Halsey LG, Shepard ELC, Quintana F, Gomez Laich A, Green JA, Wilson RP. The relationship between oxygen consumption and body acceleration in a range of species. Comp Biochem Physiol Part A Mol Integr Physiol. 2009;152(2):197–202. https://doi.org/10.1016/j.cbpa.2008.09.021.
Article
CAS
Google Scholar
Jones S, Dowling-Guyer S, Patronek GJ, Marder AR, Segurson D’Arpino S, McCobb E. Use of accelerometers to measure stress levels in shelter dogs. J Appl Anim Welf Sci. 2014;17(1):18–28. https://doi.org/10.1080/10888705.2014.856241.
Article
CAS
PubMed
Google Scholar
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348(6240):2478. https://doi.org/10.1126/science.aaa2478.
Article
Google Scholar
Wilson ADM, Wikelski M, Wilson RP, Cooke SJ. Utility of biological sensor tags in animal conservation. Conserv Biol. 2015;29(4):1065–75. https://doi.org/10.1111/cobi.12486.
Article
CAS
PubMed
Google Scholar
Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W. From sensor data to animal behaviour: an oystercatcher example. PLoS ONE. 2012;7(5):37997. https://doi.org/10.1371/journal.pone.0037997.
Article
Google Scholar
Wang Y, Nickel B, Rutishauser M, Bryce CM, Williams TM, Elkaim G, Wilmers CC. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov Ecol. 2015;3:2. https://doi.org/10.1186/s40462-015-0030-0.
Article
PubMed
PubMed Central
Google Scholar
McClune DW, Marks NJ, Delahay RJ, Montgomery WI, Scantlebury DM. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim Biotelem. 2015;3:7. https://doi.org/10.1186/s40317-015-0025-z.
Article
Google Scholar
Marshall GJ. CRITTERCAM: an animal-borne imaging and data logging system. Mar Technol Soc J. 1998;32(1):11–7.
Google Scholar
Hooker SK, Barychka T, Jessopp MJ, Staniland IJ. Images as proximity sensors: the incidence of conspecific foraging in Antarctic fur seals. Anim Biotelem. 2015;3:37. https://doi.org/10.1186/s40317-015-0083-2.
Article
Google Scholar
Gómez-Laich A, Yoda K, Zavalaga C, Quintana F. Selfies of imperial cormorants (Phalacrocorax atriceps): what is happening underwater? PLoS ONE. 2015;10(9):0136980. https://doi.org/10.1371/journal.pone.0136980.
Article
Google Scholar
Loarie SR, Tambling CJ, Asner GP. Lion hunting behaviour and vegetation structure in an African savanna. Anim Behav. 2013;85(5):899–906. https://doi.org/10.1016/j.anbehav.2013.01.018.
Article
Google Scholar
Davies AB, Tambling CJ, Kerley GIH, Asner GP. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE. 2016;11(2):1–20. https://doi.org/10.1371/journal.pone.0149098.
Article
Google Scholar
Kane SA, Zamani M. Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. J Exp Biol. 2014;217(2):225–34. https://doi.org/10.1242/jeb.092403.
Article
PubMed
PubMed Central
Google Scholar
Okuyama J, Nakajima K, Matsui K, Nakamura Y, Kondo K, Koizumi T, Arai N. Application of a computer vision technique to animal-borne video data: extraction of head movement to understand sea turtles’ visual assessment of surroundings. Anim Biotelem. 2015;3:35. https://doi.org/10.1186/s40317-015-0079-y.
Article
Google Scholar
Krabill WB, Wright CW, Swift RN, Frederick EB, Manizade SS, Yungel JK, Martin CF, Sonntag JG, Duffy M, Hulslander W, Brock JC. Airborne laser mapping of Assateague National Seashore beach. Photogramm Eng Remote Sens. 2000;66(1):65–71.
Google Scholar
Maurelli F, Droeschel D, Wisspeintner T, May S, Surmann H. A 3D laser scanner system for autonomous vehicle navigation. In: International conference on advanced robotics; 2009. pp. 1–6 .
