Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ. Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol. 2004;19:334–43. doi:10.1016/j.tree.2004.04.003.
Article
PubMed
Google Scholar
Preston TJ, Chiaradia A, Caarels SA, Reina RD. Fine scale biologging of an inshore marine animal. J Exp Mar Bio Ecol. 2010;390:196–202.
Article
Google Scholar
Bograd SJ, Block BA, Costa DP, Godley BJ. Biologging technologies: new tools for conservation. Introduction. Endang Species Res. 2010;10:1–7.
Article
Google Scholar
Kawabe R, Nashimoto K, Hiraishi T, Naito Y, Sato K. A new device for monitoring the activity of freely swimming flatfish, Japanese flounder Paralichthys olivaceus. Fish Sci. 2003;69:3–10. doi:10.1016/j.icesjms.2004.07.014.
Article
CAS
Google Scholar
Kawabe R, Kawano T, Nakano N, Yamashita N, Hiraishi T, Naito Y. Simultaneous measurement of swimming speed and tail beat activity of free swimming rainbow trout Oncorhynchus
mykiss using an acceleration data-logger. Fish Sci. 2003;69:959–65. doi:10.1046/j.1444-2906.2003.00713.x.
Article
CAS
Google Scholar
Tsuda Y, Kawabe R, Tanaka H, Mitsunaga Y, Hiraishi T, Yamamoto K, Nashimoto K. Monitoring the spawning behavior of chum salmon with an acceleration data logger. Ecol Freshw Fish. 2006;15:264–74. doi:10.1111/j.1600-0633.2006.00147.x.
Article
Google Scholar
Gleiss AC, Norman B, Liebsch N, Francis C, Wilson RP. A new prospect for tagging large free-swimming sharks with motion-sensitive data-loggers. Fish Res. 2009;98:16–22. doi:10.1016/j.fishres.2008.12.012.
Article
Google Scholar
Broell F, Noda T, Wright S, Domenici P, Steffensen JF, Auclair J-P, Taggart CT. Accelerometer tags: detecting and identifying activities in fish and the effect of sampling frequency. J Exp Biol. 2013;216:1255–64. doi:10.1242/jeb.077396.
Article
PubMed
Google Scholar
Noda T, Kawabata Y, Arai N, Mitamura H, Watanabe S. Animal-mounted gyroscope/accelerometer/magnetometer: in situ measurement of the movement performance of fast-start behaviour in fish. J Exp Mar Biol Ecol. 2014;451:55–68. doi:10.1016/j.jembe.2013.10.031.
Article
Google Scholar
Wright S, Metcalfe JD, Hetherington S, Wilson R. Estimating activity-specific energy expenditure in teleost fish, using accelerometer loggers. Mar Ecol Prog Ser. 2014;496:19–32. doi:10.3354/meps10528.
Article
Google Scholar
Broell F, Taggart CT. Scaling in free-swimming fish and implications for measuring size-at-time in the wild. PLoS One. 2015;10(12):e0144875.
Article
PubMed
PubMed Central
Google Scholar
Whitney N, Pratt HL, Pratt TC, Carrier JC. Identifying shark mating behaviour using three-dimensional acceleration loggers. Endang Species Res. 2010;10:71–82. doi:10.3354/esr00247.
Article
Google Scholar
Carroll G, Slip D, Jonsen I, Harcourt R. Supervised accelerometry analysis can identify prey capture by penguins at sea. J Exp Biol. 2014;217:4295–302. doi:10.1242/jeb.113076.
Article
PubMed
Google Scholar
Musyl MK, Domeier ML, Nasby-Lucas N, Brill RW, McNaughton LM, Swimmer JY, Lutcavage MS, Wilson SG, Galuardi B, Liddle JB. Performance of pop-up satellite archival tags. Mar Ecol Prog Ser. 2001;433:1–28. doi:10.3354/meps09202.
Article
Google Scholar
Fedak M, Lovell P, McConnell B, Hunter C. Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages. Integr Comp Biol. 2002;42:3–10. doi:10.1093/icb/42.1.3.
Article
PubMed
Google Scholar
Block BA, Dewar H, Farwell C, Prince ED. A new satellite technology for tracking the movements of Atlantic bluefin tuna. Proc Natl Acad Sci USA. 1998;95:9384–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campana SE, Dorey A, Fowler M, Joyce W, Wang Z, Wright D. Migration pathways, behavioural thermoregulation and overwintering grounds of blue sharks in the Northwest Atlantic. PLoS One. 2011;6(2):e16854. doi:10.1371/journal.pone.0016854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armsworthy SL, Trzcinski MK, Campana SE. Movements, environmental associations, and presumed spawning locations of Atlantic halibut (Hippoglossus
hippoglossus) in the northwest Atlantic determined using archival satellite pop-up tags. Mar Biol. 2014;161:645–56. doi:10.1007/s00227-013-2367-5.
