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METHODOLOGY

Scheimpflug lidar range profiling of bee 
activity patterns and spatial distributions
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Inger Kappel Schmidt1 and Birte Boelt7 

Abstract 

Background:  Recent declines of honeybees and simplifications of wild bee communities, at least partly attributed 
to changes of agricultural landscapes, have worried both the public and the scientific community. To understand 
how wild and managed bees respond to landscape structure it is essential to investigate their spatial use of foraging 
habitats. However, such studies are challenging since the foraging behaviour of bees differs between species and can 
be highly dynamic. Consequently, the necessary data collection is laborious using conventional methods and there is 
a need for novel methods that allow for automated and continuous monitoring of bees. In this work, we deployed an 
entomological lidar in a homogenous white clover seed crop and profiled the activity of honeybees and other ambi-
ent insects in relation to a cluster of beehives.

Results:  In total, 566,609 insect observations were recorded by the lidar. The total measured range distribution was 
separated into three groups, out of which two were centered around the beehives and considered to be honeybees, 
while the remaining group was considered to be wild insects. The validity of this model in separating honeybees from 
wild insects was verified by the average wing modulation frequency spectra in the dominating range interval for each 
group. The temporal variation in measured activity of the assumed honeybee observations was well correlated with 
honeybee activity indirectly estimated using hive scales as well as directly observed using transect counts.

Additional insight regarding the three-dimensional distribution of bees close to the hive was provided by alternating 
the beam between two heights, revealing a “funnel like” distribution around the beehives, widening with height.

Conclusions:  We demonstrate how lidar can record very high numbers of insects during a short time period. In 
this work, a spatial model, derived from the detection limit of the lidar and two Gaussian distributions of honeybees 
centered around their hives was sufficient to reproduce the observations of honeybees and background insects. 
This methodology can in the future provide valuable new information on how external factors influence pollination 
services and foraging habitat selection and range of both managed bees and wild pollinators.
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Background, motivation and aim
The decline of insect numbers in recent years has wor-
ried both researchers and the public [1]. Pollinators and 
in particular bees and hoverflies provide essential ser-
vices in terms of pollination of wild plants [2] and crops 
[3]. Honeybees provide a large part of the pollination 
of crops, but wild pollinators are also quantitatively 
important crop pollinators [4] and are essential for 
wild plant pollination [5]. Accordingly, recent declines 
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of honeybees [6] and simplifications of wild bee com-
munities [7], has caused considerable concern [8]. The 
decline of wild pollinators has been attributed to a mul-
titude of factors, such as landscape simplification caus-
ing loss of foraging and nesting habitat, increased use 
of pesticides, spread of diseases and potentially also 
direct competition with managed pollinators [8, 9]. The 
decline of managed bees is instead mostly related to 
socio-economic factors, including lack of profitability 
of bee keeping [10], which may, however, be related to 
landscape structure [11].

To generate a mechanistic understanding of how both 
wild pollinators and honeybees respond to landscape 
change and to monitor the pollination services they pro-
vide, it is essential to investigate their spatial use of forag-
ing habitats. Bees are central place foragers, that have to 
find food for their offspring in the vicinity of their nests 
[12, 13]. For wild bees, a major reason for their decline is 
thought to be a loss of a continuous forage supply across 
the season and sufficiently close to the nest [14]. How-
ever, since bee species differ in their foraging ranges, the 
consequences of landscape simplification may be species 
dependent [15–17]. Similarly, the benefit of managing 
honeybees may depend on the forage landscape sur-
rounding hives [11], with consequences for the interest 
of bee keepers to manage hives for honey production. 
Finally, honeybees and wild pollinators may to a smaller 
or larger extent share flower resources,, suggesting that 
they may compete [18, 19]. The scope and consequence 
of competition may depend on their foraging ranges [20], 
for example whether or not wide-ranging species such 
as honeybees are able to outcompete less mobile spe-
cies in simplified landscapes [21]. Knowledge about the 
use of foraging habitat and mobility of bees is, therefore, 
essential when designing mitigation measures to coun-
teract ongoing pollinator declines, e.g., to safeguard crop 
pollination.

Although knowledge of habitat selection and forag-
ing ranges of bees is essential, there is a lack of informa-
tion on how it varies between species, landscape types 
and over time. The major reason for this is that studies 
of habitat use and foraging movements are challeng-
ing. For example, their foraging may show spatio-tem-
poral dynamics [22–24] that can differ between species 
[25, 26], resulting in a requirement of extensive data to 
describe their use of foraging habitat. Conventional 
methods to determine habitat use, such as pan-traps, fail 
to produce fine time-resolved data and may result in bias 
because of bees being attracted to the traps [27]. Other 
methods, such as Pollard walks, require considerable 
resources and may produce data that are so scarce that 
they need to be pooled over space or time for analyses 
[28]. Hence, there is a need for methods that allow for 

time-continuous monitoring of bees and can accurately 
resolve different taxonomic groups.

Detection of insects with radar was demonstrated as 
early as 1949 [28] and entomological use of radar has 
since been considerably refined [29, 30]. It has in par-
ticular been applied to monitor large insects, such as 
moths and locust, migrating at heights of hundreds of 
meters. Using existing weather radar infrastructure, large 
amounts of data can be made accessible for radar ento-
mology [31, 32]. The monitoring of foraging insects close 
over the ground is challenged by ground clutter noise but 
harmonic radar systems [33, 34], where a nonlinear diode 
is glued to the insects, can track individual insects at low 
altitudes [35]. However, the technology is limited to mon-
itoring insects strong enough to carry the antenna and is 
unsuitable for monitoring large numbers of insects.

Inspired by progress in entomological radar and 
early entomological lidar [36, 37], lidar entomology has 
evolved [38] and overcomes many of the challenges for 
remote monitoring of insects near the ground. Lasers and 
the shorter wavelengths used in lidar allow for increased 
sensitivity and superior beam control in terms of collima-
tion and side lobes. This makes it possible to use lidar in 
cluttered environments, e.g., embedded in forest vegeta-
tion [39], or just above ground in agricultural fields [40, 
41]. In recent years, it has been used in several applica-
tions due to its capability of recording large number of 
observations in short time [40, 42, 43]. Lidars can provide 
sufficient statistics of insect activity within minutes and 
the retrieval of modulation properties provide some dis-
crimination between groups, although not yet to species 
level [43]. Lidar instrumentation has earlier been used to 
monitor honeybees [44] but to date there are no studies 
attempting to capture the whole foraging range through-
out the day.

