generally reflect behavioral differences between 
subjects, differences in prey, and settings within the 
detector.

Individual subjects may differ in their ideal detector 
parameters [35]. In our case, prey capture detections 
were optimized in a controlled setting with personal-
ized heave-axis Jerk thresholds (Fig. 2), reflecting differ-
ences among individuals. Despite this, Cali’s personalized 
detector accurately detected Nemo’s actual feeding when 
used at moderate sampling rates (32–100 Hz), supporting 
the potential use of a single general detector at moderate 
sampling rates (~ 50 Hz) to detect feeding or attempted 
feeding by wild California sea lions. Cali’s detector is 
freely available (https://​github.​com/​mason​rcole/​CSL_​
Feedi​ng_​Detec​tor). In future applications on wild sub-
jects, detector parameters would ideally be validated 
against video and potentially adjusted on either a uni-
versal or individual basis (as in [35]) to maximize detec-
tion accuracy and assess the use of universal detection 
parameters.

Validation using dead prey in a controlled environment 
allows for detailed isolation of prey capture signals, but 
yields a limited range of observations. Vigorous prey pur-
suit or extended prey handling could produce accelera-
tion signals not observed during captive validations with 
dead prey [11, 29, 35]. While we could not test these sce-
narios, the strict criteria used in our detector should help 
to minimize FP detection rates by selecting for biologi-
cally informed patterns in addition to minimum signal 
magnitudes.

Larger and live prey in wild settings should not nega-
tively affect this detector’s TP detection rate, though it is 
unknown how these factors will affect the FP detection 
rate, as mentioned above. Our detector will infer prey 
capture so long as the minimum requirements are met 
(e.g., Fig. 1), meaning accelerations that occur in addition 
to the stereotyped initial prey capture signal will not pre-
vent true-positive feeding detection, but could produce 
a false positive in addition to the true-positive detec-
tion depending on context. Within pinniped species, the 
head and jaw kinematics of initial prey capture (suction, 
pierce, or raptorial feeding) comprise a narrow range 

of stereotyped movements [9, 10, 15, 20]. Our prey size 
prediction trends indicate that larger (though still small) 
prey elicit temporally extended, but not fundamentally 
different, acceleration and Jerk signals. Our use of small 
dead prey ensures that even feeding acceleration signals 
on small prey are detected. We expect that larger and 
actively swimming prey will produce acceleration signals 
that meet the detector’s requirements, given that these 
requirements stem from consistent motions (mouth 
opening, head deceleration, and mouth closing) that we 
observed to occur in each feeding type (suction, pierce, 
and raptorial), even if these acceleration signals occur 
among other accelerations associated with chasing and 
prey handling. Acceleration and Jerk signals from larger 
and live prey will likely exceed the magnitude of signals 
from small dead prey, as previously observed (e.g., [40]).

Because our prey sizes were restricted, we could not 
fully validate relationships between detection signals 
and prey size. Larger prey will likely require more han-
dling time, including tearing at the surface [9, 10]. While 
we expect our detector to identify initial prey capture, as 
outlined above, we could not calibrate or test the abil-
ity of our detector to identify these instances of prey 
handling that are temporally distinct from prey capture. 
Video validation with wild subjects (e.g., [35]) would be 
necessary to assess the influence of these behaviors on 
FP detection rate. Additionally, like other methods, our 
detector is likely to detect a subset of attempted but 
unsuccessful prey captures [29, 35]. Finally, this detector 
should be applied in appropriate diving context: break-
ing the air–water barrier and shallow-water conspe-
cific interactions could produce acceleration signals that 
mimic prey capture by chance. These shallow or surface 
behaviors could be filtered out in wild studies by applying 
a depth minimum (e.g., [1, 25, 35]).

Conclusions
Knowledge of feeding patterns is key to understanding 
an animal’s ecological role and energetic trade-offs, yet 
methods to identify prey capture by marine mammals, 
and otariids in particular, remain relatively inaccurate 
or expensive. Fine-scale feeding data inform our under-
standing of ecosystem impact, ecological niche, and rates 
of energetic gain from prey, the latter of which further 
affects reproductive success and ultimately population 
trends [6, 12–14, 21–23, 31, 32].

The analysis introduced and validated in this study 
accurately detected feeding by California sea lions in a 
controlled setting, using strict detection requirements 
to help minimize false-positive detections. The detector 
developed here was most accurate at moderate-to-high 
sampling rates (32–333  Hz), and was robust to inter-
individual variability at moderate sampling rates, with 

https://github.com/masonrcole/CSL_Feeding_Detector
https://github.com/masonrcole/CSL_Feeding_Detector
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best performance at 50 Hz. Furthermore, we found that 
larger prey elicited longer detected prey capture dura-
tion than smaller prey at most moderate-to-high sam-
pling rates (both sea lions 32–333  Hz, except Nemo 
50  Hz). This detector therefore offers a low-cost and 
mid-duration potential means to observe the temporal 
and spatial patterns of wild California sea lion feeding 
events, along with a captive-validated metric (prey cap-
ture duration) to observe how relative prey length may 
vary in individual subjects across habitat, depth, forag-
ing strategy, or the duration of a foraging trip or dive 
bout. We also assessed the accuracy of the triaxial Jerk 
analysis [40] on California sea lions in the same feeding 
trials, and found high TP rates at all sampling rates with 
low-to-moderate FP rates in control trials above 50 Hz. 
Although these control trial FP rates were elevated rela-
tive to the detector developed in this study, the simpler 
detection criteria could make the triaxial Jerk method 
a favorable option for long-duration deployments that 
rely on on-board signal processing and low-bandwidth 
telemetry of processed data. Overall, we propose that 
these methods can potentially improve our ability to 
pinpoint feeding by wild California sea lions.
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