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Abstract 

Background:  Environmental conditions can influence animal movements, determining when and how much 
animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow 
depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We 
demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy 
expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, 
from spring through autumn 2015 in interior Alaska, USA.

Results:  Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated 
with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, 
respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment 
seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predomi-
nantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) 
during the pup rearing season than the breeding season.

Conclusion:  Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energet-
ics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf 
mobility, suggesting that abiotic conditions can impact wolf movement decisions. Identifying such patterns is an 
important step toward evaluating the influence of environmental factors on the space use and energy allocation in 
carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.
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Background
Wildlife movement decisions while foraging are driven 
by a dynamic balance between maximizing energy 
intake and minimizing costs. In addition to foraging and 
prey availability, wildlife movements are influenced by 

competition, predators, reproductive demands, and abi-
otic factors. As the currency of ecosystem function, ener-
getic demand influences the behavioral decisions animals 
make, dictating, where and how often they feed [1–4]. 
Mammalian apex carnivores in particular experience 
intrinsically elevated energy demands associated with 
large body size [5], endothermy [6] and carnivory [7, 8]. 
To replenish the energy expended on vital functions (e.g., 
metabolic work and activity, thermoregulation, growth, 
reproduction, repair, waste; [9–11]), predators must 
locate, capture, and kill mobile prey. Hunting itself is an 
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energetically demanding activity with potential cascading 
impacts across the ecological community [12]. Hunting 
decisions of top predators and movement pathways may 
trigger both density and behaviorally mediated trophic 
cascades by directly decreasing prey populations and 
indirectly impacting the behavior of herbivores [13–16] 
and sympatric mesopredators [17–21]. Given the global 
decline in many top predator species [22–24], the quan-
tification of free-ranging behaviors and resulting energy 
demands is integral for defining resource requirements 
and understanding how movement patterns of these spe-
cies might propagate through the food web [25–29].

As cursorial predators, gray wolves (Canis lupus) 
expend immense energy resources in finding, pursuing, 
and capturing prey [30]. To obtain prey and maintain ter-
ritories, wolves roam widely on a daily basis [31], often 
utilizing natural and anthropogenic linear travel cor-
ridors where available [32–35]. In some cases, wolves 
have been observed chasing prey for over 20 km [36] and 
covering nearly 80 km in 12 h [37]. Thus, in optimizing 
movement and hunting success, wolves are affected by 
both abiotic (e.g., temperature, snow depth, precipita-
tion) and biotic (e.g., prey movement and vulnerability, 
proximity of rival packs) factors [38–42]. Given that cli-
mate change is rapidly warming northern latitudes and 
impacting not only ambient temperature [e.g., 41] but 
also the timing, type and location of precipitation [44, 
45], it is especially important to understand how wolves 
currently respond to these variables.

While numerous studies have estimated wolf energy 
intake (energy gain via consumption of prey; [46–48]), 
few have quantified energy expenditure of free-rang-
ing wolves, particularly at hourly scales across multiple 
seasons. Continuous metabolic demands of free-rang-
ing animals are inherently difficult to estimate [49], 
but sophisticated biologgers can now provide detailed 
insights into how wolves adjust their movements and 
energy expenditure in response to environmental and 
seasonal factors. Daily energy requirements may be 
particularly high for breeders (reproductive adults that 
are socially dominant given their size, behavior, and 
interactions with pack mates & rival packs [50–52]). As 
pack leaders, breeders often assume energy-demanding 
functions such as initiating prey attacks and breaking 
trail through high vegetation or deep snow [50, 53, 54]. 
Despite the crucial role that dominant wolves play in 
pack persistence [55–57], free-ranging activity patterns 
and associated energy budgets for these animals remain 
poorly understood [58].

Here, we describe an 8-month (March to October) 
analysis of wolf movement in interior Alaska using infor-
mation collected by combined tri-axial accelerometer-
GPS radiocollars (hereafter ACC-GPS collars) deployed 

on free-ranging male wolves. By calibrating these ACC-
GPS data on captive wolves and utilizing published esti-
mates of wolf movement energetics (i.e., measures of 
oxygen consumption [59, 60]), we compared daily energy 
expenditure (DEE) estimated via accelerometry with DEE 
derived from relationships between oxygen consump-
tion and animal speed (determined using GPS telemetry 
location data). We accounted for the potential effects of 
topography on both measures of DEE by measuring the 
slope angle at which wolves travelled [61]. In addition, we 
estimated the movement rates (m  h−1) and home range 
size (km2) of these individuals to evaluate whether they 
served as reliable proxies for energy expenditure and to 
make ecological inferences about the movement patterns 
of their packs.

We tested whether abiotic environmental variables, 
including ambient temperature, snow depth, and pre-
cipitation affected the movement rates of wolves and 
their energy expenditure at hourly, daily, and seasonal 
temporal scales. We defined seasons based on the known 
breeding cycle of wolves in interior Alaska: breeding 
(March–April), pup-rearing (May–July), and pup recruit-
ment (August–October). Given the wide-ranging move-
ments of this apex predator [8, 58, 62], we expected that 
wolves would reduce movement rates during physiologi-
cally suboptimal conditions (e.g., being active in ambient 
temperatures beyond the species’ thermoneutral zone), 
with analogous DEE levels. We predicted that deeper 
snow and higher temperatures, but not greater precipi-
tation, would reduce wolf movement rates and DEE. We 
further examined whether these relationships varied 
seasonally. Finally, we discuss ecological insights gained 
by our efforts to quantify activity patterns and energy 
expenditure of these predators.