To evaluate the feasibility to monitor honeybee activ-
ity separately from the activity of other insects, we set up 
an entomological Scheimpflug lidar [45] to monitor the 
honeybee activity in a pollinator-dependent crop, white 
clover for seed production (Trifolium repens L.). In addi-
tion to the lidar measurements, the activity of honeybees 
was measured using modified Pollard walks [46] and 
hive scales, measuring the weight of the hives over time. 
In this paper, we aim to show the ability to distinguish 
between honeybee and general insect activity using a 
spatial model rather than individual classification of each 
insect observation.

Materials and methods
An entomological kHz lidar was used to monitor the 
honeybee and insect activity in a 755 m transect over a 
white clover field for seed production in Denmark on 4. 
to 6. July 2017. The field contained 6 clusters with ca 20 
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beehives each for pollination services, as shown in Fig. 1. 
For ground truthing, Pollard walks and hive scales were 
used to monitor the honeybee activity. The measure-
ments were carried out from 11:20 to 20:35 on 4 July, 
from 08:50 to 20:15 on 5 July and 09:00–15:00 on 6 July 
(local summertime).

Study site
The study site was a 300*1000  m white clover field 
located on the island of Lolland, Denmark (54°46′ 15.7″ N 
11°36′ 25.5″ E). This site was selected for its flatness. The 
field was surrounded by hedges along the long sides and 
a small deciduous forest in the far end (Fig.  1). Within 
the field, there were two flower strips with a mix of lacy 
phacelia (Phacelia  tanacetifolia) and buckwheat (Fag-
opyrum esculentum) to attract and support insects. The 
white clover crop was established with an even plant den-
sity resulting in 1331 flowerheads per m2 (average of six 
samples 12.5 × 50  cm). At the time of the experiment, 
the white clover was in full bloom. On the eastern side, 
a wheel track ran along the field. The surrounding area 
contained agricultural fields and small forests.

Lidar instrumentation
The lidar instrument was purchased from Norsk Ele-
ktro Optikk AS, Norway. It resembles the ones earlier 
described in [40, 47, 48]. Briefly, in this study, the light 
from a 3  W 808  nm laser diode was expanded using a 
beam expander with 500  mm focal length and 102  mm 
aperture. The emitted light was focused on a neoprene 
covered termination board at 755 m and a tree at 1000 m 
distance (Fig.  1). The back-scattered light from insects 
entering the beam was collected by a Newtonian tel-
escope with 200 mm aperture and 800 mm focal length. 

To reduce the amount of background light in the system, 
the collected light was filtered by a 3 nm wide bandpass 
filter. The filtered light was recorded by a 2048-pixel 
(14 × 200 µm pixel size) silicon line scan camera mounted 
according to the Scheimpflug principle at 45° angle. The 
optical instrumentation was mounted on a tripod and 
protected from weather by a 3 × 3  m tent. Power was 
supplied by a mains connection from a residential house 
at the field border.

The laser beam was aimed ca. 2 m west of the south-
eastern beehive cluster ca 180 m along the beam (Fig. 1). 
On 6 July, the height of the beam was alternated in height 
between the termination plate and a tree at 1000 m every 
15  min to profile the activity at two heights. The beam 
height above ground was measured on site at 15 loca-
tions along the transect and varied from ca 0.5  m close 
to the lidar to 2.5  m at the highest point for the lower 
beam. These measurements where combined with open 
source terrain data available from the Danish elevation 
model [49] and a linear model was used to interpolate the 
beam’s height above the terrain along the full transect.

Data processing
The lidar recorded 35 000, 16-bit exposures at 3.5  kHz 
into a file of 10 s duration. The laser was synchronously 
modulated with the 3.5  kHz sampling frequency such 
that every second exposure was taken with the laser 
turned off. Between each file, there is an average gap 
of ~ 1 s due to data transfer which yields an average tem-
poral fill-factor of ~ 90%. As in previous work [48], the 
frames, recorded when the laser is off, are subtracted 
from the frames recorded with the laser turned on 
yielding synchronized lock-in detection. This detection 
scheme allows the lidar to record insect echoes during 

Fig. 1  Schematic of the field and experiment layout. The lidar beam passed ca 2 m from the beehives, ca 1.5 m above the ground. Satellite image 
from Google Earth
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daytime by removing the influence of background illu-
mination and yields a time-range map, as exemplified in 
Fig.  2. Subsequently, the 10  s median intensity at each 
pixel is subtracted to remove static signals from atmos-
pheric backscattering.

The Scheimpflug ranging principle is based on trian-
gulation and thus the pixel number corresponds tangen-
tially to the range [50–54]. Insect observations, as the 
one shown in Fig. 2b, were automatically extracted from 
the raw data using a slightly adapted version of the algo-
rithm described in detail in [48]. An insect observation 
is defined as a sequence of above-threshold signals pro-
duced when an insect transits the beam. Each observa-
tion thus consists of a single insect trajectory through 
the beam. In total over 3 days, 566 609 individual insect 
observations were recorded by the lidar during a total 
measurement time of 23 h and 15 min.

Ground truthing
Two 45 m modified Pollard walks were conducted every 
hour at two different transects ca 150  m from the bee-
hives, as shown in Fig. 1 [46]. The first was a 100 cm wide 
area between two wheel tracks for field operations in 
the white clover. The second was a 150  cm wide flower 
strip with phacelia and buckwheat. The transect walks 

were conducted by various operators at the site, in total, 
5 different persons, counting all honey- and bumblebees 
foraging, resting or flying between the wheel tracks or 
within the flower strip. Due to a limited number of bum-
blebees observed (< 50 in total), we only used honeybee 
counts in the further analyses. On average, ca 40 bees 
were observed by each observer and Pollard walk and in 
total, 5730 honeybee observations were made.

