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Dead‑reckoning elucidates fine‑scale habitat 
use by European badgers Meles meles
E. A. Magowan1,4†, I. E. Maguire1,4†, S. Smith1, S. Redpath1, N. J. Marks1*, R. P. Wilson2, F. Menzies3, 
M. O’Hagan3 and D. M. Scantlebury1*   

Abstract 

Background:  Recent developments in both hardware and software of animal-borne data loggers now enable large 
amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial 
accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure 
of ‘dead-reckoning’. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few 
measurements have been made in free-ranging terrestrial animals. The current study examines movements, interac-
tions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a 
model terrestrial mammal, the European badger (Meles meles).

Methods:  Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were 
live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the 
badgers’ movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, 
respectively.

Results:  Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS 
data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, 
the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Mini-
mum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution deter-
minations of home-range size were larger using the former method. This was because dead-reckoned data more 
accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the 
calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and 
hedges than simple GPS data would suggest.

Conclusion:  Significant differences emerge when analyses of habitat use and movements are compared between 
calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data 
showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and 
made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of ani-
mal movement and highlight the minutiae of interactions with the environment should be considered an important 
technique in the ecologist’s toolkit.
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Introduction
Technological advancement including the miniaturisa-
tion of animal-borne data loggers now allows intricate 
data to be collected on animal movement and behaviour 
[1–3] with animal-attached tri-axial accelerometers and 
tri-axial magnetometers proving to be particularly use-
ful in obtaining information on animals that are elusive 
or otherwise difficult to study [4]. Importantly, these 
same sensors are pivotal for the process of ‘dead-reck-
oning’, which uses movement vectors to reconstruct ani-
mal paths in detail (e.g. [5–9]). Such resolution allows 
inferences to be made about the relationship between 
the behaviour and location, particularly if the process 
is GPS-enhanced [6, 10]. However, while this technique 
has been demonstrated in humans [11] and illustrated in 
animals [12], there have been relatively few attempts to 
quantify the movements of free-ranging terrestrial ani-
mals. Such analyses should, however, help highlight the 
limitations of GPS systems used alone, particularly as 
regards infrequent fixes and linear interpolation between 
them [10], as well as provide a new standard in how we 
can define animal interaction with various landscape fea-
tures, including how animals allocate behaviour to space.

The European Badger (Meles meles) is a semi-fossorial 
nocturnal social mammal and one of the largest ter-
restrial carnivore species currently inhabiting the Brit-
ish Isles [13–15]. It is also an important animal to study 
because of its implication in the transmission of bovine 
tuberculosis (bTB) to cattle [13, 16]. However, despite 
many decades of research, the exact mode of bTB trans-
mission remains unclear (e.g. [17]). Indeed, knowledge 
of precise badger movements and behaviours, and inter-
actions with the environment is considered important 
to further our understanding of potential disease trans-
mission routes [18]. Here, we demonstrate how animal-
borne GPS-enhanced dead-reckoning systems deployed 
on free-ranging badgers can provide information on 
their intricate movement paths which can then be used 
to acquire a better understanding of their spatial ecology, 
and provide particular insight with respect to the trans-
mission of disease.

Methods
Study site and animals
The study was undertaken in an area of mixed arable and 
grazing farmland within an approximate 100 km2 area 
in rural Co. Down, Northern Ireland, near the town of 
Banbridge, using animals that were captured during the 

‘Test and Vaccinate or Remove’ (TVR) project [19, 20]. 
The area is associated with persistent bTB cattle break-
downs [21]. The landscape comprises, predominantly, of 
improved grassland, with fields enclosed by hedges [22]. 
Prior to animal trapping, areas were surveyed for signs of 
badgers, which included badger main setts (burrow sys-
tems), outlier setts, latrines, crossing points, paths and 
areas of soil that had been excavated. Thereafter, traps 
were pre-baited for approximately seven days, and then 
set. For this study, two badgers, an adult male (9.67 kg) 
and an adult female (8.64 kg) were captured and anaes-
thetised [19]. Individuals were fitted with a neck collar 
containing a GPS logger (Tellus Light, Followit, Sweden) 
which was programmed to record positional fixes every 
60  min between 21:00 and 04:00, which coincided with 
their most active periods. Neck collars were also fitted 
with a ‘daily diary’ (‘DD’) logger (Wildbyte-technologies, 
Swansea, UK) which contained a temperature sensor, 
a tri-axial magnetometer and a tri-axial accelerometer, 
programmed to record continuously at 7, 40 and 40 Hz, 
respectively, on each channel [23]. Loggers were encap-
sulated within 3D printed styrene plastic cases, each with 
a 3.6 V battery (1/2 AA 3.6 V 1200 mAh Lithium Thio-
nyl Chloride, Saft, Levallois-Perret, France) that was 
secured to the collar that contained the GPS (total weight 
c. 270  g). After collars were deployed, badgers were 
returned to the trap at the point of capture until they had 
sufficiently recovered from the anaesthetic before being 
released. Both animals were recaptured after one week, 
by re-baiting the traps at the original locations. Thereaf-
ter, the DD loggers were removed, and data were down-
loaded. GPS, accelerometer, and magnetometer data were 
used to reconstruct the badger movement paths using 
dead-reckoning (below in brief, for detailed description 
of the calculations involved see [9]).

