Randall D, Burggren W, French K. Eckert animal physiology: mechanisms and adaptations. Eckert animal physiology: mechanisms and adaptations, vol. 4. 1997.
Hoffmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol. 2013;27(4):934–49. doi:10.1111/j.1365-2435.2012.02036.x.
Article
Google Scholar
Duman JG. An early classic study of freeze avoidance in marine fish. J Exp Biol. 2014;217(6):820–3. doi:10.1242/jeb.092239.
Article
PubMed
Google Scholar
Clarke A, Portner H-O. Temperature, metabolic power and the evolution of endothermy. Biol Rev. 2010;85(4):703–27. doi:10.1111/j.1469-185X.2010.00122.x.
PubMed
Google Scholar
Clarke A, Rothery P. Scaling of body temperature in mammals and birds. Funct Ecol. 2008;22(1):58–67. doi:10.1111/j.1365-2435.2007.01341.x.
Google Scholar
Barnes BM. Freeze avoidance in a mammal—body temperatures below 0 degrees C in an arctic hibernator. Science. 1989;244(4912):1593–5. doi:10.1126/science.2740905.
Article
CAS
PubMed
Google Scholar
Khaliq I, Hof C, Prinzinger R, Boehning-Gaese K, Pfenninger M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B Biol Sci. 2014;281(1789). doi:10.1098/rspb.2014.1097.
Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B Biol Sci. 2011;278(1713):1823–30. doi:10.1098/rspb.2010.1295.
Article
Google Scholar
Yahav S. Regulation of body temperature: strategies and mechanisms, chapter 37. In: Scanes CG, editor. Sturkie’s avian physiology. 6th ed. San Diego: Academic Press; 2015. p. 869–905.
Google Scholar
Taylor NAS, Tipton MJ, Kenny GP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol. 2014;46:72–101. doi:10.1016/j.jtherbio.2014.10.006.
Article
PubMed
Google Scholar
Misson BH. Note on measurement of body-temperature in Gallus domesticus. J Therm Biol. 1978;3(3):175–6. doi:10.1016/0306-4565(78)90015-3.
Article
Google Scholar
Green AR, Gates SG, Lawrence LM. Measurement of horse core body temperature. J Therm Biol. 2005;30(5):370–7. doi:10.1016/j.jtherbio.2005.03.003.
Article
Google Scholar
Ozeki LM, Fahlman A, Stenhouse G, Arnemo JM, Caulkett N. Evaluation of the accuracy of different methods of monitoring body temperature in anesthetized brown bears (Ursus arctos). J Zoo Wildl Med. 2014;45(4):819–24. doi:10.1638/2014-0039.1.
Article
PubMed
Google Scholar
Torrao NA, Hetem RS, Meyer LCR, Fick LG. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats. Vet Record. 2011;168(12):328–45. doi:10.1136/vr.c6200.
Article
CAS
Google Scholar
Special issue on. The contribution of radiotelemetry to the advancement of thermoregulatory research. J Therm Biol. 2012;37(4):249. doi:10.1016/j.jtherbio.2012.03.001.
Article
Google Scholar
McCafferty DJ. Applications of thermal imaging in avian science. Ibis. 2013;155(1):4–15. doi:10.1111/ibi.12010.
Article
Google Scholar
Lovegrove BG. Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(4):451–8. doi:10.1007/s00360-008-0329-x.
Article
Google Scholar
Wacker CB, Daniella Rojas A, Geiser F. The use of small subcutaneous transponders for quantifying thermal biology and torpor in small mammals. J Therm Biol. 2012;37(4):250–4. doi:10.1016/j.jtherbio.2011.11.007.
Article
Google Scholar
Langer F, Fietz J. Ways to measure body temperature in the field. J Therm Biol. 2014;42:46–51. doi:10.1016/j.jtherbio.2014.03.002.
Article
PubMed
Google Scholar
Nord A, Nilsson JF, Sandell MI, Nilsson J-Å. Patterns and dynamics of rest-phase hypothermia in wild and captive blue tits during winter. J Comp Physiol B. 2009;179(6):737–45. doi:10.1007/s00360-009-0357-1.
Article
PubMed
Google Scholar
Nord A, Nilsson JF, Nilsson J-Å. Nocturnal body temperature in wintering blue tits is affected by roost-site temperature and body reserves. Oecologia. 2011;167(1):21–5.