Weiss U, Biber P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot Auton Syst. 2011;59(5):265–73. https://doi.org/10.1016/j.robot.2011.02.011.
Article
Google Scholar
Han J, Shao L, Xu D, Shotton J. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybern. 2013;43(5):1318–34. https://doi.org/10.1109/TCYB.2013.2265378.
Article
PubMed
Google Scholar
Carter J, Schmid K, Waters K, Betzhold L, Hadley B, Mataosky R, Halleran J. Lidar 101: an introduction to lidar technology, data, and applications. National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center: Charleston; 2012.
Google Scholar
Blais F. Review of 20 years of range sensor development. J Electron Imaging. 2004;13(1):231–40. https://doi.org/10.1117/1.1631921.
Article
Google Scholar
Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics. 2011;3(2):128–60. https://doi.org/10.1364/AOP.3.000128.
Article
CAS
Google Scholar
Davies AB, Asner GP. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol Evol. 2014;29(12):681–91. https://doi.org/10.1016/j.tree.2014.10.005.
Article
PubMed
Google Scholar
Melin M, Matala J, Mehtätalo L, Tiilikainen R, Tikkanen OP, Maltamo M, Pusenius J, Packalen P. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests—an analysis based on airborne laser scanning of the canopy structure at moose locations. Glob Change Biol. 2014;20(4):1115–25.
Article
Google Scholar
McLean KA, Trainor AM, Asner GP, Crofoot MC, Hopkins ME, Campbell CJ, Martin RE, Knapp DE, Jansen PA. Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landsc Ecol. 2016;31(8):1849–62. https://doi.org/10.1007/s10980-016-0367-9.
Article
Google Scholar
Strandburg-Peshkin A, Farine DR, Crofoot MC, Couzin ID. Habitat structure shapes individual decisions and emergent group structure in collectively moving wild baboons. eLife. 2017;6:e19505. https://doi.org/10.7554/eLife.19505.
Article
PubMed
PubMed Central
Google Scholar
Koch B, Heyder U, Weinacker H. Detection of individual tree crowns in airborne lidar data. Photogramm Eng Remote Sens. 2006;72(4):357–63. https://doi.org/10.1007/s10584-004-3566-3.
Article
Google Scholar
Brandtberg T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS J Photogramm Remote Sens. 2007;61(5):325–40. https://doi.org/10.1016/j.isprsjprs.2006.10.006.
Article
Google Scholar
Höfle B. Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci Remote Sens Lett. 2014;11(1):94–8. https://doi.org/10.1109/LGRS.2013.2247022.
Article
Google Scholar
Olofsson K, Holmgren J, Olsson H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 2014;6(5):4323–44. https://doi.org/10.3390/rs6054323.
Article
Google Scholar
Kawasue K, Ikeda T, Tokunaga T, Harada H. Three-dimensional shape measurement system for black cattle using KINECT sensor. Int J Circuits Syst Signal Process. 2013;7(4):222–30.
Google Scholar
Akhloufi MA. 3D vision system for intelligent milking robot automation. SPIE. In: SPIE, intelligent robots and computer vision XXXI: algorithms and techniques, vol. 9025; 2014. pp. 90250–19025010. https://doi.org/10.1117/12.2046072.
Vigna B. MEMS epiphany. In: IEEE 22nd international conference on micro electro mechanical systems; 2009. pp. 1–6. https://doi.org/10.1109/MEMSYS.2009.4805304.
Nistér D, Naroditsky O, Bergen J. Visual odometry. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, vol 1; 2004. pp. 652–659. https://doi.org/10.1109/CVPR.2004.1315094.
Mourikis AI, Roumeliotis SI. A multi-state constraint Kalman filter for vision-aided inertial navigation. In: IEEE international conference on robotics and automation; 2007. pp. 3565–3572. https://doi.org/10.1109/ROBOT.2007.364024.
Konolige K, Agrawal M, Solà J. Large-scale visual odometry for rough terrain. In: Kaneko M, Nakamura Y, editors. Robotics research: the 13th international symposium ISRR. Berlin: Springer; 2011. pp. 201–12.