Article
CAS
Google Scholar
Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SH, Seitz A, Walli Fudge D. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science. 2001;293:1310–4. doi:10.1126/science.1061197.
Article
CAS
PubMed
Google Scholar
Chaprales W, Lutcavage M, Brill R, Chase B, Skomal G. Harpoon method for attaching ultrasonic and ‘popup’ satellite tags to giant bluefin tuna and large pelagic fishes. Mar Technol Soc J. 1998;32:104–5.
Google Scholar
Lutcavage M, Rhodin AGJ, Sandove SS. Conroy CR Direct carapacial attachment of satellite tags using orthopedic bioabsorbable mini-anchor screws on leatherback turtles in Culebra. Puerto Rico Mar Turtle Newsl. 2001;95:9–12.
Google Scholar
Swimmer Y, Brill R, Musyl M. Use of pop-up satellite archival tags to quantify mortality in marine turtles incidentally captured in longline fishing gear. Mar Turtle Newsl. 2002;97:3–7.
Google Scholar
Prince ED, Ortiz M, Venizelos A, Rosenthal DS. In-water conventional tagging techniques developed by the cooperative tagging center for large, highly migratory species. In: Lucy JA, Studholme AL, editors. Catch and release in marine recreational fisheries. American Fisheries Society Symposia: Bethesda; 2002. p. 155–71.
Google Scholar
Methling C, Tudorache C, Skov PV, Steffensen JF. Pop up satellite tags impair swimming performance and energetics of the European eel (Anguilla
anguilla). PLoS One. 2001;6:e20797. doi:10.1371/journal.pone.0020797.
Article
Google Scholar
Payne NL, Taylor MD, Watanabe YY, Semmens JM. From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol. 2014;217:317–22. doi:10.1242/jeb.093922.
Article
PubMed
Google Scholar
Chapple TK, Gleiss AC, Jewell OJD, Wikelski M, Block BA. Tracking sharks without teeth: a non-invasive rigid tag attachment for large predatory sharks. Anim Biotelem. 2015;3:14. doi:10.1186/s40317-015-0044-9.
Article
Google Scholar
Bridger CJ, Booth RK. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev Fish Sci. 2003;11:13–34. doi:10.1080/16226510390856510.
Article
Google Scholar
Hoolihan JP, Luo J, Abascal FJ, Campana SE, De Metrio G, Dewar H, Domeier ML, Howey LA, Lutcavage ME, Musyl MK, Neilson JD, Orbesen ES, Prince ED, Rooker JR. Evaluating post-release behaviour modification in large pelagic fish deployed with pop-up satellite archival tags. ICES J Mar Sci. 2011;68:880–9. doi:10.1093/icesjms/fsr024.
Article
Google Scholar
Wells RMG, McIntyre RH, Morgan AK, Davie PS. Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors. Comp Biochem Physiol. 1986;84:565–71.
Article
CAS
Google Scholar
Skomal GB, Chase BC. The physiological effects of angling on post-release survivorship in tunas, sharks, and marlin. In: Lucy JA, Studholme AL, editors. Catch and release in marine recreational fisheries, 5–8 December 1999, Virginia Beach. Bethesda: American Fisheries Society Symposium; 2002. p. 135–8.
Google Scholar
Wells RMG, Davie PS. Oxygen binding by the blood and hematological effects of capture stress in two big gamefish: Mako shark and striped marlin. Comp Biochem Physiol. 1985;81:643–6.
Article
CAS
Google Scholar
McLeave JD, Fried SM, Towt AK. Daily movements of shortnose sturgeon, Acipenser brevirostrum, in a Maine estuary. Copeia. 1977;1:149–57.
Article
Google Scholar
Skomal GB. Evaluating the physiological and physical consequences of capture on post-release survivorship in large pelagic fishes. Fish Manag Ecol. 2007;14:81–9.
Article
Google Scholar
Dadswell MJ. Biology and population characteristics of the shortnose sturgeon, Acipenser brevirostrum, LeSueur 1818 (Osteichthyes:Acipenseridae), in the Saint John River Estuary, New Brunswick, Canada. Can J Zool. 1818;19779(57):2186–210.
Google Scholar
Kynard B. Life history, latitudinal patterns, and status of the shortnose sturgeon, Acipenser brevirostrum. Environ Biol Fish. 1997;48:319–34.
Article
Google Scholar
Fernandes SJ, Zydlewski GB, Zydlewski JD, Wippelhauser GS, Kinnison MT. Seasonal distribution and movements of shortnose sturgeon and Atlantic sturgeon in the Penobscot river estuary, Maine. Trans Am Fish Soc. 2010;139:1436–49. doi:10.1577/T09-122.1.