Article
PubMed
Google Scholar
vdB Morkel P, Miller M, Jago M, Radcliffe RW, du Preez P, Olea-Popelka F, et al. Serial temperature monitoring and comparison of rectal and muscle temperatures in immobilized free-ranging black rhinoceros (Diceros bicornis). J Zoo Wildl Med. 2012;43(1):120–4.
Article
PubMed
Google Scholar
Haftorn S. Hypothermia of Tits in the Arctic Winter. Ornis Scand. 1972;3(2):153–66.
Article
Google Scholar
Moller AP. Body temperature and fever in a free-living bird. Comp Biochem Physiol B Biochem Mol Biol. 2010;156(1):68–74.
Article
PubMed
CAS
Google Scholar
Pereyra ME, Morton ML. Nestling growth and thermoregulatory development in subalpine Dusky Flycatchers. Auk. 2001;118(1):116–36.
Article
Google Scholar
Nord A, Sköld-Chiriac S, Hasselquist D, Nilsson J-Å. A tradeoff between perceived predation risk and energy conservation revealed by an immune challenge experiment. Oikos. 2014;123(9):1091–100. doi:10.1111/oik.01221.
Google Scholar
Piccione G, Caola G, Refinetti R. Maturation of the daily body temperature rhythm in sheep and horse. J Therm Biol. 2002;27(5):333–6. doi:10.1016/s0306-4565(01)00076-6.
Article
Google Scholar
Bouwknecht JA, Olivier B, Paylor RE. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev. 2007;31(1):41–59. doi:10.1016/j.neubiorev.2006.02.002.
Article
CAS
Google Scholar
Busnardo C, Tavares RF, Resstel LBM, Elias LLK, Correa FMA. Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci Basic Clin. 2010;158(1–2):51–7. doi:10.1016/j.autneu.2010.06.003.
Article
CAS
Google Scholar
Blessing WW. Lower Brainstem pathways regulating sympathetically mediated changes in cutaneous blood flow. Cell Mol Neurobiol. 2003;23(4–5):527–38. doi:10.1023/a:1025020029037.
Article
CAS
PubMed
Google Scholar
Adams NJ, Pinshow B, Gannes LZ, Biebach H. Body temperatures in free-flying pigeons. J Comp Physiol B Biochem Syst Environ Physiol. 1999;169(3):195–9. doi:10.1007/s003600050211.
Article
Google Scholar
Gray DA, Maloney SK, Kamerman PR. Restraint increases afebrile body temperature but attenuates fever in Pekin ducks (Anas platyrhynchos). Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1666–71.
Article
CAS
PubMed
Google Scholar
Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, et al. Temperature during free diving of weddell seals. Am J Physiol. 1987;253(2):R344–51.
CAS
PubMed
Google Scholar
Ponganis PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G. Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comp Biochem Physiol A Mol Integr Physiol. 2003;135(3):477–87. doi:10.1016/s1095-6433(03)00133-8.
Article
CAS
PubMed
Google Scholar
Meir JU, Ponganis PJ. Blood temperature profiles of diving elephant seals. Physiol Biochem Zool. 2010;83(3):531–40. doi:10.1086/651070.
Article
PubMed
Google Scholar
Benedict FG. The physiology of the elephant. Washington: Carnegie Institution; 1936.
Google Scholar
Jensen SA, Mundry R, Nunn CL, Boesch C, Leendertz FH. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline. J Wildl Dis. 2009;45(2):542–6.
Article
PubMed
Google Scholar
Acquarone M, Born EW, Griffiths D, Knutsen LØ, Wiig Ø, Gjertz I. Evaluation of etorphine reversed by diprenorphine for the immobilisation of free-ranging Atlantic walrus (Odobenus rosmarus rosmarus L.), vol. 9. NAMMCO Scientific Publications; 2015. doi:10.7557/3.2944.
Lubbe A, Hetem RS, McFarland R, Barrett L, Henzi PS, Mitchell D, et al. Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus. J Comp Physiol B Biochem Syst Environ Physiol. 2014;184(6):799–809. doi:10.1007/s00360-014-0835-y.