Sett use
Before dead-reckoned paths could be determined, it 
was necessary to establish when badgers were under-
ground within their sett, and therefore to ensure that 
reconstructed tracks were representative of the badger’s 
movements outside the sett. This was achieved using 
acceleration and temperature measurements. For exam-
ple, Vectorial Dynamic Body Acceleration, ‘VeDBA’, 
[24] became dampened immediately when an animal 
moved underground (e.g. from c. 0.25 g to < 0.1 g), which 
was presumably indicative of restricted movements 
within the confines of the sett tunnels, and temperature 
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measurements increased by about 4  °C over the period 
of 30 min (Fig. 1). Conversely, VeDBA values increased, 
and temperatures fell when animals emerged from their 
setts. For example, on one night, within 30 min of enter-
ing the sett, temperature measurements rose from 21.6 
to 25.6  °C. This approach allowed us to establish when 
individuals emerged at the beginning of the night (e.g. 
typically at around 21:00), when they intermittently went 
below ground during the night, and when they returned 
to the sett at the end of the night (e.g. typically at 05:00) 
(Fig. 2).

Dead‑reckoning
For each night, between the hours of 21:00 and 04:00 
when badgers were out of the sett, GPS and DD data 
were used to reconstruct dead-reckoned paths [6, 9] 
(Fig.  3). Vectorial Dynamic Body Acceleration was cal-
culated as a proxy of speed [9, 10, 12] and Framework 4 
software ([12], cf. [9]) was used to integrate hourly GPS 
fixes with the DD data. For this, calculations of an initial 
dead-reckoned track without reference to the GPS data 
were produced, using a nominal value for the gradient 
between VeDBA and speed. Then, using the time refer-
ence between the DD and the GPS, points within the GPS 
tracks were allocated to the time-matched points within 
the first iteration of the dead-reckoned tracks before the 
speed ~ VeDBA gradient was altered so that the positions 
of both systems accorded.

Home‑range and land use
Home-ranges were calculated for both badgers using the 
package ‘adehabitatHR’ in R (version 3.4.3) [25]. Home-
ranges were calculated by two means; (i) using just the 
hourly GPS data and (ii) using the GPS-corrected dead-
reckoned locational fixes (with positions calculated at 
40  Hz). Omission of the outermost 5% of locations was 
undertaken to remove outliers and location errors [26]. 
Two estimates of home-range were then determined. 
These were 95% kernel utilisation distribution (KD95), 
and 95% Minimum Convex Polygons (MCP95) (cf. 
[27]). The home-ranges of each animal, calculated from 
GPS and ’GPS-corrected dead-reckoned data’ data, for 
both MCP95 and KD95, were exported as polygon vec-
tor shapefiles, transferred into QGIS 3.6.3 [28], and the 
area of each animal’s home-range calculated in km2 using 
QGIS.

In addition to home-ranges, for each night that 
badger activity was recorded, the movement paths of 
both badgers were determined using both the hourly 
GPS data and the GPS-enabled dead-reckoned posi-
tional fixes. These fixes were overlaid onto 30 cm Digi-
tal Globe satellite imagery (Fig. 4) imported into QGIS 
via the OpenLayers Plugin [29]). We delineated four 
identifiable landscape features (fields, hedges, build-
ings, roads) (cf. [30]) from the Digital Globe satellite 
imagery by hand-drawing polygons representing indi-
vidual features onto a newly created vector dataset. We 
then examined the times that both badgers spent in 
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Fig. 1  Activity measured as vectorial dynamic body acceleration (VeDBA, g) and ambient temperature (oC) measured when a badger was outside 
and inside its sett. The badger entered the sett at approximately 22:05 and exited again at 23:06. The shaded area represents period the badger 
spent inside the sett. The solid line indicates VeDBA and the dashed line indicates ambient temperature. Note the slight delay in the temperature 
sensor recording lower values when the animal exited the sett
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Fig. 2  Periods spent outside the sett represented by black bars for a female (top) and male (lower) badger for 7 days after deployment of loggers
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proximity to these landscape features. We considered a 
badger to be ‘in proximity’ of a feature if it was within 
20  m of that particular feature [31]. This allowed for 
potential inaccuracies of the GPS loggers [32] and the 
effects of those features on badger behaviour [33]. The 
number of GPS fixes within 20 m of a particular land-
scape feature were summed and assumed to be propor-
tional to the length of time spent there (e.g. for GPS 
locations recorded once per hour, each locational fix 
was assumed to record 1 h at that point). For the dead-
reckoned data, the number of location points within 
20  m proximity of various features was also summed 
and then divided by the sample rate (40 Hz) to provide 
the time (in seconds) within that landscape feature. We 
were therefore able to compare the proportion of time 
each night that badgers spent within 20  m of habitat 
features according to the GPS-enabled dead-reckoned 
data and GPS data. All GIS analyses were performed 
using the UTM Zone 29 N projection.