Article
Google Scholar
Species at Risk Act, SC 2002, c 29.
COSEWIC. COSEWIC assessment and update status report on the shortnose sturgeon Acipenser brevirostrum in Canada. Ottawa: Committee on the Status of Endangered Wildlife in Canada; 2015.
Google Scholar
Danylchuk SE, Danylchuk AJ, Cooke SJ, Goldberg TL, Koppelman J, Phillip DP. Effects of recreational angling on the post-release behavior and predation of bonefish (Albula vulpes): the role of equilibrium status at the time of release. J Exp Mar Biol Ecol. 2007;436:127–33.
Article
Google Scholar
Raby GD, Donaldson MR, Hinch SG, Patterson DA, Lotto AG, Robichaud D, English KK, Willmore WG, Farrell AP, Davis MW, Cooke SJ. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J App Ecol. 2012;49:90–9. doi:10.1111/j.1365-2664.2011.02073.x.
Article
Google Scholar
Cook KV, Lennox RJ, Hinch SG, Cooke SJ. Fish out of water: How much air is too much? Fisheries. 2015;40:452–61.
Article
Google Scholar
Trites RW. An oceanographical and biological reconnaissance of Kennebecasis Bay and the Saint John River Estuary. J Fish Res Board Can. 1960;17:377–408.
Article
Google Scholar
Hughes Clark JE, Parrott R. Integration of dense, time-varying water column information with high-resolution swath bathymetric data. US hydrographic conference, Norfolk VA, 1 May 2001.
Taylor AD, Litvak MK. Quantifying a manual triangulation technique for aquatic ultrasonic telemetry. N AM J Fish Manag. 2015;35:865–70. doi:10.1080/02755947.2015.1059909.
Article
Google Scholar
Kedem B. Spectral analysis and discrimination by zero-crossings. Proc IEEE. 1986;74:1477–93. doi:10.1109/PROC.1986.13663.
Article
Google Scholar
Stein JY. Digital signal processing: a computer science perspective. New York: Wiley; 2000.
Book
Google Scholar
Long JH. Morphology, mechanics, and locomotion: the relation between the notochord and swimming motions in sturgeon. Environ Biol Fish. 1995;44:199–211.
Article
Google Scholar
Shepard ELC, Wilson RP, Halsey LG, Quintana F, Gómes Laich A, Gleiss AC, et al. Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol. 2008;4:235–41.
Article
Google Scholar
Nakamura I, Watanabe YY, Papastamatiou YP, Sato K, Meyer CG. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo
cuvier. Mar Ecol Prog Ser. 2011;424:237–46. doi:10.3354/meps08980.
Article
Google Scholar
Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S. Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One. 2009;4:e5379. doi:10.1371/journal.pone.0005379.
Article
PubMed
PubMed Central
Google Scholar
Watanabe YY, Lydersen C, Fisk AT, Kovacs KM. The slowest fish: Swim speed and tail-beat frequency of Greenland sharks. J Exp Mar Biol Ecol. 2012;426:5–11. doi:10.1016/j.jembe.2012.04.021.
Article
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
Google Scholar
MATLAB R2012a Natick, Massachusetts: The MathWorks Inc WaveMetrics Inc., USA.
IgorPRO 6.3, WaveMetrics Inc., Ethographer Package, USA.
Petersen CGJ. The yearly immigration of young plaice into the Limfjord from the German Sea. Rep Dan Biol Stn Cph. 1896;6:5–30.
Google Scholar
Deslauriers D, Kieffer JD. Swimming performance and behaviour of young-of-the-year shortnose sturgeon (Acipenser brevirostrum) under fixed and increased velocity tests. Can J Zool. 2012;90:345–51.
Article
Google Scholar
Geist DR, Brown RS, Cullinan V, Brink SR, Lepla K, Bates P, Chandler JA. Movement, Swimming speed, and oxygen consumption of juvenile white sturgeon in response to changing flow, water temperature, and light level in the Snake River, Idaho. Trans Am Fish Soc. 2005;134:803–16. doi:10.1577/T04-109.1.
Article
Google Scholar
Adams SR, Parsons GR, Hoover JJ, Kilgore KJ. Observations of swimming ability in shovelnose sturgeon (Scaphirhynchus
platorynchus). J Freshw Ecol. 1997;12:631–3.
Article
Google Scholar
Kieffer JDK, Arsenault LMA, Litvak MKL. Behaviour and performance of juvenile shortnose Sturgeon Acipenser brevirostrum at different water velocities. J Fish Biol. 2009;74:674–82. doi:10.1111/j.1095-8649.2008.02139.x.