Results
Behavior calibrations from nine captive wolves (Fig.  1) 
resulted in clearly defined ODBA threshold values for 
each behavior (Additional file  4: Fig. S1). From this, 
we defined five ODBA behavioral categories to use for 
wolves in the wild as: < 0.1  g (resting), 0.1 < 0.25  g (sta-
tionary), 0.25 < 0.75 g (walking), 0.75 < 1 g (highly active), 
and >  = 1  g (running). We calculated the proportion of 
time each wolf spent conducting these behaviors.

Data were collected from four adult (ages 2–3  years) 
male wolves (body mass 45.9 ± 1.4 kg) in Denali National 
Park and Preserve (DNPP, Alaska, USA) via ACC-GPS 
collars from March through October 2015 (208–211 days 
wolf−1; Table  1). Data were additionally collected from 
one male wolf (age 2  years, body mass 45  kg) that was 
monitored from March until it was killed adjacent to 
DNPP in early May (50  days); our results, therefore, 
describe a total of 887 wolf-days. Collared individuals 
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were dominant wolves (known or suspected breeders) in 
packs ranging in size from 2 to 14 individuals (5.4 ± 2.2 
wolves/pack). Over the deployment period, home ranges 
(95% utilization distributions (UD)) ranged from 510 to 
8258  km2 with the largest UD used by the wolf in the 
western portion of the study area (Table 1, Fig. 2A). Ter-
rain heterogeneity is high in DNPP, so we measured the 
elevations utilized (Fig. 2B) and slope angles of wolf paths 
(Additional file  5: Fig. S2) to account for the additional 
energy demands of navigating through mountainous 
terrain (see Methods). The median slope angle travelled 
by all wolves was level (− 0.07° ± 0.04; Additional file  5: 
Fig. S2). The steepest uphill slope the wolves selected 
was 35.6° and the steepest downhill slope observed was 
− 53.5°. Wolves used a mean slope angle of 1.9° ± 0.1, and 
slope angle varied among individuals (F = 384.98, df = 4, 
p < 0.001, R2 = 0.29).

Daily energy expenditure
Mean (± SE) wolf DEE was 21.8 ± 0.2  MJ  day−1 (range: 
9.9–50.3  MJ  day−1; Table  1) when estimated from over-
all dynamic body acceleration (ODBA). Mean DEE esti-
mated from ODBA was not significantly correlated with 
home range size (95% UDs, r2 = − 0.26, p = 0.70, n = 5), 
but was significantly correlated with daily distance trave-
led (r2 = 0.83, P = 0.02, n = 5; Table  1) based on linear 
regression. We tested the significance of linear mixed 
effects models using chi-square tests and conditional R2 
and we calculated estimated marginal means (EMMs) to 
test for pairwise differences between seasons. DEE var-
ied among seasons (χ2 = 57.18, df = 2, p < 0.001, R2 = 0.56; 

Fig.  3) and was significantly lower during the breeding 
season than in the pup rearing season (EMMs p < 0.05) 
but not the recruitment season (EMMs P = 0.31). There 
was no difference between the pup rearing and recruit-
ment seasons (EMMs P = 0.96). DEE calculated using 
ODBA varied among individuals (F = 76.89, df = 4, 
p < 0.001, R2 = 0.26; Table 1).

When calculated using continuous time correlated 
random walk (CTCRW) model-derived speed from the 
GPS location data (see Methods), the mean DEE was 
15.8 ± 0.1  MJ  day−1 (range: 9.5–31.0  MJ  day−1). This 
DEE estimate differed significantly from the mean DEE 
estimated from ODBA (Wilcoxon sign ranked test; 
V = 2093, P < 0.001). Mean CTCRW-derived DEE was 
not significantly correlated with home range size (95% 
UDs, r2 = − 0.28, P = 0.75, n = 5) or daily distance trave-
led (r2 = 0.65, P = 0.06, n = 5; Table  1) based on linear 
regression. On average, the CTCRW movement-derived 
DEE was 6  MJ  day−1 (95% CI 5.7–6.3) less than the 
DEE estimated from ODBA. The CTCRW movement-
derived DEE varied among individuals (F = 141.98, df = 4, 
p < 0.001, R2 = 0.39; Table 1). CTCRW movement-derived 
DEE also varied among seasons (χ2 = 19.08, df = 2, 
p < 0.001, R2 = 0.74, Fig.  3B) and was marginally lower 
during the breeding season compared to the pup rear-
ing (EMMs p = 0.076) but there was no statistical differ-
ence when compared to the recruitment season (EMMs 
p = 0.99) or between the pup rearing and recruitment 
season (EMMs p = 0.56).

Fig. 1  Wolf accelerometer-GPS collar calibration, showing A axis orientation, B a 4-min raw data sample depicting how distinct behaviors generate 
unique collar accelerometer signatures, and C associated overall dynamic body acceleration (ODBA) values
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The ODBA and CTCRW movement-derived DEE were 
correlated (r2 = 0.71, p < 0.001, n = 869) and increased lin-
early by the equation:

as shown in Additional file 6: Fig. S3.