Track length
To determine the distances travelled each night, by each 
badger, the straight-line distance between consecutive 
co-ordinates were calculated for both the GPS (hourly) 
and dead-reckoned (40  Hz) data. For this, the GPS and 
GPS-enabled dead-reckoned co-ordinates were uploaded 
into R (version 3.4.3) and the geodesic distance (the 
shortest distance between two points on a curved surface 
[i.e. the Earth]) between consecutive co-ordinates [34] 
calculated before summing all data.

Statistical analyses
For path length, home-range areas and land use, differ-
ences in measurements between GPS and GPS-enabled 
dead-reckoned data were assessed using paired t-tests. 
Differences in path length and land use between badg-
ers were assessed using Welch’s t-tests, for both GPS 
and GPS-enabled dead-reckoned data. Distances are 
reported ± standard deviations. The proportion of time 

100m
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Fig. 3  A Example of a GPS-enabled dead-reckoned movement path by a female badger over the course of a nightly outing. B, C Show expanded 
sections illustrating movements when the badger visited a field and interacted with a hedgerow, respectively. GPS fixes are shown as white dots. 
Straight-line movements between GPS fixes are shown by dashed lines. The GPS-enabled dead-reckoned path is shown by a black continuous line
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spent near buildings and roads were linearly transformed 
by adding a constant of 1.0 to account for values equal 
to zero, to allow log10-transformation to achieve nor-
mality prior to analysis [35]. Differences in landscape 
use were assessed using linear models for both GPS and 
GPS-enabled dead-reckoned data. Here, the time that 
badgers spent near landscape features was included as 
the dependent variable whilst the landscape feature was 
included as the independent variable. Post hoc pairwise 
comparisons of time spent near each landscape feature 
was carried out using a Tukey honestly significant differ-
ence (HSD) test. Statistical analyses were evaluated to a 

0.05 p-value level. All data analyses were performed in R 
(version 3.4.3) [25].

Results
Sett use
Badgers were predominantly nocturnal, emerging 
from the sett close to sunset (mean first emergence 
time = 20:12) and returning close to sunrise (mean last 
sett return time = 06:33) (Fig.  2). The time the badgers 
spent above ground, outside their sett, varied from 4  h 
54 min to 10 h 22 min.

A

B

Fig. 4  Movement paths and home-ranges of a female badger, measured using GPS (white circles) and GPS-enabled dead-reckoning (solid black 
lines), over seven consecutive nights of activity. Panel A shows the home-range calculated using the 95% minimum convex polygon method 
(MCP95) and panel B shows the home-range calculated using the 95% kernel utilisation distribution method (KD95). Grey shaded area denotes the 
home-range calculated using just the hourly GPS data. The black cross-hatched area indicates the home-range calculated using the GPS-enabled 
dead-reckoned data at 40 Hz
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Calculated path lengths using GPS and dead‑reckoning 
data
There was a significant difference in calculated path 
distances travelled between GPS data and GPS-ena-
bled dead-reckoned data, with badgers measured to 
travel more than twice as far when using the GPS-
enabled dead-reckoned data than with only GPS 
data (2.53 ± 1.79 and 1.14 ± 0.75  km, respectively, 
t1,13 = 4.76, p < 0.001, Fig. 4). The path lengths between 
the two individual badgers did not differ, either when 
they were calculated using the GPS (0.96 ± 0.59 and 
1.32 ± 0.89 km; t1,10.43 = 0.88, p = 0.40) or the GPS-ena-
bled dead-reckoned (2.10 ± 1.33 and 2.96 ± 2.19  km; 
t1,9.87 = 0.89, p = 0.39) data.

