Čada GF: The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 2001, 26: 14–23.
Google Scholar
Smokorowski KE, Bergeron N, Boisclair D, Clarke K, Cooke S, Cunjak R, Dawson J, Eaton B, Hicks F, Katopodis C, Lapointe M, Legendre P, Power M, Randall R, Rasmussen J, Rose G, Saint-Hilaire A, Sellars B, Swanson G, Winfield N, Wysocki R, Zhu D: NSERC’s HydroNet: a national research network to promote sustainable hydropower and healthy aquatic ecosystems. Fisheries 2011, 36: 480–488. 10.1080/03632415.2011.616459
Article
Google Scholar
Dadswell MJ, Rulifson RA: Macrotidal estuaries: a region of collision between migratory marine animals and tidal power development. Biol J Linn Soc 1994, 51: 93–113. 10.1111/j.1095-8312.1994.tb00947.x
Article
Google Scholar
Skalski JR, Steig TW, Hemstrom SL: Assessing compliance with fish survival standards: a case study at Rock Island Dam, Washington. Environ Sci Policy 2012, 18: 45–51.
Article
Google Scholar
Fisheries Act. R.S.C. 1985. c. F-14 (last amended 25 November 2013) http://laws.justice.gc.ca/eng/acts/F-14/
Chen E, LeBlanc P Technical Report. In Report of the June 27–28, 2013 Workshop for the Development of National Guidance for Managing Impacts of Entrainment and Impingement of Fish at Medium and Large Intakes. Richmond Hill, ON, Canada: SENES Consultants; 2013.
Google Scholar
Scruton DA, McKinley RS, Kouwen N, Eddy W, Booth RK: Use of telemetry and hydraulic modeling to evaluate and improve fish guidance efficiency at a louver and bypass system for downstream-migrating Atlantic salmon ( Salmo salar ) smolts and kelts. Hydrobiologia 2002, 483: 83–94. 10.1023/A:1021350722359
Article
Google Scholar
Brown L, Haro A, Castro-Santos T: Three-dimensional movement of silver-phase American eels in the forebay of a small hydroelectric facility. In Eels at the Edge: Science, Status, and Conservation Concerns. Edited by: Casselman JM, Cairns DK. Bethesda, MD: American Fisheries Society; 2009:277–291.
Google Scholar
Keefer ML, Taylor GA, Garletts DF, Helms CK, Gauthier GA, Pierce TM, Caudill CC: High-head dams affect downstream fish passage timing and survival in the Middle Fork Willamette River. River Res Appl 2013, 29: 483–492. 10.1002/rra.1613
Article
Google Scholar
Goodwin RA, Nestler JM, Anderson JJ, Weber LJ, Loucks DP: Forecasting 3-D fish movement behavior using a Eulerian–Lagrangian–agent method (ELAM). Ecol Modell 2006, 192: 197–223. 10.1016/j.ecolmodel.2005.08.004
Article
Google Scholar
Coutant CC, Whitney RR: Fish behavior in relation to passage through hydropower turbines: a review. Trans Am Fish Soc 2000, 129: 351–380. 10.1577/1548-8659(2000)129<0351:FBIRTP>2.0.CO;2
Article
Google Scholar
Federal Energy Regulatory Commission (FERC) (Technical Report, Paper DPR-10). In Preliminary Assessment of Fish Entrainment at Hydropower Projects: A Report on Studies and Protective Measures. Washington, DC: FERC, Office of Hydropower Licensing; 1995. (accessed 15 July 2014) http://www.ferc.gov/industries/hydropower/gen-info/guidelines/preliminary-assessment-fish-entrainment-vol-1.pdf
Google Scholar
Skaar D, DeShazer J, Garrow L, Ostrowski T, Thomburg B Technical Report. In Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries: Investigations of Fish Entrainment through Libby Dam, 1990–1994. Kalispell: Montana Department of Fish, Wildlife and Parks; 1996.
Chapter
Google Scholar
Barnthouse LW: Impacts of entrainment and impingement on fish populations: a review of the scientific evidence. Environ Sci Policy 2013, 31: 149–156.
Article
Google Scholar
Morris WF, Doak DF: Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sunderland, MA: Sinauer Associates; 2002.