Two of the beehives were remotely monitored by the 
beekeeper and the weight was logged every second hour. 
The change in weight over the course of the day is deter-
mined by the number of bees in the hive as well as the 
amount of collected pollen and nectar. We assume that 
all bees are inside the hives at midnight, thus represent-
ing the total weight of bees and the hive, Wtot. By linearly 
interpolating the change in hive weight from midnight to 
midnight, we can then, for every two hours, subtract the 
measured “hive weight”, WHive , which is removed from 
each weight measurement:

whereWBee represents the lost weight of the bees in the 
hive when they are out foraging, assumed to be directly 
correlated to the number of bees in the hive and, there-
fore, negatively correlated to the flight activity. This 
weight loss will of course also be affected by the amount 
of pollen and nectar collected and consumed between 
each 2-h sample, this is ignored in our model.

Weather data was collected by a small weather station 
with 30-min resolution monitoring temperature, humid-
ity, air pressure, wind speed and wind direction. In gen-
eral, the weather was stable with temperatures between 
15 and 25 degrees Celsius, varying sun and cloud cover-
age and low winds during the entire measurement period.

Measurement results and data analysis
The distribution of insect recordings over time and range 
is shown in Fig. 3. Half of the observations were recorded 
within 11  m of the beehives. The maximum activity 
recorded by the lidar was reached between 14:45 and 
15:00 with a total of 10 807 insect observations along the 
whole transect and 26 insect observations per meter and 
minute.

The measured insect activity over range during the 
peak activity is plotted in Fig. 4. From the gathered lidar 
data, we hypothesized that the spatial distribution of 
insect activity can be explained by three types of obser-
vations: hive activity, due to honeybees flying around 
near the hives, honeybees foraging within the field and 
background activity from wild insects. The activity from 
male drones is neglected in this model, since they gen-
erally only make up less than 10% of the total popula-
tion in a beehive [55, 56]. Drones can aggregate in drone 

(1)WBee = Wtot −WHive

Fig. 2  a Lidar raw data example. The time-range map reveals a large 
number of insect observations by the beehives at 180 m. At the 
top of the image, the static echo from the termination is visible as a 
continuous line at 755 m. The signal intensity over range is shown in 
the vertical plot to the left with maximum, median and interquartile 
range (IQR) signals in orange, blue and green. Likewise, the signal 
over time (up to 700 m) is shown in the horizontal plot at the bottom. 
b Cut out showing an insect observation, where the wingbeats are 
visible as vertical stripes
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congregation areas (DCAs), but these generally occurs at 
higher altitudes than we’ve monitored in this study [57]. 
To quantify the honeybee and wild insect activity we 
used a spatial model to decompose the observed range 
distribution into these three components. In simple 
terms: insect distributions centered around the beehives 
are assumed to be either clustering, or foraging bees. This 
is modelled as

where Nw is the number of wild insects, Nfo is the number 
of foraging honeybees and Nhive is the hive activity from 
honeybees located near the hives.

The distribution of wild insects is defined as a negative 
exponential function:

where r is the range from the lidar, and α is a nega-
tive parameter which depends on the optical proper-
ties of the targets. This reciprocal distribution is caused 
by the reduced sensitivity of the lidar with range and 
the expected measured result from insects distributed 
homogenously in the field [54].

The hive activity and foraging honeybees are modelled 
as Gaussian distributions, Nh and Nfo, centered around 
the beehive cluster:

where N0fo is the maximum number of observations, rc is 
the centre position and R is the width of the curve.

The model in Eqs. (2)–(4) has 8 free parameters and 
was fitted to aggregated range distributions with a bin 
width of 2 m, yielding 360 datapoints from 35 to 755 m. 
using Scipy’s optimization package [58]. The model was 
fitted to 15 min subsets of the collected insect observa-
tions and had an average adjusted r-squared correlation 
coefficient of 0.96 with a standard deviation of 0.026.

The foraging distribution (shown in purple in Fig.  4) 
includes both flights to and from foraging sites as well 
as actual foraging flights. The width of the foraging dis-
tribution describes the foraging range from the beehives 
and has an average full width half maximum of 153  m 
throughout the full measurement period, with a standard 
deviation of 50 m.

All insect observations were split into three groups, 
matching the regions, where Nw, Nh or Nfo dominated the 
model as illustrated in Fig. 4. To investigate the assump-
tion that these groups consist of different insect spe-
cies, we estimated the modulation powers of a sample of 
insects selected in the dominating range interval of each 
group by the Welch method [59]. In Fig.  5, the median 

(2)(r, t) = Nw(r, t)+ Nfo(r, t)+ Nhive(r, t)

(3)Nw(r, t) = N0w(t)r
α(t)

, 35 < r < 755

(4)Nfo(r, t) = N0fo(t)e
−

(r−rc(t))
2

R(t)2

Fig. 3  Time-range map of insect activity during the second 
measurement day. Insect counts per minute and 1 m of transect 
evaluated in 15 min, 2 m bins. By the beehives at 180 m, the activity 
is 30 times higher than in the surrounding area. More activity is 
recorded closer to the lidar, since the sensitivity decreases with range. 
The maximum activity is indicated by an arrow at 14:45

Fig. 4  Range distribution of detected insect observations between 
14:45 and 15:00, 5/7 2017. The range distribution is approximated by 
three distributions. The peak in activity next to the beehives at 180 m 
is fitted by the red curve Nh and assumed to be the result of bees 
clustering near the hives. Foraging bees are fitted by the purple curve 
Nfo. The distribution from background insects not centered around 
the beehives, Nw, is plotted in green



Page 6 of 13Rydhmer et al. Animal Biotelemetry           (2022) 10:14 

power spectra from 500 random observations recorded 
in rw, rh and rfo is presented. We see that both honeybee 
distributions have a strong peak around 180–220  Hz 
which fits well with the expected wingbeat frequency for 
honeybees from literature [60–62]. Wild insects show a 
different distribution with lower and more varied wing-
beat frequencies than the clustered and foraging bees. 
We only counted honeybees and bumble bees during 
the Pollard walks but many other small insects can be 
expected to be active in the field.