Seasonal effects on wolf activity and movement
Averaged across seasons, wolves travelled 
17.8  km  day−1 (± 1.8  km  day−1). During the breeding 
season, wolves travelled on average 16.7 ± 0.9 km day−1 
(range: 14.7–19.6 km day−1). In the pup rearing season, 
they travelled on average 21.0 ± 0.7  km  day−1 (range: 
9.4–23.8  km  day−1), and during the recruitment sea-
son wolves travelled on average 18.3 ± 0.7  km  day−1 
(range: 7.9–23.9 km day−1). In doing so, wolves main-
tained expansive but variable home ranges (mean: 
3785 ± 1300  km−1, Table  1) with considerably smaller 
core areas of use (50% UDs, mean: 875 ± 301  km−1; 
Fig. 2A).

We found a seasonal effect on wolf activity (mean 
hourly ODBA; Fig.  4A). Mean hourly ODBA varied 
with season (χ2 = 226.41, df = 2, p < 0.001, R2 = 0.77) 
and was 38% and 27% higher during the pup rearing 
and recruitment seasons than the breeding season 

(1)
CTCRWmovement− derived DEE

= 5.43+ 0.48 ∗ODBA DEE

(EMMs p < 0.001 and EMMSs p = 0.084, respectively). 
In contrast, movement rates did not vary seasonally. 
Movement rates were 644 ± 15 m h−1, 876 ± 15 m h−1, 
and 764 ± 16 m h−1 for the breeding, pup rearing, and 
recruitment seasons, respectively (EMMs p = 0.007–
0.99). Hourly movement rates and hourly ODBA were 
positively correlated (R2 = 0.40, p < 0.001).

Environmental factors affecting wolf activity 
and movement rate
Temperature
An interaction between ambient temperature and sea-
son affected wolf mean hourly ODBA (χ2 = 350.84, 
df = 2, p < 0.001, R2 = 0.51) and hourly movement rate 
(χ2 = 293.98, df = 2, p < 0.001, R2 = 0.64). Mean hourly 
ODBA increased marginally with increasing tempera-
ture in the breeding season (slope (β) = 0.006, t = 4.6, 
p < 0.001) but decreased with increasing temperature 
during pup rearing (β = − 0.04, t = − 18.6, p < 0.001) and 
recruitment (β = − 0.02, t = − 7.4, p < 0.001; Fig.  5A). 
Wolf hourly movement rate increased marginally with 
increasing temperatures during the breeding season 
(β = 4.5, t = 2.4, p = 0.02) but decreased with increasing 
temperatures during pup rearing (β = − 53.6, t = − 17.1, 
p < 0.001) and recruitment (β = − 22.6, t = 3.9, p < 0.001) 
(Fig. 5B).

Fig. 2  Study area depicting (A) accelerometer-GPS instrumented male wolf (n = 5) hourly relocations (colored points), core area (50% 
autocorrelated kernel density estimate (AKDE) utilization distribution; thick, inner colored contour) and home range (95% AKDE utilization 
distribution; thin, outer colored contour) in Denali National Park and Preserve, Alaska from March to October 2015. Triangles correspond to capture 
locations; squares depict den sites (n = 3). B The frequency at which each wolf used the elevations within their range. Colors correspond with the 
map colors for wolf ID. Minimum elevation: 141.14 m (ID: 1502 M), maximum elevation: 1848.81 m (ID: 1501 M)



Page 6 of 16Bryce et al. Animal Biotelemetry            (2022) 10:1 

Snow depth
Snow depth also affected wolves’ mean hourly ODBA 
with an interaction with season (χ2 = 23.31, df = 2, 
p < 0.001, R2 = 0.53). Wolf ODBA was reduced with 
increasing snow depth during the breeding season (when 
the snow was deepest during our study) (β = − 0.008, 
t = − 6.6, p < 0.001). In the pup rearing and recruitment 
seasons when the snow depth did not exceed 28 cm, wolf 
ODBA was not affected by snow depth (Fig.  5C). Simi-
larly, there was an interaction between snow depth and 
season affecting wolf hourly movement rate (χ2 = 32.87, 
df = 2, p < 0.001, R2 = 0.65), where the wolves reduced 

movements with increased snow depth during the breed-
ing season (β = − 0.17, t = − 5.7, p < 0.001). Movements 
did not appear to be affected by snow depth in the pup 
rearing and recruitment seasons as little to no snow was 
present (Fig. 5D).

Precipitation—rain and snowfall
We found an interactive effect between hourly precipi-
tation and season on the mean hourly ODBA of wolves 
(χ2 = 6.45, df = 2, p = 0.04, R2 = 0.74). High levels of pre-
cipitation reduced ODBA during the pup rearing season 
(β = − 0.05, t = − 2.5, p = 0.01), whereas ODBA was not 
significantly affected by hourly precipitation in the breed-
ing or recruitment seasons (when precipitation was less; 
Fig. 5E). In contrast, hourly movement rates were unaf-
fected by hourly precipitation (χ2 = 1.06, df = 1, p = 0.30, 
R2 = 0.60; Fig. 5F), and there was no interaction between 
season and precipitation (χ2 = 2.86, df = 2, p = 0.24, 
R2 = 0.60).