Article
Google Scholar
Friebe A, Evans AL, Arnemo JM, Blanc S, Brunberg S, Fleissner G, et al. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS One. 2014;9(7). doi:10.1371/journal.pone.0101410.
Green JA, Tanton JL, Woakes AJ, Boyd IL, Butler PJ. Effects of long-term implanted data loggers on macaroni penguins Eudyptes chrysolophus. J Avian Biol. 2004;35(4):370–6. doi:10.1111/j.0908-8857.2004.03281.x.
Article
Google Scholar
Eichhorn G, Groscolas R, Le Glaunec G, Parisel C, Arnold L, Medina P, et al. Heterothermy in growing king penguins. Nat Commun. 2011;2. doi:10.1038/ncomms1436.
Bevan RM, Boyd IL, Butler PJ, Reid K, Woakes AJ, Croxall JP. Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. J Exp Biol. 1997;200(4):661–75.
PubMed
Google Scholar
Butler PJ, Bevan RM, Woakes AJ, Croxall JP, Boyd IL. The use of data loggers to determine the energetics and physiology of aquatic birds and mammals. Br J Med Biol Res. 1995;28:1307–17.
CAS
Google Scholar
Tøien O, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM. Hibernation in black bears: independence of metabolic suppression from body temperature. Science. 2011;331(6019):906–9. doi:10.1126/science.1199435.
Article
PubMed
CAS
Google Scholar
Long RA, Hut RA, Barnes BM. Simultaneous collection of body temperature and activity data in burrowing mammals: a new technique. J Wildl Manag. 2007;71(4):1375–9. doi:10.2193/2006-399.
Article
Google Scholar
Hilmer S, Algar D, Neck D, Schleucher E. Remote sensing of physiological data: impact of long term captivity on body temperature variation of the feral cat (Felis catus) in Australia, recorded via Thermochron iButtons. J Therm Biol. 2010;35(5):205–10. doi:10.1016/j.jtherbio.2010.05.002.
Article
Google Scholar
Mustonen A-M, Asikainen J, Kauhala K, Paakkonen T, Nieminen P. Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol Int. 2007;24(6):1095–107. doi:10.1080/07420520701797999.
Article
PubMed
Google Scholar
Dausmann KH. Measuring body temperature in the field—evaluation of external vs. implanted transmitters in a small mammal. J Therm Biol. 2005;30(3):195–202. doi:10.1016/j.jtherbio.2004.11.003.
Article
Google Scholar
Cooper CE, Withers PC. Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). J Therm Biol. 2004;29(6):277–84. doi:10.1016/j.jtherbio.2004.05.003.
Article
Google Scholar
Schmidt A, Alard F, Handrich Y. Changes in body temperatures in king penguins at sea: the result of fine adjustments in peripheral heat loss? Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R608–18. doi:10.1152/ajpregu.00826.2005.
Article
CAS
PubMed
Google Scholar
Niizuma Y, Gabrielsen GW, Sato K, Watanuki Y, Naito Y. Brunnich’s guillemots (Uria lomvia) maintain high temperature in the body core during dives. Comp Biochem Physiol A Mol Integr Physiol. 2007;147(2):438–44. doi:10.1016/j.cbpa.2007.01.014.
Article
PubMed
CAS
Google Scholar
Gilbert C, Le Maho Y, Perret M, Ancel A. Body temperature changes induced by huddling in breeding male emperor penguins. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R176–85. doi:10.1152/ajpregu.00912.2005.
Article
CAS
PubMed
Google Scholar
Nicol S, Andersen NA. Body temperature as an indicator of egg-laying in the echidna, Tachyglossus aculeatus. J Therm Biol. 2006;31(6):483–90. doi:10.1016/j.jtherbio.2006.05.001.
Article
Google Scholar
Warnecke L, Withers PC, Schleucher E, Maloney SK. Body temperature variation of free-ranging and captive southern brown bandicoots Isoodon obesulus (Marsupialia: Peramelidae). J Therm Biol. 2007;32(2):72–7. doi:10.1016/j.jtherbio.2006.10.003.
Article
Google Scholar
Signer C, Ruf T, Schober F, Fluch G, Paumann T, Arnold W. A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free-ranging ruminants. Methods Ecol Evol. 2010;1(1):75–85. doi:10.1111/j.2041-210X.2009.00010.x.