Fitting the spatial model to all data, the number of wild 
insects, clustering and foraging bees can be estimated 
for the full measurement period. The result is plotted 
together with the ground truthing results in Fig.  6. The 
lidar was shut down for ca 20 min due to computer prob-
lems on 4 July around 11:00 and thus, some data points 
are missing in Fig. 6. The lidar data from 6 July is shown 
separately in Fig. 7.

In Fig. 6a, b, we see that the hive activity and foraging 
bees show a strong daily pattern, where activity rises 

during the morning, reaches peak activity around 14:00 
both days, slightly after the solar noon at 13:18 [63] and 
decreases in the afternoon. In contrast, the wild insect 
activity shows a more consistent activity throughout 
the day, and even increases throughout the entire sec-
ond day.

The lidar measurements of bee activity show good cor-
relation with the reference measurements (Table 1). The 
correlation between the Pollard walk counts and hive 
scale measurements were calculated by linearly interpo-
lating between the two closest sample points of the hive 
scales to each Pollard walk. The correlation between the 
Pollard walks and the lidar was calculated by interpolat-
ing the between the two closest 15 min recording inter-
vals to each Pollard walk. Since the lidar was alternated 
between a higher and lower transect during the third 
day, it gradually became un-aligned and recorded fewer 
and fewer observations in each timeslot. Lidar data from 
6 July is, therefore, not comparable to the two previous 
days or used in the correlation calculations.

Fig. 5  Modulation power frequency distributions. Green curve represents the wild insects observed in rw region, red curve represents the hive 
activity in the rh region. The purple curve represents the foraging bees observed in the rfo region. Median intensity is plotted as a solid line and the 
IQR between 25 and 75% as a band. The insect observations recorded in the rh and rfo regions are assumed to be honeybees in the model. This is 
supported by the spectra, since they show a strong peak between 180 and 220 Hz
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The transect walks by the wheel track show a slightly 
better correlation with hive and lidar measurements than 
the flower path, possibly because the honeybees were 
easier to spot in the low clover crop than in the flower 
strip. The lidar shows slightly better correlation with the 
loss in hive weights than with the Pollard walk observa-
tions. This is also shown in Fig. 8.

Analyzing lidar data from the third day when the beam 
was altered between two transects, we find ~ 68% more 
bees in the lower transect than in the upper. The bees 
observed near the beehives in the upper transect are also 
more dispersed, as shown in Fig. 7a, b. The average wing-
beat frequency spectra in the lower and, respectively, 
upper transect are shown in Fig. 7c. By fitting a spectral 

Fig. 6  Lidar insect counts, Wbee loss, and Pollard walk observations over time. The clustered and foraging bees detected by the lidar show a 
different temporal pattern than the background insects, which are active later in the evening. This correlates with the estimate of bee activity 
determined from hive scales and with the transect counts
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model from [64], the fundamental frequency in the lower 
and, respectively, upper transect can be estimated. With 
an explanation grade for the model of > 98%, the funda-
mental wingbeat frequency was calculated to 179.6  Hz 
with in the lower transect and 191.5  Hz in the upper 
transect. Confidence intervals were 178.8 Hz to 180.4 Hz 
and 191 Hz to 192 Hz, respectively.

Discussion
In this study, we have separated hive activity and forag-
ing bees from wild insects. The measured activity is cor-
related with alternative measures of activity obtained by 

hive scales and Pollard walks. The average foraging dis-
tance is estimated and the insect distribution close to the 
hives is profiled by multiplexing the height of the beam.

The large abundance of honeybees in this experimental 
setup made it possible to assume that the vast majority 
of insects centered around the beehives were due to hive 
activity or foraging honeybees. While there were sev-
eral beehive clusters in the field, the selected cluster was 
relatively isolated from the others and we could assume 
that insects showing a different spatial distribution were 
other insects. This made it possible to calculate the hon-
eybee activity and foraging range without individually 

Fig. 7  a Insect activity over time, range and flight height. Each dot represents one observation. Observations recorded in the lower transect are 
plotted in blue. Observations from the higher transect are plotted in orange. The majority of observations are recorded close to the beehive at 
180 m. Note that the variation in ground level is exaggerated by the different scales on the height and distance axes. b Distribution over range 
during the third day for both transects. In the lower transect, we see a high number of bees concentrated in a small area, whereas in the higher 
transect, we see fewer and a broader distribution of insects which indicates a “funnel like” distribution above the beehives. c Median frequency 
composition and IQR for the low and high transect within 15 m of the beehives. Insect in the high transect have a 7% higher average wingbeat 
frequency. The lower transect also shows more activity at lower frequencies from wild insects
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classifying each observation. This simplification was 
validated by the frequency spectra shown in Fig.  5. The 
drone activity was ignored as they only make up a rela-
tively small fraction of the individuals in a beehive.

The lidar, beehive scales and manual transect walks 
all show good agreement on the honeybee activity 
(Table 1). However, using the beehive scales to monitor 
activity is based on the approximation that the weight 
is linearly changing by a constant rate from midnight 
to midnight. This is an assumption; the weight of the 
hives depends on the feed brought into the hive, the 
feed eaten and the weight of the bee population within 

the hive. The lidar measurements are more strongly 
correlated with the hive scales than the Pollard tran-
sects. One interpretation is that the hive scales and 
lidar measure all flight activity, while the Pollard tran-
sects mainly record flower visits and flights close to 
the ground level. Alternatively, the Pollard counts are 
prone to more random variation, caused by observa-
tions of shorter time duration, smaller spatial scale cov-
ered and bee detectability. In addition, both the lidar 
and the hive scales are more strongly correlated with 
the activity in the wheel track than in the flower strip. 
This could indicate that the bees from the monitored 

Table 1  Relationships (Pearson correlation coefficient R, p value p and number of time intervals used N) between alternative 
measures of honeybee activity