Daily patterns in activity
Mean hourly ODBA varied with hour of the day (0–23) in 
all seasons, and diel activity patterns also differed among 
seasons (Fig. 4b; see Additional file 2: Table S1 for GAMM 
results). Irrespective of season, the wolves exhibited cre-
puscular activity patterns in both mean hourly ODBA 
and movement rates. On average, they moved at higher 
rates at dusk (defined as 1  h before to 1  h after sunset, 
mean: 1072 ± 33 m h−1, breeding: 941 ± 58; pup rearing: 
1208 ± 55; recruitment: 1009 ± 60) and dawn (defined as 
1  h before to 1  h after sunrise, mean: 1073 ± 37  m  h−1, 
breeding: 810 ± 61; pup rearing: 1371 ± 62; recruitment: 
909 ± 66). Wolves moved at lower rates during the day 
(673 ± 11  m  h−1: breeding: 606 ± 20  m  h−1; pup rear-
ing: 733 ± 17 m h−1; recruitment: 619 ± 21 m h−1) and at 
night (831 ± 18  m  h−1: breeding: 586 ± 25; pup rearing: 
1174 ± 49; recruitment: 890 ± 29).

Wolves were least active during the day in all sea-
sons, predominantly crepuscular during the breeding 
season, and most active at night during the pup rearing 
and recruitment seasons. These differences in the time 
of day the wolves were active each season matches the 
proportion of time the wolves spent with high or low 
ODBA in each hour (Fig.  4). Fine-scale measurements 
of movements from the ACC show that the wolves spent 
the majority of each hour resting in the breeding sea-
son (68.1% ± 0.4, totaling 16  h and 20  min of the day) 
and only 5.7% ± 0.1 (1  h and 22  min each day) running 
(ODBA > 1 g; Additional file 7: Fig. S4). In contrast, dur-
ing the pup rearing and recruitment seasons, wolves 
spent over two hours running each day (9.3% ± 0.2 and 

Fig. 3  Daily energy expenditure (DEE, MJ day−1) of male wolves 
(n = 5) in Denali National Park and Preserve, Alaska across 3 wolf 
biological seasons (breeding, pup-rearing, and recruitment), 
calculated from A Eqn. S1 using overall dynamic body acceleration 
(ODBA) derived from tri-axial accelerometers and B Eqn. S4 using 
speed derived from hourly continuous time-correlated random walk 
(CTCRW) derived coordinates. Within each box, horizontal black 
lines denote median values; boxes extend from the 25th to the 75th 
percentile of each group’s distribution of values; vertical extending 
lines denote adjacent values within 1.5 interquartile range of the 25th 
and 75th percentile of each group
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8.4% ± 0.2, respectively) while spending 63% of the day 
resting (Table 2).

During the night, wolves spent 2.4 × more time run-
ning during the pup rearing season than the breeding 
season. During the pup rearing season, wolves spent 
1.6 × more time running during the night than in the day. 
The distribution of high ODBA activities between night 
and day was more consistent during the breeding and 
recruitment seasons, but wolves were consistently less 
active in the breeding season compared to other seasons 
(Fig. 3, Table 2).

Similar to ODBA, wolf hourly movement rate var-
ied with hour of the day in all seasons (Additional file 3: 
Table S2) and wolves moved the shortest distances dur-
ing the day. Movement patterns were predominantly cre-
puscular in the breeding season and nocturnal in the pup 
rearing and recruitment seasons (Fig. 4a).

Discussion
We quantified the movement ecology of wolves equipped 
with ACC-GPS collars to estimate DEE and infer how 
several environmental factors (temperature, snow depth, 
precipitation) and topography affect the behavior of 
these wide-ranging carnivores in non-winter condi-
tions. Wolves were primarily crepuscular (Fig.  4), were 
less active in high ambient temperatures, and largely 

unaffected by all but the heaviest precipitation (Fig.  5). 
Regardless of whether the pack was reproductively suc-
cessful, collared wolves were more active in the pup-rear-
ing and recruitment seasons (Fig.  3) than in the spring 
breeding season.

We found wolves exhibited varying responses in activ-
ity due to ambient temperature. During the breeding sea-
son, which was the coldest season of our study (mean: 
− 3.4  °C ± 0.1, range: − 35.4–11.8  °C), activity rates mar-
ginally increased with temperature. During the pup rear-
ing season, which was the warmest season of our study 
(mean: 11.5  °C ± 0.1,  range: − 1.1–29.9  °C), activity rates 
decreased with increasing temperatures. Similarly, dur-
ing the recruitment season (mean: 5.7  °C ± 0.1,  range: 
− 9.7–22.8  °C) activity rates decreased with increasing 
temperatures. Based on these findings, high ambient tem-
peratures appeared to have the strongest impacts on activ-
ity rates. These results are similar to other cursorial canids 
including dingoes (Canis dingo) [63] and African wild dogs 
(Lycaon pictus) [64] that exhibited declines in activity rates 
with increasing ambient temperatures. Wolves are cold-
adapted [31, 65, 66] but have higher maintenance costs 
(i.e., elevated basal metabolic rates) associated with large 
organ masses to thermoregulate in the cold [67–69], which 
would not be accounted for in either of our measures of 
DEE [70]. The hottest observed temperatures occurred 
during the day in the pup rearing season, and while this 