Article
CAS
PubMed
Google Scholar
Broell F, Burnell C, Taggart CT. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag- and parasite-load. J Exp Biol. 2016;219:695–705. doi:10.1242/jeb.133033.
Article
PubMed
Google Scholar
Collins MR, Cooke DW, Smith TIJ, Post WC, Russ DC, Walling DC. Evaluation of four methods of transmitter attachment on shortnose sturgeon, Acipenser brevirostrum. J Appl Icthyol. 2002;18:491–4.
Article
Google Scholar
Kieffer JD, Wakefiled AM, Litvak MK. Juvenile sturgeon exhibit reduced physiological responses to exercise. J Exp Biol. 2001;204:4281–9.
CAS
PubMed
Google Scholar
Baker DW, Wood AM, Litvak MK, Kieffer JD. Haematology of juvenile Acipenser oxyrinchus and Acipenser brevirostrum at rest and following forced activity. J Fish Biol. 2005;66:208–21. doi:10.1111/j.1095-8649.2004.00595.
Article
Google Scholar
Cooke SJ, Donaldson MR, O’Connor CM, Raby GD, Arlinghaus R, Danylchuk AJ, Hanson KC, Hinch SG, Clark TD, Patterson DA, Suski CD. The physiological consequences of catch-and-release angling: perspectives on experimental design, interpretation, extrapolation, and relevance to stakeholders. Fish Manag Ecol. 2013;20:268–87.
Article
Google Scholar
Robinson KA, Hinch SG, Raby GD, Donaldson MR, Robichaud D, Patterson DA, Cooke SJ. Influence of postcapture ventilation assistance on migration success of adult Sockeye Salmon following capture and release. Trans Am Fish Soc. 2015;144(4):693–704. doi:10.1080/00028487.2015.1031282.
Article
Google Scholar
Jepsen N, Thorstad EB, Havn T, Lucas MC. The use of external electronic tags on fish: an evaluation of tag retention and tagging effects. Anim Biotel. 2015;3:49. doi:10.1186/s40317-015-0086-z.
Article
Google Scholar
Webb PW. Kinematics of lake sturgeon, Acipenser
fulvescens, at cruising speeds. Can J Zool. 1986;64:2137–41.
Article
Google Scholar
Peake S, Beamish FWH, McKinley RS, Scruton DA, Katopodis C. Relating swimming performance of lake sturgeon, Acipenser
fulvescens, to fishway design. Can J Fish Aquat Sci. 1997;54:1361–6.
Article
Google Scholar
Wilga CD, Lauder GV. Locomotion in sturgeon: function of the pectoral fin. J Exp Biol. 1999;202:2413–32.
PubMed
Google Scholar
Cheong TS, Kavvas EML, Andreson EEK. Evaluation of adult white sturgeon swimming capabilities and applications to fishway design. Environ Biol Fish. 2006;77:197–208. doi:10.1007/s10641-006-9071-y.
Article
Google Scholar
Watanabe YY, Wei Q, Yang D, Chen X, Du H, Yang J, Sato K, Naito Y, Miyazaki N. Swimming behaviour in relation to buoyancy in an open swimbladder fish, the Chinese sturgeon. J Zool. 2008;275:381–90. doi:10.1111/j.1469-7998.2008.00451.x.
Article
Google Scholar
Marras S, Noda T, Steffensen JF, Svendsen MBS, Krause J, Wilson ADM, Kurvers RHJM, Herbert-Read J, Boswell KM, Domenici P. Not So Fast: Swimming behavior of sailfish during predator–prey interactions using high-speed video and accelerometry. Integr Comp Biol. 2015;55:719–27. doi:10.1093/icb/icv017.
Article
PubMed
Google Scholar
Hunter E, Metcalfe JD, Holford BH, Arnold GP. Geolocation of free-ranging fish on the European continental shelf as determined from environmental variables II. Reconstruction of plaice ground-tracks. Mar Biol. 2004;144:787–98. doi:10.1007/s00227-003-1242-1.
Article
Google Scholar
Gröger JP, Rountree RA, Thygesen UH, Jones D, Martins D, Xu Q, Rothschild BJ. Geolocation of Atlantic cod (Gadus
morhua) movements in the Gulf of Maine using tidal information. Fish Oceanogr. 2007;16:317–35. doi:10.1111/j.1365-2419.2007.00433.x.
Article
Google Scholar
Ropert-Coudert R, Wilson RP. Subjectivity in bio-logging science: do logged data mislead? Mem Natl Inst Polar Res Spec Issue. 2004;58:23–33.
Google Scholar
Metcalfe CD, Dadswell MJ, Gillis GF, Thomas MLH. Physical, chemical, and biological parameters of the Saint John River Estuary, New Brunswick, Canada. Fisheries and Marine Service Canada technical report 1976;686.