Google Scholar
Dunham J, Baxter C, Fausch K, Fredenberg W, Kitano S, Koizumi I, Morita K, Nakamura T, Rieman B, Savvaitova K, Stanford J, Taylor E, Yamamoto S: Evolution, ecology, and conservation of dolly varden, white-spotted char, and bull trout. Fisheries 2008, 33: 537–550. 10.1577/1548-8446-33.11.537
Article
Google Scholar
Selong JH, McMahon TE, Zale AV, Barrows FT: Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans Am Fish Soc 2001, 130: 1026–1037. 10.1577/1548-8659(2001)130<1026:EOTOGA>2.0.CO;2
Article
Google Scholar
Gutowsky LFG, Harrison PM, Landsman SJ, Power M, Cooke SJ: Injury and immediate mortality associated with recreational troll capture of bull trout ( Salvelinus confluentus ) in a reservoir in the Kootenay-Rocky Mountain region of British Columbia. Fish Res 2011, 109: 379–383. 10.1016/j.fishres.2011.02.022
Article
Google Scholar
United States Fish and Wildlife Service (USFWS): Endangered and threatened wildlife and plants: determination of threatened status for bull trout in the coterminous United States. Final Rule. 50 CFR Part 17. Subpart D—Threatened Wildlife. § 17.44. Special Rules—Fishes. Fed Reg 1999, 64: 58910–58933.
Google Scholar
Committee on the Status of Endangered Wildlife in Canada (COSEWIC): Canadian Wildlife Species at Risk. Gastineau, QC, Canada: COSEWIC Secretariat, Canadian Wildlife Service, Environment Canada; 2013. (accessed 15 July 2014) http://www.cosewic.gc.ca/eng/sct0/rpt/csar_e_2013.pdf
Google Scholar
Flatter B Technical Report. In Life history and population status of migratory bull trout (Salvelinus confluentus) in Arrowrock Reservoir, Idaho. Boise, Idaho: Department of Fish and Game; 1998.
Google Scholar
Salow T, Hostettler L Technical Report. In Movement and Mortality Patterns of Adult Adfluvial Bull Trout (Salvelinus confluentus) in the Boise River Basin Idaho. US Department of the Interior, Bureau of Reclamation; 2004. (accessed 15 July 2014) http://www.usbr.gov/pn/snakeriver/esa/bulltrout/reports/2004-Arrowrockvalveradiotelemetry.pdf
Google Scholar
Martins EG, Gutowsky LFG, Harrison PM, Patterson DA, Power M, Zhu DZ, Leake A, Cooke SJ: Forebay use and entrainment rates of resident adult fish in a large hydropower reservoir. Aquat Biol 2013, 19: 253–263. 10.3354/ab00536
Article
Google Scholar
Pedersen MW, Patterson TA, Thygesen UH, Madsen H: Estimating animal behavior and residency from movement data. Oikos 2011, 120: 1281–1290. 10.1111/j.1600-0706.2011.19044.x
Article
Google Scholar
Jonsen ID, Mills-Flemming J, Myers RA: Robust state-space modeling of animal movement data. Ecology 2005, 86: 2874–2880. 10.1890/04-1852
Article
Google Scholar
Hydro BC Technical Report. In Mica Dam: Entrainment Risk Screening. Burnaby, BC, Canada: BC Hydro; 2006.
Google Scholar
Beauchamp DA, Van Tassell JJ: Modeling seasonal trophic interactions of adfluvial bull trout in Lake Billy Chinook, Oregon. Trans Am Fish Soc 2001, 130: 204–216. 10.1577/1548-8659(2001)130<0204:MSTIOA>2.0.CO;2
Article
Google Scholar
Maiolie M, Elam S (Project 198709900, BPA Report DOE/BP-35167–10). In Kokanee Entrainment Losses at Dworshak Reservoir: Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 1996 Annual Report. Portland, OR: Bonneville Power Administration; 1998. (accessed 15 July 2014) https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=35167–10;
Chapter
Google Scholar
Dawson J, Parkinson E Technical Report. In Revelstoke Reservoir Kokanee Behavior and Entrainment Rate Assessment. Seattle, WA: Biosonics; 2013.
Google Scholar
Steinhart GB, Wurtsbaugh WA: Winter ecology of kokanee: implications for salmon management. Trans Am Fish Soc 2003, 132: 1076–1088. 10.1577/T02-135
Article
Google Scholar
Steinhart GB, Wurtsbaugh WA: Under-ice diel vertical migrations of Oncorhynchus nerka and their zooplankton prey. Can J Fish Aquat Sci 1999, 56: 152–161. 10.1139/f99-214
Article
Google Scholar
Benhamou S, Bovet P: How animals use their environment: a new look at kinesis. Anim Behav 1989, 38: 375–383. 10.1016/S0003-3472(89)80030-2
Article
Google Scholar
Bachman RA: Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Trans Am Fish Soc 1984, 113: 1–32. 10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2
Article
Google Scholar
Piccolo JJ, Hughes NF, Bryant MD: Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon ( Oncorhynchus kisutch ) and steelhead ( Oncorhynchus mykiss irideus ). Can J Fish Aquat Sci 2008, 65: 266–275. 10.1139/f07-172
Article
Google Scholar
Fry FEJ: Effects of the environment on animal activity. Publ Ontario Fish Res Lab 1947, 68: 1–52.