Fig. 4  Daily activity patterns of male wolves (n = 5) in Denali National Park and Preserve, Alaska in three biological seasons: breeding, pup-rearing, 
and recruitment. A GAM smoothing of the distance moved between successive 1-h continuous time-correlated random walk (CTCRW) derived 
locations (blue line, m), and the mean hourly overall dynamic body acceleration (ODBA, green line, g), as a function of hour of day (both with 
standard error shading). Day (white) and night (shaded) are indicated based on the average sunrise and sunset times for each season during 
collaring. Note the separate axis on the right for ODBA. B The proportion of each hour of the day when the ODBA (g) was within specific levels (see 
ODBA/Behavior scale) for each of the observed seasons. High ODBA are in yellow colors, low ODBA are in dark blues
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Fig. 5  Scatter plots of mean hourly overall dynamic body acceleration (ODBA (g), left panels) and hourly movement rate (m h−1, right panels) for 
male wolves (n = 5) in Denali National Park and Preserve, Alaska as a function of ambient temperature (°C, A, B; dashed line denotes 0 °C), snow 
depth (cm, C, D), and precipitation (cm, E, F). Colors correspond to wolf biological seasons and shading encompass 95% of the data
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was the most active season overall, wolves were most 
mobile at dusk and dawn rather than during the heat of the 
day. Similarly, moose (Alces alces) and caribou (Rangifer 
tarandus), wolves’ primary prey in DNPP, are also heat-
sensitive [72–76]. Behavioral plasticity may be key for mit-
igating adverse effects of increasing diurnal temperatures 
in wolves and other wide-ranging predators [77, 78].

Snow was only present during the first and last few 
weeks of our study (absent from May 5 until Sept. 
15; [79]). The presence and depth of snow can influ-
ence both prey movements and their habitat selection 
[80, 81] as well as the energetic costs of wolf move-
ment [82]. Snow can be an impediment to movement 
in heavier-bodied herbivore prey due to higher foot 
loading [39, 83], yet wolves were also less active and 
had lower movements during periods of deeper spring 
snow in the study area (Fig. 5C, D). Wolves selectively 
travel through shallow, supportive snow in natural con-
ditions, although their ability to behaviorally mitigate 
the energetic costs imposed by snow are limited [84]. 
No significant multi-decadal trend in annual snowfall 
at the park headquarters exists, but the winter snowfall 
leading into our study (i.e., 2014–2015) was lighter than 
normal [85] and our spring results may, therefore, be 
representative of the increasingly mild conditions pre-
dicted with arctic climate change.

Wolf activity, but not distance travelled, was affected 
by an hourly precipitation–season interaction. Winter 
snowfall has been shown to temporarily reduce wolf 
activity as it is thought to dampen hunting success [82]. 
As spring progressed into summer pup-rearing, wolves 
were less active during the instances of heavy rain that 
occurred. These inverse effects across seasons suggest 
that all but the most extreme precipitation is unlikely to 
significantly affect wolf movements.

For highly mobile animals such as wolves, habitat 
structure and metabolic transport costs are inextricably 

linked. Heterogeneity in the external environment 
(including slope, vegetation, substrate type) influences 
animal movement costs [86–88], and in turn these 
movement costs impact how animals move through and 
interact with their environment [89–91]. Some DNPP 
wolf home ranges encompass mountainous terrain in 
the Alaska Range and underscore the impact of the sur-
rounding environment on modulating transit costs. For 
example, wolf 1501  M routinely traversed high alpine 
passes (> 2000 m), while traveling between dens located 
on both sides of the range crest (Fig.  2). He conse-
quently traversed the steepest average slopes of all the 
packs at 3.9° (compared to 0.8–2.4° for other packs) and 
averaged the farthest movements (Table 1). As a result, 
wolf 1501  M had the highest associated DEE. Using 
an approach we established with pumas (Puma con-
color) [61], our DEE analysis explicitly incorporates the 
additional metabolic cost associated with locomotion 
up a slope in wolves traversing mountainous terrain. 
Topographic slope has been shown to strongly influ-
ence large carnivore habitat selection and movement 
patterns at fine temporal scales [91–93]. Optimizing 
use of energy stores (e.g., via least-cost route selection 
[94]) may be critical for these species, which experi-
ence higher absolute and relative net transport costs for 
uphill locomotion and less downhill ‘reimbursement’ 
than lighter animals [95, 96].

As with other animals, wolf movement ecology is 
driven by seasonally variable internal and external fac-
tors including hunger, fear, and habitat [66, 97, 98]. Our 
study’s aim was to quantify wolf behavioral and ener-
getic responses to environmental conditions, but nearby 
ungulate prey also respond to these same conditions 
simultaneously. Given that measuring prey activity was 
beyond the scope of the study, it is difficult to differenti-
ate whether wolves were responding dynamically to the 
activities of their prey, or directly to the environment. 
The size of the study area and the associated heterogene-
ity in local conditions also constrain our scope of infer-
ence. We sourced hourly temperature, precipitation, and 
snow depth from a single central weather station, but 
these parameters are inherently variable in mountainous 
terrain, and data from one central site does not necessar-
ily reflect true conditions at the location of the wolves. 
In addition, we collected data exclusively from dominant 
adult males within a pack (“breeders”) who likely exhibit 
higher movement-related energy demands relative to 
other members of the pack [50, 53, 54].