Pollard walk counts, wheel 
track

Pollard walk counts, flower 
path

Wbee loss
hive 1

Wbee loss
hive 2

Pollard walk counts, 
flower path

R: 0.811
p: 5.1 × 10–7

N: 26

Wbee loss
hive 1

R: 0.846
p: 1.08 × 10–9

N: 32

R: 0.638
p: 8.43 × 10–5

N: 32

Wbee loss
hive 2

R: 0.874
p: 6.76 × 10–11

N: 32

R: 0.832
p: 3.69 × 10–9

N: 32

R: 0.821
p: 2.30 × 10–10

N: 38

Lidar bee counts
(Nhive + Nfo)

R: 0.607
p: 1.65 × 10–3

N: 24

R: 0.526
p: 8.29 × 10–3

N: 24

R: 0.725
p: 8.61 × 10–6

N: 29

R: 0.777
p: 7.00 × 10–7

N: 29

Fig. 8  Measured honeybee activity from the lidar is correlated with the observations from the transect walks (a). The correlation is even stronger 
between the lidar and the hive weights (b). The interpretation could be that the lidar and hive scales measure all flight activity, whereas the Pollard 
walks only measure bees foraging in part of the field
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hive were mainly foraging in the nearby white clover, or 
that the honeybees were more difficult to count in the 
high growing flower strip.

By modulating the beam between a lower and higher 
path, we profiled the honeybee activity at two heights. 
The fewer and more dispersed insects in the upper beam 
seems to indicate a “funnel like” distribution of bees over 
the beehives, widening with height, as shown in Fig. 7a, b. 
Orientation flights of new workers have been described 
as a spiral widening with height and could contribute to 
this distribution [65]. However, the number of orienta-
tion flights is expected to be low compared to the num-
ber of foraging flights. In addition, the insects observed 
in the upper beam had 7% higher wingbeat frequency, as 
can be seen in Fig. 7c. If returning bees carrying nectar 
and pollen have a higher wingbeat frequency, the results 
indicate a scenario, where bees leave the hives flying close 
to the ground for foraging. Once fully loaded, ca 150 m 
from the hive, they return to the hive on a higher trajec-
tory, as illustrated in Fig. 9. However, a recent study based 
on a limited number of measurements failed to find a 
correlation between weight load and wingbeat frequency 
[61]. Other work on bumble bees show that payload ini-
tially affect flight pitch angle and that the wing beat fre-
quency is only increased in extreme cases [66]. Wingbeat 
frequency increases with temperature, and since the air is 
expected to be warmer near the ground, a thermal differ-
ence between the beams is unlikely to be the cause.

A few previous experiments used a “scanning” beam to 
map insect activity in three dimensional space [67], but to 
our knowledge this is the first time this is combined with 
automated algorithms for individual event extraction on 
a large number of observations. In this work, the beam 
was moved manually and only vertically but the logical 
progression would be to alternate the beam horizontally 
over more transects and automate the movement. One 
could also employ a 2D detector chip in combination 
with a laser sheet [68]. This would allow a 2D model of 
the foraging range within the field. We wish to explore 
this in future studies. Although this experiment only cov-
ered total of ~ 23 h of recordings, the high number of col-
lected recordings allows statistical analysis of temporal 
changes with 15 min resolution. This is to the best of our 
knowledge not possible with any other insect monitoring 
method.

In this study, the range distribution of the foraging bees 
had an average full width half maximum of ~ 150 m. This 
can be compared to studies in the literature which finds 
that foraging ranges vary from 45 to 6000 m, with aver-
age foraging distances typically around 600 m to 800 m 
depending on colony size, foraging resources and time of 
year, with shorter distances in early summer [69, 70]. In 
this field, the hives were placed in the middle of a food 
source which has been shown to result in shorter forag-
ing distances [23]. However, as discussed in Fig.  4, the 
sensitivity of the lidar decreases with range due to the 

Fig. 9  Funnel-like distribution and differences in wingbeat frequency could be explained by a model, where insects leaving the hive fly at lower 
height, close to the ground, while returning bees fly along a higher path. In this study, the full-width-half-maximum (FWHM) of the foraging range 
was ca 150 m
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optical configuration. Therefore, the minimum detect-
able target size decreases with range, and in addition, the 
beam’s elevation over the crop is also varying along the 
transect. This makes it hard to quantitatively compare the 
activity at different distances [23]. A future more com-
plex parameterization model could take these parameters 
into account as discussed in [54] and investigate inhomo-
geneous distributions of wild insects, pollinator competi-
tion and displacement of wild pollinators.

Outlook
Since the height of the beam strongly influences the 
number of detected observations, it is challenging for 
lidar entomologists to compare insect activity levels at 
different locations. Regardless, the instrumentation can 
be a vital tool to investigate the behavior of bees and wild 
insects. In this study, a simple spatial model was relied on 
to discriminate target types and provide quantitative esti-
mates of their relative occurrence. As characterization of 
the scattering properties of individual insects develops, 
discrimination at the level of individual transit observa-
tions may become possible [71–73].

While instrumentation used in this study is commer-
cially available, it currently requires skilled technicians 
for alignment and operations. As the entomological lidar 
community is growing and research groups are active in 
several countries and continents, there are good pros-
pects for the methodology becoming accessible for ento-
mologists and ecologists in general.

Conclusions
We deployed an entomological lidar in a homogenous 
flowering white clover field and profiled the honey-
bee activity around a cluster of beehives over time. By 
decomposing the observations into hive activity, forag-
ing honeybees and wild insects the number of honey-
bees engaged in flight activities could be estimated and 
showed good correlation with estimates from hive scales 
and Pollard walks. In addition to counting the number 
of active bees, average foraging distance was estimated. 
In addition, the three-dimensional distribution of hon-
eybees around the hives was investigated by moving the 
beam between an upper and lower height.

This work has shown the ability to record very high 
number of insects during a short time period, which 
allows the study of insect activity with a very high tem-
poral resolution. We propose that lidar monitoring can 
change pollinator research in the future by providing val-
uable new information on how external factors influence 
pollinator activity.