Google Scholar
Larsson S, Berglund I: The effect of temperature on the energetic growth efficiency of Arctic charr ( Salvelinus alpinus L.) from four Swedish populations. J Therm Biol 2005, 30: 29–36. 10.1016/j.jtherbio.2004.06.001
Article
Google Scholar
Armstrong JB, Schindler DE, Ruff CP, Brooks GT, Bentley KE, Torgersen CE: Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 2013, 94: 2066–2075. 10.1890/12-1200.1
Article
PubMed
Google Scholar
Mesa MG, Weiland LK, Christiansen HE, Sauter ST, Beauchamp DA: Development and evaluation of a bioenergetics model for bull trout. Trans Am Fish Soc 2013, 142: 41–49. 10.1080/00028487.2012.720628
Article
CAS
Google Scholar
Helfman GS: Fish behaviour by day, night and twilight. In Behavior of Teleost Fishes. 2nd edition. Edited by: Pitcher TJ. London: Chapman & Hall; 1993:479–512.
Chapter
Google Scholar
Gutowsky LFG, Harrison PM, Martins EG, Leake A, Patterson DA, Power M, Cooke SJ: Diel vertical migration hypotheses explain size-dependent behaviour in a freshwater piscivore. Anim Behav 2013, 86: 365–373. 10.1016/j.anbehav.2013.05.027
Article
Google Scholar
Levy DA: Acoustic analysis of diel vertical migration behavior of Mysis relicta and kokanee ( Oncorhynchus nerka ) within Okanagan Lake, British Columbia. Can J Fish Aquat Sci 1991, 48: 67–72. 10.1139/f91-010
Article
Google Scholar
Thurow RF: Habitat utilization and diel behavior of juvenile bull trout ( Salvelinus confluentus ) at the onset of winter. Ecol Freshw Fish 1997, 6: 1–7. 10.1111/j.1600-0633.1997.tb00136.x
Article
Google Scholar
Jakober MJ, McMahon TE, Thurow RF: Diel habitat partitioning by bull charr and cutthroat trout during fall and winter in Rocky Mountain streams. Environ Biol Fishes 2000, 59: 79–89. 10.1023/A:1007699610247
Article
Google Scholar
Turchin P: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sunderland, MA: Sinauer Associates; 1998.
Google Scholar
Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE: A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 2008, 105: 19052–19059. 10.1073/pnas.0800375105
Article
CAS
PubMed Central
PubMed
Google Scholar
Shammaa Y, Zhu DZ, Rajaratnam N: Flow upstream of orifices and sluice gates. J Hydraul Eng 2005, 131: 127–133. 10.1061/(ASCE)0733-9429(2005)131:2(127)
Article
Google Scholar
McElroy B, DeLonay A, Jacobson R: Optimum swimming pathways of fish spawning migrations in rivers. Ecology 2012, 93: 29–34. 10.1890/11-1082.1
Article
PubMed
Google Scholar
Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G: Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol 2013, 1: 4. 10.1186/2051-3933-1-4
Article
PubMed Central
PubMed
Google Scholar
Langford MT, Robertson CB, Zhu DZ Technical Report. In Mica Dam Fish Entrainment Hydraulics: Computational Fluid Dynamic Modeling and Field Study. Edmonton, AB, Canada: University of Alberta; 2012.
Google Scholar
Mesa MG, Weiland LK, Zydlewski GB: Critical swimming speeds of wild bull trout. Northwest Sci 2004, 78: 59–65.
Google Scholar
Pincock DG, Johnston SV: Acoustic telemetry overview. In Telemetry Techniques: A User Guide for Fisheries Research. Edited by: Adams NS, Beeman JW, Eiler JH. Bethesda, MD: American Fisheries Society; 2012:305–337.
Google Scholar
Post JR, Mushens C, Paul A, Sullivan M: Assessment of alternative harvest regulations for sustaining recreational fisheries: model development and application to bull trout. North Am J Fish Manag 2003, 23: 22–34. 10.1577/1548-8675(2003)023<0022:AOAHRF>2.0.CO;2
Article
Google Scholar
Sebastian D, Scholten G, Addison D, Labelle M, Green D (Stock Management Unit Report No 1). In Results of the 1991–1993 Hydroacoustic Surveys at Mica and Revelstoke Reservoirs. Victoria, BC, Canada: British Columbia Ministry of Environment; 1995.