Across individuals and seasons, the average wolf mass-
specific DEE (454 kJ kg−1 d−1; Table 1) is comparable to a 

Table 2  Seasonal % of hour running and resting averaged across 
5 adult male wolves in Denali National Park and Preserve, Alaska

For wolves, running corresponds to overall dynamic body acceleration 
(ODBA) > 1 g, while resting corresponds to ODBA < 0.1 g (see Additional file 5: 
Fig. S2; mean ± SE)

Season Running (% of hour) Resting (% of 
hour)

Day Night Whole day Whole day

Breeding 5.84 ± 0.16 5.42 ± 0.19 5.66 ± 0.12 68.06 ± 0.44

Pup rearing 8.29 ± 0.16 13.22 ± 0.35 9.31 ± 0.15 61.73 ± 0.39

Recruitment 7.37 ± 0.21 9.91 ± 0.27 8.42 ± 0.17 63.16 ± 0.45



Page 10 of 16Bryce et al. Animal Biotelemetry            (2022) 10:1 

previously reported wolf field metabolic rate (FMR, 474 kJ 
kg−1 d−1; [99]) derived using the doubly labelled water 
method, and energy requirement estimates based on food 
consumption (473–715  kJ kg−1 d−1; [46, 58, 65]). The 
DEE we derived may differ from prior estimates of wolf 
energy requirements via methodological or ecological 
variation. Rather than measuring FMR over several days 
to weeks via doubly labelled water or estimating it by a 
multiple of basal metabolic rate, we used equivalent travel 
speeds to link mass-specific wolf oxygen consumption 
measurements to collar-derived ODBA values from wild 
conspecifics. However, unlike doubly labelled water, our 
method for measuring DEE only accounts for changes in 
movement-related costs and cannot account for changes 
in energy expenditure resulting from thermoregulation, 
reproduction, growth, specific dynamic action, or basal 
metabolic rate [70]. The accelerometer-equipped wolves 
we monitored were highly mobile and active for an aver-
age of 36% or 8.6 h of each day (Table 2), comparable to 
previous estimates [100, 101]. Metabolic requirements for 
wolves are approximately 25% higher than a typical euthe-
rian mammal of similar body mass [102], suggesting that 
to survive, wolves must consume considerably more calo-
ries than would be predicted based on their body mass. 
This elevated cost of carnivory translates into dispropor-
tionately high resource requirements [8].

Our analyses focused on quantifying wolf activity 
patterns and energy expenditure (rather than energy 
intake via prey consumption as well) in part due to the 
remoteness of the study area. The largely snow-free col-
lar deployment duration coupled with the outlying loca-
tions of DNPP pack territories precluded our ability to 
field-verify wolf kill remains from GPS clusters. However, 
field studies capable of investigating even a small num-
ber of GPS clusters stand to benefit from using acceler-
ometry in combination with GPS telemetry to detect kill 
sites to estimate kill rates (and, therefore, energy intake) 
for wolves. Preliminary assessments of this multi-sensor 
approach were recently demonstrated for wolves and 
other terrestrial carnivores in a captive setting [103], and 
the technique may prove to be critical in estimating kill 
rates in remote sites, such as Denali, where field-verifying 
GPS clusters may be logistically challenging, cost pro-
hibitive, or both. The combination of energetic intake and 
expenditure could then be used to inform physiological 
landscape models of animal movement (e.g., [104, 105]).

When comparing accelerometer and movement-
derived metrics to estimate DEE in wild wolves, the two 
measures were strongly correlated (R2 = 0.71), but ODBA 
estimates averaged 1.4 × greater than those obtained 
from GPS fixes (Table 1). This difference is linked to the 
distinct sampling intervals of the two sensors: acceler-
ometers took near-continuous measurements, while we 

relied on hourly GPS fixes to prolong collar battery life. 
In addition to movements that result in changes in loca-
tion, accelerometers are able to measure all body move-
ment costs (e.g., scratching, interacting with conspecifics) 
regardless of changes in animal location [70]. Our results 
suggest that DEE was substantially impacted by body 
movements that were not captured by changes in hourly 
locations. GPS location fixes have a spatial accuracy 
of ≤ 31  m [106], which may have also introduced some 
error in our movement-derived DEE. Infrequent loca-
tion-derived measures of DEE inherently underestimate 
animal movement paths, and, therefore, energy expendi-
ture, and should be considered conservative [28, 107]. 
In addition, we found home range size poorly predicted 
mean DEE, which suggests that home range size alone 
may not serve as a reliable proxy for energy expenditure. 
Yet, mean daily distance travelled did strongly correlate 
with mean ODBA-derived DEE, suggesting that point-to-
point movements were important determinants of energy 
expenditure in the individuals we monitored.

Once properly calibrated, accelerometers can provide 
fine-scale documentation of animal behavior [108] and 
DEE [49, 109], as evidenced here through activity budg-
ets of wild wolves across multiple seasons. While we 
averaged our accelerometer data over hourly intervals 
to evaluate abiotic determinants of wolf DEE, high-fre-
quency accelerometer data can also be used to evaluate 
instantaneous energetic costs, such as measuring the 
costs of individual kill events of prey [28, 110] and escape 
responses to disturbance [111, 112]. Our study monitored 
largely snow-free conditions for wolves, so additional 
studies are needed to reveal fine-scale wolf behavior 
and energy budgets in response to snow throughout the 
course of the winter when it presents more of an impedi-
ment to movement, although some recent work has been 
conducted [82, 84]. Future studies are also warranted 
to examine thermal effects on fine-scale wolf activity 
throughout winter, when temperatures are considerably 
colder than what we observed [71].

Conclusion
Our study demonstrates the capacity of integrating acceler-
ometry with GPS telemetry to reveal activity and energetic 
insights from carnivores in unprecedented detail. Such 
analyses offer a mechanistic approach for evaluating wolf 
travel patterns and resource requirements. As northern lat-
itudes continue to rapidly warm and change, the application 
of these methods to future studies would enable research-
ers to track how fluctuations in parameters including snow-
fall patterns and plant phenology and growth cascade up to 
impact the spatial ecology and energetics of predators [113, 
114]. In lower latitudes, recovering gray wolf populations in 
the USA have recently been delisted from protection under 
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the Endangered Species Act of 1973 [115]. Given the loss of 
federal protection, insight into wolf foraging patterns and 
prey requirements obtained via multi-sensor telemetry may 
be invaluable for informing regionally specific management 
decisions and promoting the persistence of this keystone 
species throughout its range.