Article
PubMed Central
PubMed
Google Scholar
Horning M, Haulena M, Tuomi PA, Mellish J-AE. Intraperitoneal implantation of life-long telemetry transmitters in otariids. BMC Vet Res. 2008;4. doi:10.1186/1746-6148-4-51.
Adelman JS, Córdoba-Córdoba S, Spoelstra K, Wikelski M, Hau M. Radiotelemetry reveals variation in fever and sickness behaviours with latitude in a free-living passerine. Funct Ecol. 2010;24(4):813–23. doi:10.1111/j.1365-2435.2010.01702.x.
Article
Google Scholar
Kruuk H, Taylor PT, Mom GAT. Body temperature and foraging behaviour of the Eurasian otter (Lutra lutra), in relation to water temperature. J Zool. 1997;241:689–97.
Article
Google Scholar
Brain C, Mitchell D. Body temperature changes in free-ranging baboons (Papio hamadryas ursinus) in the Namib Desert, Namibia. Int J Primatol. 1999;20(4):585–98. doi:10.1023/a:1020394824547.
Article
Google Scholar
Criscuolo F, Gauthier-Clerc M, Le Maho Y, Gabrielsen GW. Brood patch temperature during provocation of incubating common eiders in Ny-Alesund, Svalbard. Polar Res. 2001;20(1):115–8. doi:10.1111/j.1751-8369.2001.tb00044.x.
Article
Google Scholar
Schmutz JA. Survival of adult red-throated loons (Gavia stellate) may be linked to marine conditions. Waterbirds. 2014;37:118–24.
Article
Google Scholar
Thouzeau C, Peters G, Le Bohec C, Le Maho Y. Adjustments of gastric pH, motility and temperature during long-term preservation of stomach contents in free-ranging incubating king penguins. J Exp Biol. 2004;207(15):2715–24. doi:10.1242/jeb.01074.
Article
CAS
PubMed
Google Scholar
Weissenboeck NM, Schober F, Fluch G, Weiss C, Paumann T, Schwarz C, et al. Reusable biotelemetric capsules: a convenient and reliable method for measuring core body temperature in large mammals during gut passage. J Therm Biol. 2010;35(3):147–53. doi:10.1016/j.jtherbio.2010.02.001.
Article
Google Scholar
Wilson RP, Putz K, Gremillet D, Culik BM, Kierspel M, Regel J, et al. Reliability of stomach temperature-changes in determining feeding characteristics of seabirds. J Exp Biol. 1995;198(5):1115–35.
PubMed
Google Scholar
Kato A, Naito Y, Watanuki Y, Shaughnessy PD. Diving pattern and stomach temperatures of foraging king cormorants at subantarctic Macquarie Island. Condor. 1996;98(4):844–8. doi:10.2307/1369867.
Article
Google Scholar
Kuhn CE, Costa DP. Identifying and quantifying prey consumption using stomach temperature change in pinnipeds. J Exp Biol. 2006;209(22):4524–32. doi:10.1242/jeb.02530.
Article
PubMed
Google Scholar
Hedd A, Gales R, Renouf D. Can stomach temperature telemetry be used to quantify prey consumption by seals? A re-examination. Polar Biol. 1996;16(4):261–70. doi:10.1007/s003000050053.
Article
Google Scholar
Wilson RP, Kierspel MAM. A method for retrieval of anchored stomach probes from seabirds. Mar Ecol Prog Ser. 1998;163:295–7. doi:10.3354/meps163295.
Article
Google Scholar
Heide-Jorgensen M, Nielsen N, Hansen R, Blackwell S. Stomach temperature of narwhals (Monodon monoceros) during feeding events. Anim Biotelem. 2014;2(1):9.
Article
Google Scholar
Handrich Y, Bevan RM, Charrassin JB, Butler PJ, Putz K, Woakes AJ, et al. Hypothermia in foraging king penguins. Nature. 1997;388(6637):64–7. doi:10.1038/40392.
Article
CAS
Google Scholar
Enstipp MR, Gremillet D, Jones DR. Heat increment of feeding in double-crested cormorants (Phalacrocorax auritus) and its potential for thermal substitution. J Exp Biol. 2008;211(1):49–57. doi:10.1242/jeb.012229.