Acknowledgements
We thank Frederik Taarnhøj for assisting with the grant proposal, Flemming 
Rasmussen, Per Kryger, Janne Kool, Alem Gebru and Josephine Nielsen for 

assistance during the field measurements. We thank Krenkerup Estate for 
access to the white clover seed crop and Mr. Søren Jespersen and Mathias 
Knudsen for information on crop management and support setting up the 
equipment in the field.

Author contributions
KR, JP and BB conceived the experiment and acquired the grant. MB con-
structed the lidar instrument and wrote the initial analysis code. KR and JP 
carried out the experiment on site. KR and HS drafted the manuscript. CK, MB 
and IS directed data analysis. KR analyzed data and produced graphical items. 
All authors read and approved the final manuscript.

Funding
This study was supported by a grant by Idagaardfonden, Denmark, Innovation 
Foundation, Denmark, the Swedish Research Council, Norsk Elektro Optikk AS, 
Norway, Formas Sweden and 15. Juni and Aage V. Jensen Nature Foundations, 
Denmark.

Availability of data and materials
The data set used will be made available in a reduced format at a public 
repository at publication. In addition, contact information to potential regional 
entomological research groups can be acquired from the authors by request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
KR, CK, JP and MB are presently or formerly affiliated, employees or sharehold-
ers of FaunaPhotonics. We declare that this has not affected the reported 
results or interpretations in any way.

Author details
1 Department of Geosciences and Natural Resource Management, University 
of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark. 2 FaunaPho-
tonics APS, Støberigade 14, 2450 Copenhagen, SV, Denmark. 3 Lund Laser 
Centre, Department of Physics, Lund University, Sölvegatan 14, 223 62 Lund, 
Sweden. 4 Norsk Elektro Optikk AS, Prost Stabels vei 22, N‑2019 Skedsmokor-
set, Norway. 5 Centre of Environmental and Climate Science & Department 
of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden. 6 Department 
of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, 
University of Copenhagen, Grønnegårdsvej 8, 1870 Frederiksberg, Denmark. 
7 Department of Agroecology ‑ Crop Health, Aarhus University, Forsøgsvej 1, 
building 7610, A132, 4200 Slagelse, Denmark. 

Received: 9 April 2021   Accepted: 1 April 2022

References
	1.	 Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, 

et al. More than 75 percent decline over 27 years in total flying insect 
biomass in protected areas. PLoS ONE. 2017;12:10.

	2.	 Ollerton J. Pollinator diversity: distribution, ecological function, and 
conservation. Annu Rev Ecol Evol Syst. 2017;48:353–76.

	3.	 Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, 
Kremen C, et al. Importance of pollinators in changing landscapes for 
world crops. Proc R Soc B Biol Sci. 2007;274(1608):303–13.

	4.	 Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco 
R, Cunningham SA, et al. Wild Pollinators Enhance Fruit Set of 
Crops Regardless of Honey Bee Abundance. Science. 2013 Mar 
29;339(6127):1608 LP – 1611. http://​scien​ce.​scien​cemag.​org/​conte​nt/​
339/​6127/​1608.​abstr​act

http://science.sciencemag.org/content/339/6127/1608.abstract
http://science.sciencemag.org/content/339/6127/1608.abstract


Page 12 of 13Rydhmer et al. Animal Biotelemetry           (2022) 10:14 

	5.	 Stanley DA, Msweli SM, Johnson SD. Native honeybees as flower visitors 
and pollinators in wild plant communities in a biodiversity hotspot. 
Ecosphere. 2020;11:2.

	6.	 Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, et al. 
Declines of managed honey bees and beekeepers in Europe. J Apic Res. 
2010;49(1):15–22.

	7.	 Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, 
et al. Widespread losses of pollinating insects in Britain. Nat Commun 
[Internet]. 2019;10(1):1–6. https://​doi.​org/​10.​1038/​s41467-​019-​08974-9.

	8.	 Potts SG, Ngo HT, Biesmeijer JC, Breeze TD, Dicks L V, Garibaldi LA, et al. 
The assessment report of the Intergovernmental Science-Policy Platform 
on Biodiversity and Ecosystem Services on pollinators, pollination and 
food production. 2016;

	9.	 Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by 
combined stress from parasites, pesticides, and lack of flowers. Science. 
2015;347(6229):1255957.

	10.	 Breeze TD, Boreux V, Cole L, Dicks L, Klein A, Pufal G, et al. Linking farmer 
and beekeeper preferences with ecological knowledge to improve crop 
pollination. People Nat. 2019;1(4):562–72.

	11.	 Sponsler DB, Johnson RM. Honey bee success predicted by landscape 
composition in Ohio USA. PeerJ. 2015;3:e838.

	12.	 Kacelnik A, Houston AI, Schmid-Hempel P. Central-place foraging in 
honey bees: the effect of travel time and nectar flow on crop filling. 
Behav Ecol Sociobiol. 1986;19(1):19–24.

	13.	 Cresswell JE, Osborne JL, Goulson D. An economic model of the limits 
to foraging range in central place foragers with numerical solutions for 
bumblebees. Ecol Entomol. 2000;25(3):249–55.

	14.	 Smith HG, Birkhofer K, Clough Y, Ekroos J, Olsson O, Rundlöf M. Beyond 
dispersal: the role of animal movement in modern agricultural land-
scapes. In: Animal Movement Across Scales. Oxford University Press; 2014. 
p. 51–70.

	15.	 Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. 
Scale-dependent effects of landscape context on three pollinator guilds. 
Ecology. 2002;83(5):1421–32.

	16.	 Persson AS, Rundlöf M, Clough Y, Smith HG. Bumble bees show trait-
dependent vulnerability to landscape simplification. Biodivers Conserv. 
2015;24(14):3469–89.

	17.	 Bommarco R, Lundin O, Smith HG, Rundlöf M. Drastic historic shifts in 
bumble-bee community composition in Sweden. Proc R Soc B Biol Sci. 
2012;279(1727):309–15.

	18.	 Herbertsson L, Lindström SAM, Rundlöf M, Bommarco R, Smith HG. Com-
petition between managed honeybees and wild bumblebees depends 
on landscape context. Basic Appl Ecol. 2016;17(7):609–16.