Hesch JA, Kottas DG, Bowman SL, Roumeliotis SI. Camera-IMU-based localization: observability analysis and consistency improvement. Int J Robot Res. 2014;33(1):182–201. https://doi.org/10.1177/0278364913509675.
Article
Google Scholar
D’Eon RG, Serrouya R, Smith G, Kochanny CO. GPS radiotelemetry error and bias in mountainous terrain. Wildl Soc Bull. 2002;30(2):430–9.
Google Scholar
Zheng J, Wang Y, Nihan NL. Quantitative evaluation of GPS performance under forest canopies. In: IEEE networking, sensing and control; 2005. pp. 777–782. https://doi.org/10.1109/ICNSC.2005.1461289.
Tango. Google developers. https://web.archive.org/web/20170716155537/https://developers.google.com/tango/developer-overview (2017). Accessed 16 July 2017.
Kitware: ParaView Tango Recorder. GitHub. https://github.com/Kitware/ParaViewTangoRecorder (2015). Accessed 02 Apr 2016.
Ayachit U. The ParaView guide: a parallel visualization application. Clifton Park: Kitware Inc; 2015.
Google Scholar
Marion P, Kwitt R, Davis B, Gschwandtner M. PCL and ParaView—connecting the dots. In: Computer society conference on computer vision and pattern recognition workshops; 2012. pp. 80–85. https://doi.org/10.1109/CVPRW.2012.6238918.
Rusu RB, Cousins S. 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation; 2011. pp. 1–4. https://doi.org/10.1109/ICRA.2011.5980567. http://pointclouds.org/.
Zhang K, Chen S-C, Whitman D, Shyu M-L, Yan J, Zhang C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans Geosci Remote Sens. 2003;41(4):872–82. https://doi.org/10.1109/TGRS.2003.810682.
Article
Google Scholar
Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM. 1981;24(6):381–95. https://doi.org/10.1145/358669.358692.
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30. https://doi.org/10.1007/s13398-014-0173-7.2. arXiv:1201.0490.
R Core Team: R: a Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna, Austria. R Foundation for Statistical Computing; 2016. https://www.R-project.org/.
Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA. 2008;105(49):19052–9. https://doi.org/10.1073/pnas.0800375105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson RP, Quintana F, Hobson VJ. Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proc R Soc Lond B Biol Sci. 2012;279(1730):975–80. https://doi.org/10.1098/rspb.2011.1544.
Article
Google Scholar
Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB. Energy landscapes shape animal movement ecology. Am Nat. 2013;182(3):298–312. https://doi.org/10.1086/671257.
Article
PubMed
Google Scholar
Halsey LG. Terrestrial movement energetics: current knowledge and its application to the optimising animal. J Exp Biol. 2016;219(10):1424–31. https://doi.org/10.1242/jeb.133256.
Article
PubMed
Google Scholar
Scharf AK, Lapoint S, Wikelski M, Safi K. Structured energetic landscapes in free-ranging fishers (Pekania pennanti). PLoS ONE. 2016;11(2):0145732. https://doi.org/10.6084/m9.figshare.2062650.
Article
Google Scholar
Larson J, Trivedi M, Bruch M. Off-road terrain traversability analysis and hazard avoidance for UGVs. In: IEEE intelligent vehicles symposium; 2011. pp. 1–7.
Lai P, Samson C, Bose P. Surface roughness of rock faces through the curvature of triangulated meshes. Comput Geosci. 2014;70:229–37. https://doi.org/10.1016/j.cageo.2014.05.010.
Article
Google Scholar
Liu C, Chao J, Gu W, Li L, Xu Y. On the surface roughness characteristics of the land fast sea-ice in the Bohai Sea. Acta Oceanol Sin. 2014;33(7):97–106. https://doi.org/10.1007/s13131-014-0509-3.
Article
Google Scholar
Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature. 2007;449(7165):1044–8. https://doi.org/10.1038/nature06199.
Article
CAS
PubMed
Google Scholar
Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW. Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci USA. 2012;109(19):7169–74. https://doi.org/10.1073/pnas.1121201109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raichlen DA, Wood BM, Gordon AD, Mabulla AZP, Marlowe FW, Pontzer H. Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proc Natl Acad Sci USA. 2013;111(2):728–33. https://doi.org/10.1073/pnas.1318616111.