Article
PubMed
Google Scholar
Schreer JF, Lapierre JL, Hammill MO. Stomach temperature telemetry reveals that harbor seal (Phoca vitulina) pups primarily nurse in the water. Aquat Mamm. 2010;36(3):270–7. doi:10.1578/am.36.3.2010.270.
Article
Google Scholar
Sauve CC, Van de Walle J, Hammill MO, Arnould JPY, Beauplet G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS one. 2014;9(2). doi:10.1371/journal.pone.0090329.
Reuter RR, Carroll JA, Hulbert LE, Dailey JW, Galyean ML. Technical note: development of a self-contained, indwelling rectal temperature probe for cattle research. J Anim Sci. 2010;88(10):3291–5. doi:10.2527/jas.2010-3093.
Article
CAS
PubMed
Google Scholar
Burdick NC, Carroll JA, Dailey JW, Randel RD, Falkenberg SM, Schmidt TB. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J Therm Biol. 2012;37(4):339–43. doi:10.1016/j.jtherbio.2011.10.007.
Article
Google Scholar
Munn AJ, Barboza PS, Dehn J. Sensible heat loss from muskoxen (Ovibos moschatus) feeding in winter: small calves are not at a thermal disadvantage compared with adult cows. Physiol Biochem Zool. 2009;82(5):455–67. doi:10.1086/605400.
Article
PubMed
Google Scholar
Audet D, Thomas DW. Evaluation of the accuracy of body temperature measurement using external radio transmitters. Can J Zool. 1996;74(9):1778–81. doi:10.1139/z96-196.
Article
Google Scholar
Nord A, Chiriac S, Hasselquist D, Nilsson J-Å. Endotoxin injection attenuates rest-phase hypothermia in wintering great tits through the onset of fever. Funct Ecol. 2013;27(1):236–44. doi:10.1111/1365-2435.12003.
Article
Google Scholar
Scholander PF, Hock R, Walters V, Johnson F, Irving L. Heat regulation in some arctic and tropical mammals and birds. Biol Bull. 1950;99(2):237–58.
Article
CAS
PubMed
Google Scholar
Larcombe A. Measurement of southern brown bandicoot (Isoodon obesulus) body temperature using internal and external telemeters. J R Soc West Aust. 2007;Part 90(3):161–3.
Google Scholar
Bonter DN, Bridge ES. Applications of radio frequency identification (RFID) in ornithological research: a review. J Field Ornithol. 2011;82(1):1–10. doi:10.1111/j.1557-9263.2010.00302.x.
Article
Google Scholar
Barclay RMR, Calcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, et al. Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal. 1996;77:1102–6.
Article
Google Scholar
Bakken GS, Reynolds PS, Kenow KP, Korschgen CE, Boysen AF. Thermoregulatory effects of radiotelemetry transmitters on mallard ducklings. J Wildl Manag. 1996;60(3):669–78.
Article
Google Scholar
Vuarin P, Dammhahn M, Henry P-Y. Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol. 2013;27(3):793–9. doi:10.1111/1365-2435.12069.
Article
Google Scholar
Boyd IL. Skin temperatures during free-ranging swimming and diving in antarctic fur seals. J Exp Biol. 2000;203:1907–14.
CAS
PubMed
Google Scholar
Willis CKR, Brigham RM. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B Biochem Syst Environ Physiol. 2003;173(5):379–89.
Article
CAS
Google Scholar
Murray DL, Fuller MR. A critical review of the effects of marking on the biology of vertebrates. Research techniques in animal ecology: controversies and consequences; 2000.
Kenward RE. A manual for wildlife radio tagging. London: Academic Press; 2001.
Google Scholar
Wilson RP, McMahon CR. Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ. 2006;4(3):147–54. doi:10.1890/1540-9295(2006)004[0147:mdowaw]2.0.co;2.
McCafferty DJ, Moncrieff JB, Taylor IR, Boddie GF. The use of IR thermography to measure the radiative temperature and heat loss of a barn owl (Tyto alba). J Therm Biol. 1998;23(5):311–8.
Article
Google Scholar
Weissenboeck NM, Weiss CM, Schwammer HM, Kratochvil H. Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. J Therm Biol. 2010;35(4):182–8. doi:10.1016/j.jtherbio.2010.03.002.
Article
Google Scholar
Amiel JJ, Chua B, Wassersug RJ, Jones DR. Temperature-dependent regulation of blood distribution in snakes. J Exp Biol. 2011;214(9):1458–62.