	19.	 Thomson DM, Page ML. The importance of competition between insect 
pollinators in the Anthropocene. Curr Opin Insect Sci. 2020;38:55–62.

	20.	 Westphal C, Steffan-Dewenter I, Tscharntke T. Bumblebees experience 
landscapes at different spatial scales: possible implications for coexist-
ence. Oecologia. 2006;149(2):289–300.

	21.	 Bolin A, Smith HG, Lonsdorf EV, Olsson O. Scale-dependent foraging 
tradeoff allows competitive coexistence. Oikos. 2018;127(11):1575–85.

	22.	 Herrera CM. Daily patterns of pollinator activity, differential pollinating 
effectiveness, and floral resource availability, in a summer-flowering 
Mediterranean shrub. Oikos. 1990;1:277–88.

	23.	 Danner N, Molitor AM, Schiele S, Härtel S, Steffan-Dewenter I. Season and 
landscape composition affect pollen foraging distances and habitat use 
of honey bees. Ecol Appl. 2016;26(6):1920–9.

	24.	 Pope NS, Jha S. Seasonal food scarcity prompts long-distance foraging by 
a wild social bee. Am Nat. 2018;191(1):45–57.

	25.	 Willmer PG, Bataw AAM, Hughes JP. The superiority of bumblebees to 
honeybees as pollinators: insect visits to raspberry flowers. Ecol Entomol. 
1994;19(3):271–84.

	26.	 Redhead JW, Dreier S, Bourke AFG, Heard MS, Jordan WC, Sumner S, et al. 
Effects of habitat composition and landscape structure on worker forag-
ing distances of five bumble bee species. Ecol Appl. 2016;26(3):726–39.

	27.	 Baum KA, Wallen KE. Potential bias in pan trapping as a function of floral 
abundance. J Kansas Entomol Soc. 2011;84(2):155–9.

	28.	 Garratt MPD, Senapathi D, Coston DJ, Mortimer SR, Potts SG. The benefits 
of hedgerows for pollinators and natural enemies depends on hedge 
quality and landscape context. Agric Ecosyst Environ. 2017;247:363–70.

	29.	 Drake VA, Reynolds DR. Radar entomology: observing insect flight and 
migration. Cabi; 2012.

	30.	 Daniel Kissling W, Pattemore DE, Hagen M. Challenges and prospects in 
the telemetry of insects. Biol Rev. 2014;89(3):511–30.

	31.	 Westbrook JK, Eyster RS, Wolf WW. WSR-88D doppler radar detection of 
corn earworm moth migration. Int J Biometeorol. 2014;58(5):931–40.

	32.	 Gauthreaux SA Jr, Livingston JW, Belser CG. Detection and discrimination 
of fauna in the aerosphere using Doppler weather surveillance radar. 
Integr Comp Biol. 2008;48(1):12–23.

	33.	 Riley JR, Valeur P, Smith AD, Reynolds DR, Poppy GM, Löfstedt C. Harmonic 
radar as a means of tracking the pheromone-finding and pheromone-
following flight of male moths. J Insect Behav. 1998;11(2):287–96.

	34.	 Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin 
AP, et al. Tracking butterfly movements with harmonic radar reveals an 
effect of population age on movement distance. Proc Natl Acad Sci. 
2008;105(49):19090–5.

	35.	 Riley JR, Smith AD, Reynolds DR, Edwards AS, Osborne JL, Williams IH, 
et al. Tracking bees with harmonic radar. Nature. 1996;379(6560):29–30. 
https://​doi.​org/​10.​1038/​37902​9b0.

	36.	 Shaw JA, Seldomridge NL, Dunkle DL, Nugent PW, Spangler LH, Bromen-
shenk JJ, et al. Polarization lidar measurements of honey bees in flight for 
locating land mines. Opt Express. 2005;13(15):5853–63.

	37.	 Guan Z, Brydegaard M, Lundin P, Wellenreuther M, Runemark A, Svensson 
EI, et al. Insect monitoring with fluorescence lidar techniques: field 
experiments. Appl Opt. 2010;49(27):5133–42.

	38.	 Brydegaard M, Svanberg S. Photonic monitoring of atmospheric and 
aquatic fauna. Laser Photon Rev. 2018;12(12):1800135.

	39.	 Li M, Jansson S, Runemark A, Peterson J, Kirkeby CT, Jönsson AM, et al. 
Bark beetles as lidar targets and prospects of photonic surveillance. J 
Biophotonics. 2020;1:1–16.

	40.	 Brydegaard M, Gebru A, Kirkeby C, Åkesson S, Smith H. Daily evolution of 
the insect biomass spectrum in an agricultural landscape accessed with 
lidar. In: EPJ Web of Conferences. EDP Sciences; 2016. p. 22004.

	41.	 Malmqvist E, Jansson S, Zhu S, Li W, Svanberg K, Svanberg S, et al. The 
bat–bird–bug battle: Daily flight activity of insects and their predators 
over a rice field revealed by high-resolution scheimpflug lidar. R Soc 
Open Sci. 2018;5:4.

	42.	 Brydegaard M, Jansson S. Advances in entomological laser radar. IET Int 
Radar Conf. 2018;(Irc 2018):2–5.

	43.	 Brydegaard M, Jansson S, Malmqvist E, Mlacha Y, Gebru A, Okumu F, 
et al. Lidar reveals activity anomaly of malaria vectors during pan-African 
eclipse. Sci Adv. 2020;13:6.

	44.	 Hoffman DS, Nehrir AR, Repasky KS, Shaw JA, Carlsten JL. Range-resolved 
optical detection of honeybees by use of wing-beat modulation of scat-
tered light for locating land mines. Appl Opt. 2007;46(15):3007–12.

	45.	 Brydegaard M, Malmqvist E, Jansson S, Larsson J, Török S, Zhao G. The 
Scheimpflug lidar method. In: Lidar Remote Sensing for Environmental 
Monitoring 2017. International Society for Optics and Photonics; 2017. p. 
104060I.