Methods
Data collection
Wolf collar calibration
We utilized a lab-to-field approach in which the routine 
behaviors and locomotor biomechanics of captive wolves 
(n = 9 adults, 4 male, 5 female; mass = 37.6  kg ± 0.7 SE) 
instrumented with ACC-GPS collars; model GPS Plus, 
Vectronic Aerospace, Germany; approx. 960  g) were 
measured in large (> 1 acre) outdoor enclosures prior 
to deployment on free-ranging conspecifics in the wild 
(Fig. 1). ACC-GPS collars sampled acceleration continu-
ously at 32 Hz (± 8 g range) and took hourly GPS location 
fixes. We paired video-recorded (Sony HDR-CX290/B, 
1080 HD, 60p) observations of captive wolves engaged 
in routine activities with collar accelerometer meas-
urements to construct behavior and energy budgets for 
free-ranging conspecifics. Five wolf behavioral categories 
were identified for the purpose of this study: rest, station-
ary, walk, highly active, and run. Behaviors and ODBA, 
a widely used proxy for animal energy expenditure [109, 
116], were measured as each wolf was filmed moving 
freely at known speeds behind a vehicle and along a fence 
line between trainers in outdoor enclosures. Both speed 
and metabolic rate are tightly linked to the dynamic com-
ponent of an animal’s body acceleration [109, 117, 118], 
which allowed us to use wolf ODBA to translate sensor 
output from the collars into travel speed and the meta-
bolic demands of various activities in the wild.

We estimated the increase in DEE due to topography 
by measuring the slopes travelled by wolves from the 
change in elevation between consecutive location coor-
dinates (see Additional file  1). Following Dunford et  al. 
[61], we then modelled the metabolic cost of travel on 
slopes from previous studies of wolf energetics measured 
via open-flow respirometry on level and inclined tread-
mills. Oxygen consumption ( ̇V  O2) of wolves on the level 
was measured by Taylor et  al. [59], and V̇  O2 of wolves 
moving on slopes up to 14° was provided by Weibel et al. 
[60]. The increased energetic cost of travel up a slope 
was, therefore, calculated as

where speed is in m s−1 and V̇  O2 is in ml O2 kg−1 min−1. 
Decline (slope < 0°) costs were modeled as level given that 

(2)
V̇O2deg. incline

−1
= 0.00743+ 0.028

∗ Speed
(

n = 5, R2
= 0.98, p < 0.001

)

.

energy expenditure associated with downhill travel can 
be either more or less costly than level costs depending 
on the down-slope angle travelled [95, 119, 120].

Wolf monitoring
In March 2015, male gray wolves were captured in the 
northern portion of DNPP (see Additional file 1; Fig. 2A) 
using aerial darting by helicopter [121] and anesthe-
tized with zolazepam–tiletamine (Telazol®, Fort Dodge 
Laboratories, Fort Dodge, IA, USA). Once anesthetized, 
wolves were weighed, measured, and fitted with the same 
ACC-GPS collars used during behavioral calibration 
with captive wolves. We selected free-ranging adult male 
wolves that were dominant (i.e., known or suspected to 
be breeders) so our results would not be confounded by 
sex or age-related variation in space use and energetics.

To address seasonal patterns of movement and energy 
expenditure, we parsed the March–October collar 
deployment window into seasons based on the known 
breeding cycle of wolves in interior Alaska. These were 
defined as breeding (February–April), pup-rearing (May–
July), pup recruitment (August–October), and nomadic 
(November–January; [57]). Our March to October data 
collection, therefore, includes insights into all but the 
nomadic winter movements of wolves in interior Alaska, 
which have been studied extensively (e.g., [62, 122]).

Collars recorded GPS locations hourly, and data were 
downloaded directly from the collars upon retrieval. 
During our 8-month study window, wolves were visually 
observed from single-engine airplanes on 13 monitor-
ing flights to validate current wolf locations, wolf pack 
size and composition, active den site locations and use, 
breeding status of individual wolves, and the timing and 
suspected causes of mortality. ACC-GPS collars were 
removed at the conclusion of this study.

Environmental variables
All environmental variables were recorded at the Kan-
tishna automated Snow Telemetry (SNOTEL) site 
(63.53845, −150.98365, elevation: 509 m; https://​wcc.​sc.​
egov.​usda.​gov/​nwcc/​site?​siten​um=​1072). This station 
was selected because it is located near the geographic 
center the study area, and therefore, its data may be rep-
resentative of general trends throughout the study area 
on the north slope of the Alaska Range. However, it may 
not reflect conditions at the locations of each wolf. The 
Kantishna SNOTEL site has a year-round precipitation 
gauge that measures snow and rain along with a mete-
orological station that records air temperature and other 
weather parameters. Data were recorded and transmit-
ted from Kantishna hourly. These data were exported for 
the study duration, converted to metric units, and uti-
lized in subsequent analyses. Additional details on the 

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1072
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1072
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measurement of environmental variables are provided in 
the Additional file 1.