Home‑range area
There was no significant difference in home-range 
size of each badger when calculated using the MCP95 
method between GPS and GPS-enabled dead-reck-
oned data (t1,1 = 1.16, p = 0.45). Home-range areas 
calculated for both individuals using MCP95 were 
0.38 ± 0.08 km2 and 0.59 ± 0.18 km2 for GPS and GPS-
enabled dead-reckoned data, respectively. However, 
home-range sizes using the KD95 method for both 
individuals together were significantly larger when 
calculated using the GPS data than the dead-reckoned 
data (1.15 ± 0.16 km2 and 0.26 ± 0.09 km2, respectively, 
t1,1 = 17.8, p = 0.04, Fig. 4).

Land use
Differences in land use assessed using both GPS 
and GPS‑enabled dead‑reckoned data
Using just the GPS data, significant differences were 
noted in the times badgers spent near various landscape 
features (F3, 52 = 105.10, p < 0.001) (Fig. 5). Post hoc analy-
ses revealed that badgers spend most of their time within 
fields, followed by hedges, and least time near buildings 
or roads. By comparison, analysis of the GPS-enabled 
dead-reckoned data produced different results; badgers 
differed in the time they spent within various landscape 
features (F3,52 = 122.11, p < 0.001), in this case, a similar 
amount of time was spent within fields and near hedges, 
and less time spent near roads and buildings.

Comparison of land use between GPS and GPS‑enabled 
dead‑reckoned data
Significant differences were noted in the proportions of 
time badgers spent within fields (t1,13 = 2.43, p = 0.03), 
and in the proportion of time spent near hedges 
(t1,13 = 3.05, p = 0.009) when the times within these 
habitats compared using GPS and GPS-enabled dead-
reckoned data. Use of GPS-enabled dead-reckoned data 
revealed that badgers spent less time in fields and more 
time close to hedges, than did use of GPS data (Fig.  5). 
There were no significant differences in the calculated 
proportions of time spent close to buildings (t1,13 = 0.45, 
p = 0.66) or close to roads (t1,13 = 0.75, p = 0.47), when 
these were measured using data from GPS and GPS-ena-
bled dead-reckoning, respectively.
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Fig. 5  Proportion of time spent within various landscape features by two badgers according to whether the positional data were derived from GPS 
or GPS-enabled dead-reckoned data, labelled “GPS” and “DR”, respectively
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Differences in land use between individual badgers
There were no significant differences in the pro-
portions of time spent within fields (t1,9.62 = 0.50, 
p = 0.63), near to hedges (t1,9.46 = 0.98, p = 0.35), build-
ings (t1,11.66 = −  0.39, p = 0.70) or roads (t1,11.66 = 0.20, 
p = 0.84) between the two badgers when calculated 
using just the GPS data (Fig.  6). Similarly, there were 
no significant differences in the proportions of time 
spent within fields (t1,11.62 = 0.91, p = 0.38), near to 
hedges (t1,11.95 = 1.27, p = 0.23), buildings (t1,8.86 = 0.22, 
p = 0.83) or roads (t1,10.15 = 0.40, p = 0.70) between the 
two badgers when calculated using GPS-enabled dead-
reckoned data.

Discussion
The vectorial process inherent within dead-reckoning 
can provide detailed information on an animal’s loca-
tion between sequentially collected GPS points [6] so 
that, dead-reckoned errors [6, 7, 36] can be corrected to 
provide information on animal movements with respect 
to their environment [9, 10]. Although this method was 
initially employed to deduce the movements of elusive 
marine species where location measurements are spo-
radic, and when ground-truthing can generally only 
occur when the animal surfaces [5, 37], this approach 
has great potential for the terrestrial environment [6, 
38] where periodic ground-truthing using GPS location 
co-ordinates is less problematic [12, 39]. Nevertheless, 
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current application of this technique to determine move-
ment paths of free-ranging terrestrial species is surpris-
ingly limited ([7, 9, 39] cf. semiaquatic beavers [40]).