	46.	 Pollard E. A method for assessing changes in the abundance of butter-
flies. Biol Conserv. 1977;12(2):115–34.

	47.	 Brydegaard M, Gebru A, Svanberg S. Super Resolution Laser Radar with 
Blinking Atmospheric Particles––Application to Interacting Flying Insects. 
Prog Electromagn Res. 2014;147:141–51.

	48.	 Malmqvist E, Jansson S, Török S, Brydegaard M. Effective parameterization 
of laser radar observations of atmospheric fauna. IEEE J Sel Top Quantum 
Electron. 2015;22:1.

	49.	 Rosenkranz BC, Lund J. Danmarks Højdemodel-én model med et utal af 
anvendelser. Geoforum Perspekt. 2015;14:26.

	50.	 Mei L, Brydegaard M. Continuous-wave differential absorption lidar. Laser 
Photonics Rev. 2015;9(6):629–36.

	51.	 Brydegaard M, Gebru A, Svanberg S. Super resolution laser radar with 
blinking atmospheric particles—application to interacting flying insects. 
Prog Electromagn Res. 2014;147:141–51.

	52.	 Torok S. Kilohertz electro-optics for remote sensing of insect dispersal. 
These. 2013.

	53.	 Malmqvist E. From Fauna to Flames : remote sensing with Scheimpflug-
Lidar. [Lund]: Division of Combustion Physics, Department of Physics, 
Lund University; 2019.

	54.	 Jansson S. Entomological lidar : target characterization and field applica-
tions. Lund: Division of Combustion Physics, Department of Physics, Lund 
University; 2020.

https://doi.org/10.1038/s41467-019-08974-9
https://doi.org/10.1038/379029b0


Page 13 of 13Rydhmer et al. Animal Biotelemetry           (2022) 10:14 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	55.	 Page RE, Metcalf RA. A population investment sex ratio for the honey bee 
(Apis mellifera L.). Am Nat. 1984;124(5):680–702.

	56.	 Allen MD. Drone production in honey-bee colonies (Apis mellifera L.). 
Nature. 1963;199(4895):789–90.

	57.	 Loper GM, Wolf WW, Taylor OR. Honey bee drone flyways and congrega-
tion areas: radar observations. J Kansas Entomol Soc. 1992;1:223–30.

	58.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau 
D, et al. SciPy 1.0: fundamental algorithms for scientific computing in 
Python. Nat Methods. 2020;17(3):261–72.

	59.	 Welch P. The use of fast Fourier transform for the estimation of power 
spectra: a method based on time averaging over short, modified peri-
odograms. IEEE Trans audio Electroacoust. 1967;15(2):70–3.

	60.	 Byrne, David N and Buchmann, Stephen L and Spangler HG. Relationship 
Between Wing Loading, Wingbeat Frequency and Body Mass in Homop-
terous Insects. J Exp Biol. 1988;135(1):9 LP – 23.

	61.	 Feuerbacher E, Fewell JH, Roberts SP, Smith EF, Harrison JF. Effects of load 
type (pollen or nectar) and load mass on hovering metabolic rate and 
mechanical power output in the honey bee Apis mellifera. J Exp Biol. 
2003;206(11):1855–65.

	62.	 Altshuler DL, Dickson WB, Vance JT, Roberts SP, Dickinson MH. Short-
amplitude high-frequency wing strokes determine the aerodynamics of 
honeybee flight. Proc Natl Acad Sci U S A. 2005;102(50):18213–8.

	63.	 Timeanddate.com. [cited 2020 Apr 17]. https://​www.​timea​nddate.​com/​
sun/@​26182​63?​month=​7&​year=​2017. Accessed 17 Apr 2020.

	64.	 Malmqvist E, Brydegaard M. Applications of KHZ-CW Lidar in Ecological 
Entomology. EPJ Web Conf. 2016;119:4–7.

	65.	 Capaldi EA, Dyer FC. The role of orientation flights on homing perfor-
mance in honeybees. J Exp Biol. 1999;202(12):1655–66.

	66.	 Combes SA, Gagliardi SF, Switzer CM, Dillon ME. Kinematic flexibility 
allows bumblebees to increase energetic efficiency when carrying heavy 
loads. Sci Adv. 2020;6:6.

	67.	 Tauc MJ, Fristrup KM, Repasky KS, Shaw JA. Field demonstration of a 
wing-beat modulation lidar for the 3D mapping of flying insects. OSA 
Contin. 2019;2(2):332.

	68.	 Gao F, Lin H, Chen K, Chen X, He S. Light-sheet based two-dimensional 
Scheimpflug lidar system for profile measurements. Opt Express. 
2018;26(21):27179.

	69.	 Abou-Shaara H. The foraging behaviour of honey bees. Apis mellifera: A 
review Vet Med (Praha). 2014;1(59):1–10.

	70.	 Hagler J, Mueller S, Teuber L, Machtley S, Deynze A. Foraging Range of 
Honey Bees, Apis mellifera, in Alfalfa Seed Production Fields. J Insect Sci. 
2011;1(11):144.

	71.	 Li M, Jansson S, Runemark A, Peterson J, Kirkeby CT, Jönsson AM, et al. 
Bark beetles as lidar targets and prospects of photonic surveillance. J 
Biophotonics. 2020.

	72.	 Kirkeby C, Rydhmer K, Cook SM, Strand A, Torrance MT, Swain JL, et al. 
Advances in automatic identification of flying insects using optical sen-
sors and machine learning. Sci Rep. 2021;11(1):1555.

	73.	 Genoud AP, Gao Y, Williams GM, Thomas BP. A comparison of supervised 
machine learning algorithms for mosquito identification from backscat-
tered optical signals. Ecol Inform. 2020;58:101090.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.timeanddate.com/sun/@2618263?month=7&year=2017
https://www.timeanddate.com/sun/@2618263?month=7&year=2017

	Scheimpflug lidar range profiling of bee activity patterns and spatial distributions
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background, motivation and aim
	Materials and methods
	Study site
	Lidar instrumentation
	Data processing
	Ground truthing

	Measurement results and data analysis
	Discussion
	Outlook
	Conclusions
	Acknowledgements
	References