Article
PubMed
PubMed Central
Google Scholar
Wilson RP, Griffiths IW, Legg PA, Friswell MI, Bidder OR, Halsey LG, Lambertucci SA, Shepard ELC. Turn costs change the value of animal search paths. Ecol Lett. 2013;16(9):1145–50. https://doi.org/10.1111/ele.12149.
Article
CAS
PubMed
Google Scholar
Golovinskiy A, Kim VG, Funkhouser T. Shape-based recognition of 3D point clouds in urban environments. In: IEEE 12th international conference on computer vision; 2009. pp. 2154–2161. https://doi.org/10.1109/ICCV.2009.5459471.
Himmelsbach M, Luettel T, Wuensche H-J. Real-time object classification in 3D point clouds using point feature histograms. In: IEEE/RSJ international conference on intelligent robots and systems; 2009. pp. 994–1000. https://doi.org/10.1109/IROS.2009.5354493.
Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition. In: IEEE/RSJ international conference on intelligent robots and systems; 2015. pp. 922–928. https://doi.org/10.1109/IROS.2015.7353481.
Rodríguez-Cuenca B, García-Cortés S, Ordóñez C, Alonso MC. Automatic detection and classification of pole-like objects in urban point cloud data using an anomaly detection algorithm. Remote Sens. 2015;7(10):12680–703. https://doi.org/10.3390/rs71012680.
Article
Google Scholar
Lehtomäki M, Jaakkola A, Hyyppä J, Lampinen J, Kaartinen H, Kukko A, Puttonen E, Hyyppä H. Object classification and recognition from mobile laser scanning point clouds in a road environment. IEEE Trans Geosci Remote Sens. 2016;54(2):1226–39.
Article
Google Scholar
Schöps T, Sattler T, Häne C, Pollefeys M. 3D modeling on the go: interactive 3D reconstruction of large-scale scenes on mobile devices. In: International conference on 3D vision; 2015. pp. 291–299. https://doi.org/10.1109/3DV.2015.40.
Schöps T, Sattler T, Häne C, Pollefeys M. Large-scale outdoor 3D reconstruction on a mobile device. Comput Vis Image Underst. 2016;. https://doi.org/10.1016/j.cviu.2016.09.007.
Google Scholar
Wittmann A, Al-Nuaimi A, Steinbach E, Schroth G. Enhanced depth estimation using a combination of structured light sensing and stereo reconstruction. In: International conference on computer vision theory and applications; 2016.
Nilsson E, Lundquist C, Schön TB, Forslund D, Roll J. Vehicle motion estimation using an infrared camera. IFAC Proc Vol. 2011;44(1):12952–7.
Article
Google Scholar
Mouats T, Aouf N, Sappa AD, Aguilera C, Toledo R. Multispectral stereo odometry. IEEE Trans Intell Transp Syst. 2015;16(3):1210–24. https://doi.org/10.1109/TITS.2014.2354731.
Article
Google Scholar
Borges PVK, Vidas S. Practical infrared visual odometry. IEEE Trans Intell Transp Syst. 2016;17(8):2205–13. https://doi.org/10.1109/TITS.2016.2515625.
Article
Google Scholar
Mouats T, Aouf N, Chermak L, Richardson MA. Thermal stereo odometry for UAVs. IEEE Sens J. 2015;15(11):6335–47. https://doi.org/10.1109/JSEN.2015.2456337.
Article
Google Scholar
Lynen S, Bosse M, Furgale P, Siegwart R. Placeless place-recognition. In: 2nd International conference on 3D vision; 2014. pp. 303–310. https://doi.org/10.1109/3DV.2014.36.
Lynen S, Sattler T, Bosse M, Hesch J, Pollefeys M, Siegwart R. Get out of my lab: large-scale, real-time visual-inertial localization. Robot Sci Syst. 2015;. https://doi.org/10.15607/RSS.2015.XI.037.