The purpose of our study was to demonstrate the 
extent to which data on the movement paths and habitat 
use of an important but elusive terrestrial carnivore, the 
Eurasian badger, depend on whether animal position over 
time is determined by GPS or GPS-enabled dead-reck-
oning. Given that our study only elucidates the move-
ments of two free-roaming badgers within a rural mixed 
arable and pasture farming area of Northern Ireland, 
we obviously cannot allude to population-level behav-
iours. Nevertheless, even with our small sample size, a 
number of important issues emerge. In particular, these 
issues relate to the extent to which well-defined move-
ments of badgers, including their interactions between 
various habitat features such as farm buildings and live-
stock pasture, might elucidate their potential to transmit 
bovine tuberculosis to cattle [13, 16]. Previous studies 
have examined badger movements using GPS loggers 
to measured aspects such as distances travelled, home-
ranges and landscape use (e.g. [18, 41, 42]). We note in 
this, that both our GPS and GPS-enabled dead-reckon-
ing approaches highlighted the general importance of 
fields, presumed useful for foraging [18, 43], and that 
both approaches ascribed little time spent near roads or 
buildings (Fig. 4), which accords with observations made 
by Mullen et al. [44] and Campbell et al. [16]. However, 
our work also indicates that such GPS-based estimates 
may need to be modified for a more comprehensive pic-
ture of badger movement ecology. This is manifest by our 
study that reveals, for instance, that GPS-enabled dead-
reckoned data provides greater estimates of distances 
travelled, in this case c.2.2 times longer, than GPS data 
alone, an obvious consequence of determining distance 
in a more tortuous path [6]. At face value, assuming that 
badgers have potential to transmit disease as a function 
of the area traversed (simplistically, this being given by 
the path length multiplied by some nominal ‘infection 
width’), this means that GPS-enabled dead-reckoning 
ascribes a probability of disease transmission that is pro-
portionately higher than that deduced from GPS data 
alone. But, this difference is perhaps less important than 
space-specific patterns that come from GPS-enabled 
dead-reckoning compared to just GPS. A good example 
of this is the finding that GPS-enabled dead-reckoned 
badgers spent proportionately less time within fields and 
more near hedgerows (Fig.  4) than the GPS data alone. 
This is particularly relevant given that hedgerows consti-
tute a much smaller proportion of the total area and so, 
all things being equal, would be expected to have a cor-
respondingly small time allocation. Hedges and bounda-
ries may, in fact, be areas where badger setts are located, 

where the animals forage, or where they form latrines 
[45]. All of this is relevant because badger excreta may 
be concentrated within such areas [46], again increasing 
the risk of disease spread within and between such highly 
utilised sites [47]. In fact, the specifics provided by GPS-
enhanced dead-reckoned data should make it possible to 
provide a detailed probabilistic space–time use approach 
for both badgers and cattle, if the livestock are similarly 
tagged (cf. [39]). We envisage a modelling approach 
that could create a badger area density map incorporat-
ing a time element so that both absolute density and the 
potential for disease transmission decaying over time 
since the last time the area was visited by the different 
individuals [48] to provide pivotal information regard-
ing disease transmission. Livestock space and time use of 
the area could be superimposed on this to help elucidate 
the probability of cross-species infection [49]. We note 
that a similar approach has been adopted for the Covid-
19 crisis, with a major part of the predictive capacity of 
transmission being the accurate definition of space use 
by individuals over time [50]. At a coarser scale, all this 
makes effective calculation of home-range more than just 
academic. We noted appreciable differences in appar-
ent habitat utilisation between GPS and GPS-enhanced 
dead-reckoned data with badger home-ranges calculated 
using MCP95 from GPS data being 57% smaller. Con-
versely, home-ranges calculated using KD95 with GPS 
data were 78% larger than those calculated with the GPS-
enhanced dead-reckoned data (Fig. 6). These discrepan-
cies occur because the GPS-enhanced dead-reckoned 
data produces a larger polygon for the MCP95 because 
the home-range estimates include internal areas which 
animals do not necessarily use (e.g. the centre of the field 
if the badger only walked around the periphery, which is 
only likely to be shown by GPS-enhanced dead-reckon-
ing). In contrast, KD95 provide home-range estimates 
based on the clustering of co-ordinates, and the higher 
frequency provided by GPS-enhanced dead-reckoning 
provides a tighter clustering of points where the badgers 
had been, excluding unused areas and producing smaller 
home-range areas.

Conclusions
Our results, although only derived from two animals over 
a total of 14 badger days, clearly show the advantages 
of GPS-enhanced dead-reckoning compared to tempo-
rally coarser position-determining systems such as GPS 
for examining factors important in disease transmission. 
Although we note that it is possible to derive GPS posi-
tions at, e.g. 1  Hz, this necessitates a substantial power 
source [7] and also does not guarantee the accuracy of 
the GPS, which is affected by landscape features such as 
mountains and trees [51, 52]. We also note that such an 
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approach should help elucidate the extent to which cull-
ing badgers, in an effort to reduce bTB transmission, may 
affect the behaviour of conspecifics [53–55]. Indeed, the 
ability to describe in detail what animals do in relation to 
environmental circumstance must be considered a piv-
otal point in predicting the spread of any transmittable 
disease and GPS-enhanced dead-reckoning seems a pow-
erful way of moving closer to this goal.
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