Wolf movement modelling
Wolf collars averaged a successful fix rate of 99.7% 
(± 0.08%), but to account for missing or irregularly timed 
location data, we used a continuous time-correlated ran-
dom walk (CTCRW) model (R package ‘crawl’ [123, 124]) 
to predict locations on hourly intervals based on the GPS 
locations. We derived utilization distributions from the 
CTCRW locations using the full deployment period of 
each wolf. We measured the area of the utilization dis-
tribution using 95% (home range) and 50% (core area) 
of the autocorrelated kernel density estimation (AKDE) 
method in the R package ‘ctmm’ [125]. Speeds of free-
ranging wolves were calculated as the distance between 
consecutive CTCRW fixes using the Haversine formula 
divided by the elapsed time. Speed was further calcu-
lated using ODBA from the accelerometers (Eqn. S3). 
This resulted in two different estimates of slope-informed 
energy expenditure for the wolves (Eqn. S1, Eqn., S4). In 
both cases, the V̇  O2 was converted to an hourly whole-
body field energetic cost (in kilojoules) by multiplying by 
20.1 J ml− 1, by each individual wolf ’s mass (in kg; [126]), 
and by 60 (for energy expenditure per hour). Hourly 
energy expenditures were summed to give DEE (in MJ). 
These DEE measurements including slope-corrected 
locomotion costs are used throughout the paper. Any 
days with less than 20 h of ODBA data were excluded in 
the DEE estimates (n = 6).

Statistics
All analyses were conducted in the R statistical software 
[127]. All Chi-square, F, and p values were obtained using 
the Anova function from the ‘car’ package [128] and con-
ditional R2 from the R package ’MuMIn’ [129]. Response 
and explanatory variables of all models described below 
are summarized in Additional file 3: Table S2.

The lm function, from the base functions in R, was used 
to fit a linear model (LM) with DEE (calculated using 
ODBA) as the dependent variable and wolf ID as the 
independent variable to test for individual differences. 
We fit the same LM with DEE (calculated using CTCRW 
movement rate) as the dependent variable. We also tested 
the strength and direction of the correlation between 
the CTCRW movement-derived DEE and ODBA DEE 
using Pearson’s correlation. In addition, we tested for 
correlations between home range size and mean daily 
distance traveled with both measures of mean DEE for 
each wolf using linear regression to evaluate the abil-
ity of home range size and movement to serve as prox-
ies for energy expenditure. We tested for normality in 
the CTCRW movement-derived DEE and ODBA DEE 

using Shapiro–Wilk tests and the data were determined 
to be not normally distributed. Therefore, we used a non-
parametric Wilcoxon signed-rank test for paired samples 
to quantify whether the CTCRW movement-derived 
DEE differed significantly from the ODBA derived DEE. 
Finally, we used the lm function to assess whether the 
path angles the wolves travelled on varied between indi-
viduals. Path angle was transformed using the natural 
logarithm.

To examine the effect of season on DEE of wolves, we 
constructed 2 linear mixed effects models (LMM, via the 
lmer function in the ‘lme4’ package [130]) with either 
ODBA or the CTCRW movement-derived DEE as the 
dependent variable and biological season and wolf ID 
as the independent variables, with the season and wolf 
ID as nested random variables to account for repeated 
measures per individual and allow variable intercepts 
and slopes for season. The function emmeans (from the 
‘emmeans’ package [131]) was used to calculate EMMs 
and test for pairwise differences between seasons for 
each model.

Mean hourly ODBA was taken as the mean of ODBA 
across each hour, transformed for normal Gaussian dis-
tribution using Ordered Quantile normalization (via the 
‘bestNormalize’ R package [132]). We constructed an 
LMM with transformed hourly ODBA as the dependent 
variable and the season, and wolf ID as the independ-
ent variables, with wolf ID and season as nested random 
effects. The LMM was fitted with a Bound Optimization 
by Quadratic Approximation (‘bobyqa’) optimizer [133]. 
We also constructed this LMM model with CTCRW-
measured distance as the dependent variable. The func-
tion emmeans was used to test for pairwise differences 
between seasons for each model.

Similarly, to examine whether the wolves adjusted their 
activity level (mean hourly ODBA) in response to ambi-
ent air temperature, we generated a LMM with hourly 
ODBA as the dependent variable and ambient tempera-
ture, season, and wolf ID as explanatory variables, with 
an interaction between temperature and season. Wolf ID 
and season were included as nested random effects. Simi-
larly, two further LMMs were constructed with the same 
dependent, independent, and random variables except 
temperature was replaced with either snow depth or pre-
cipitation. Finally, three additional LMMs with the same 
independent and random variables were constructed 
with the CTCRW-derived distances as the dependent 
variable. For the model of CTCRW distance by snow 
depth, CTCRW distance was square root transformed 
and a Nelder Mead optimizer was used. The two LMMs 
with precipitation as an independent variable were fitted 
with a Nelder Mead optimizer.
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To examine the daily activity patterns of wolves, 
we constructed generalized additive mixed models 
(GAMMs) using the R package ‘mgcv’ [134]. We set mean 
hourly ODBA (g) as a function of smoothed hour (0–23) 
with an interaction with season. ID was included as a 
random variable. Models were fitted with a cyclic cubic 
regression spline and 20 knots. We also constructed the 
same model with CTCRW measured distance (m) as the 
response variable rather than ODBA. All results are pre-
sented as mean ± SE unless otherwise noted. We consid-
ered p values ≤ 0.05 as significant.
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