Google Scholar
Bray K Study Report CLBMON-3. In Columbia River Project Water Use Plan: Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring: Progress Report Year 3 (2010). Burnaby, BC, Canada: BC Hydro, Environment; 2011. (accessed 15 July 2014) http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/wup/southern_interior/2012q1/clbmon-3_yr3_2012–01–01.pdf
Google Scholar
Robertson CB: Forebay thermal dynamics at hydropower facilities on the Columbia River system. University of Alberta, Department of Civil and Environmental Engineering; 2012. MSc thesis
Google Scholar
Wagner GF, Cooke SJ, Brown RS, Deters KA: Surgical implantation techniques for electronic tags in fish. Rev Fish Biol Fish 2011, 21: 71–81. 10.1007/s11160-010-9191-5
Article
Google Scholar
Niezgoda G, Benfield M, Sisak M, Anson P: Tracking acoustic transmitters by code division multiple access (CDMA)-based telemetry. Hydrobiologia 2002, 483: 275–286. 10.1023/A:1021368720967
Article
Google Scholar
Cooke SJ, Niezgoda GH, Hanson KC, Suski CD, Phelan FJS, Tinline R, Philipp DP: Use of CDMA acoustic telemetry to document 3-D positions of fish: relevance to the design and monitoring of aquatic protected areas. Mar Technol Soc J 2005, 39: 31–41. 10.4031/002533205787521659
Article
Google Scholar
Kessel ST, Cooke SJ, Heupel MR, Hussey NE, Simpfendorfer CA, Vagle S, Fisk AT: A review of detection range testing in aquatic passive acoustic telemetry studies. Rev Fish Biol Fish 2014, 24: 199–218. 10.1007/s11160-013-9328-4
Article
Google Scholar
Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulous J: State-space models of individual animal movement. Trends Ecol Evol 2008, 23: 87–94. 10.1016/j.tree.2007.10.009
Article
PubMed
Google Scholar
Jonsen ID, Basson M, Bestley S, Bravington MV, Patterson TA, Pedersen MW, Thomson R, Thygesen UH, Wotherspoon SJ: State-space models for bio-loggers: a methodological road map. Deep Sea Res Part II 2013, 88–89: 34–46.
Article
Google Scholar
Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM: Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 2004, 85: 2436–2445. 10.1890/03-0269
Article
Google Scholar
Jonsen ID, Myers RA, James MC: Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol 2006, 75: 1046–1057. 10.1111/j.1365-2656.2006.01129.x
Article
PubMed
Google Scholar
Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison A-L, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR, Shilinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP: Tracking apex marine predator movements in a dynamic ocean. Nature 2011, 475: 86–90. 10.1038/nature10082
Article
CAS
PubMed
Google Scholar
Baktoft H, Aarestrup K, Berg S, Boel M, Jacobsen L, Jepsen N, Koed A, Svendsen JC, Skov C: Seasonal and diel effects on the activity of northern pike studied by high-resolution positional telemetry. Ecol Freshw Fish 2012, 21: 386–394. 10.1111/j.1600-0633.2012.00558.x
Article
Google Scholar
Bailey H, Shillinger G, Palacios D, Bograd S, Spotila J, Paladino F, Block B: Identifying and comparing phases of movement by leatherback turtles using state-space models. J Exp Mar Bio Ecol 2008, 356: 128–135. 10.1016/j.jembe.2007.12.020
Article
Google Scholar
Worton BJ: Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70: 164–168. 10.2307/1938423
Article
Google Scholar
Calenge C: The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 2006, 197: 516–519. 10.1016/j.ecolmodel.2006.03.017
Article
Google Scholar
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM: Mixed Effects Models and Extensions in Ecology with R. New York: Springer; 2009.
Book
Google Scholar
Warton DI, Hui FKC: The arcsine is asinine: the analysis of proportions in ecology. Ecology 2011, 92: 3–10. 10.1890/10-0340.1
Article
PubMed
Google Scholar
Zuur AF, Ieno EN, Elphick CS: A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 2010, 1: 3–14. 10.1111/j.2041-210X.2009.00001.x
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D: R Development Core Team: nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–104. (accessed 15 July 2014) [http://cran.r-project.org/web/packages/nlme/index.html]
Burnham KP, Anderson DR: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition. New York: Springer; 2002.
Google Scholar
Nakagawa S, Schielzeth H: A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 2013, 4: 133–142. 10.1111/j.2041-210x.2012.00261.x
Article
Google Scholar
R Development Core Team: R: A Language and Environment for Statistical Computing. (accessed 15 July 2014) http://www.r-project.org/
Wood S: Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chapman & Hall/CRC; 2006.
Google Scholar
Mazerolle MJ: AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 1.33 (accessed 15 July 2014) [http://CRAN.R-project.org/package=AICcmodavg]