Article
PubMed
Google Scholar
Bakken GS, Van Sant MJ, Lynott AJ, Banta MR. Predicting small endotherm body temperatures from scalp temperatures. J Therm Biol. 2005;30(3):221–8.
Article
Google Scholar
Giloh M, Shinder D, Yahav S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult Sci. 2012;91(1):175–88. doi:10.3382/ps.2011-01497.
Article
CAS
PubMed
Google Scholar
Teunissen LPJ, Daanen HAM. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature. J Med Eng Technol. 2011;35(3–4):134–8. doi:10.3109/03091902.2011.554595.
Article
CAS
PubMed
Google Scholar
Stewart M, Webster J, Verkerk G, Schaefer A, Colyn J, Stafford K. Non-invasive measurement of stress in dairy cows using infrared thermography. Physiol Behav. 2007;92(3):520–5. doi:10.1016/j.physbeh.2007.04.034.
Article
CAS
PubMed
Google Scholar
Edgar JL, Lowe JC, Paul ES, Nicol CJ. Avian maternal response to chick distress. Proc R Soc B Biol Sci. 2011;278(1721):3129–34. doi:10.1098/rspb.2010.2701.
Article
CAS
Google Scholar
McCafferty DJ, Moss S, Bennett K, Pomeroy PP. Factors influencing the radiative surface temperature of grey seal (Halichoerus grypus) pups during early and late lactation. J Comp Physiol B Biochem Syst Environ Physiol. 2005;175((6):423–31. doi:10.1007/s00360-005-0004-4.
Article
CAS
Google Scholar
Rowley JJL, Alford RA. Non-contact infrared thermometers can accurately measure amphibian body temperatures. Herpetol Rev. 2007;38(3):308–11.
Google Scholar
Carretero MA. Measuring body temperatures in small lacertids: infrared vs. contact thermometers. Basic Appl Herpetol. 2012;26:99–105.
Google Scholar
Warnecke L. Quantifying torpor in small mammals non-invasively using infrared thermocouples. J Therm Biol. 2012;37(5):380–3. doi:10.1016/j.jtherbio.2012.02.002.
Article
Google Scholar
Davidson AJ, Aujard F, London B, Menaker M, Block GD. Thermochron iButtons: an inexpensive method for long-term recording of core body temperature in untethered animals. J Biol Rhythms. 2003;18(5):430–2. doi:10.1177/0748730403256066.
Article
PubMed
Google Scholar
Roznik EA, Alford RA. Does waterproofing Thermochron iButton dataloggers influence temperature readings? J Therm Biol. 2012;37(4):260–4. doi:10.1016/j.jtherbio.2012.02.004.
Article
Google Scholar
Williams JB, Tieleman BI, Shobrak M. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals. Ardea. 2009;97(1):120–4.
Article
Google Scholar
Scholander PF, Hock R, Walters V, Irving L. Adaptation to cold in Arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull. 1950;99(2):259–71.
Article
CAS
PubMed
Google Scholar
Brigham RM. Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool. 1992;65(2):457–72. doi:10.2307/30158263.
Article
Google Scholar
Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM. Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol. 2014;58(1):7–15. doi:10.1007/s00484-013-0687-2.
Article
PubMed
Google Scholar
Taylor EN, DeNardo DF, Malawy MA. A comparison between point- and semi-continuous sampling for assessing body temperature in a free-ranging ectotherm. J Therm Biol. 2004;29(2):91–6. doi:10.1016/j.jtherbio.2003.11.003.
Article
Google Scholar
Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S. Respiration rate monitoring methods: a review. Pediatr Pulmonol. 2011;46(6):523–9. doi:10.1002/ppul.21416.
Article
CAS
PubMed
Google Scholar
Betke M, Hirsh DE, Makris NC, McCracken GF, Procopio M, Hristov NI, et al. Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal. 2008;89(1):18–24. doi:10.1644/07-mamm-a-011.1.
Article
Google Scholar
Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, et al. Tracking animals in freshwater with electronic tags: past, present and future. Anim Biotelem. 2013;1(5).
Nikita KS. Handbook of medical telemetry. Hoboken: Wiley; 2014. doi:10.1002/9781118893715.