Google Scholar
Laskar Z, Huttunen S, Herrera C, H, Rahtu E, Kannala J. Robust loop closures for scene reconstruction by combining odometry and visual correspondences. In: International conference on image processing; 2016. pp. 2603–2607.
Milford MJ, Wyeth GF. SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: IEEE international conference on robotics and automation; 2012. pp. 1643–1649. https://doi.org/10.1109/ICRA.2012.6224623.
Naseer T, Ruhnke M, Stachniss C, Spinello L, Burgard W. Robust visual SLAM across seasons. In: IEEE/RSJ international conference on intelligent robots and systems; 2015. pp. 2529–2535.
Tomaštík J, Saloň Š, Tunák D, Chudý F, Kardoš M. Tango in forests—an initial experience of the use of the new Google technology in connection with forest inventory tasks. Comput Electron Agric. 2017;141:109–17. https://doi.org/10.1016/j.compag.2017.07.015.
Article
Google Scholar
Hyyppä J, Virtanen JP, Jaakkola A, Yu X, Hyyppä H, Liang X. Feasibility of Google Tango and kinect for crowdsourcing forestry information. Forests. 2017;9(1):1–14. https://doi.org/10.3390/f9010006.
Article
Google Scholar
Alhwarin F, Ferrein A, Scholl I. IR stereo kinect: improving depth images by combining structured light with IR stereo. In: Pham D, Park S, editors. PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014, vol. 8862. Cham: Springer; 2014. pp. 409–421.
Otsu K, Otsuki M, Kubota T. Experiments on stereo visual odometry in feature-less volcanic fields. In: Mejias L, Corke P, Roberts J, editors. Field and service robotics: results of the 9th international conference, vol. 105. Cham: Springer; 2015. pp. 365–378. Chap. 7.
Diakité AA, Zlatanova S. First experiments with the Tango tablet for indoor scanning. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. 2016;III(4):67–72. https://doi.org/10.5194/isprsannals-III-4-67-2016.
Article
Google Scholar
Klingensmith M, Dryanovski I, Srinivasa SS, Xiao J. Chisel: real time large scale 3D reconstruction onboard a mobile device using spatially-hashed signed distance fields. In: Robotics: science and systems; 2015.
Klingensmith M, Herrmann M, Srinivasa SS. Object modeling and recognition from sparse, noisy data via voxel depth carving. In: Hsieh AM, Khatib O, Kumar V, editors. Experimental robotics: the 14th international symposium on experimental robotics. Cham: Springer; 2016. p. 697–713.
Dzitsiuk M, Sturm J, Maier R, Ma L, Cremers D. De-noising, stabilizing and completing 3D reconstructions on-the-go using plane priors; 2016. arXiv:1609.08267.
Spinello L, Luber M, Arras KO. Tracking people in 3D using a bottom-up top-down detector. In: IEEE international conference on robotics and automation; 2011. pp. 1304–1310. https://doi.org/10.1109/ICRA.2011.5980085.
Munaro M, Basso F, Menegatti E. Tracking people within groups with RGB-D data. In: IEEE/RSJ international conference on intelligent robots and systems; 2012. pp. 2101–2107. https://doi.org/10.1109/IROS.2012.6385772.
Fehr M, Dymczyk M, Lynen S, Siegwart R. Reshaping our model of the world over time. In: IEEE international conference on robotics and automation; 2016. pp. 2449–2455.
Wilson RP, McMahon CR. Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ. 2006;4(3):147–54. https://doi.org/10.1890/1540-9295(2006)004.
Article
Google Scholar
Casper RM. Guidelines for the instrumentation of wild birds and mammals. Anim Behav. 2009;78(6):1477–83. https://doi.org/10.1016/j.anbehav.2009.09.023.
Article
Google Scholar
ARCore. Google developers. https://developers.google.com/ar/discover/ (2018). Accessed 10 Mar 2018
Structure Sensor. Occipital, Inc. https://structure.io (2017). Accessed 27 May 2017
Angladon V, Gasparini S, Charvillat V, Pribanić T, Petković T, Donlić M, Ahsan B, Bruel F. An evaluation of real-time RGB-D visual odometry algorithms on mobile devices. J Real Time Image Process. 2017;. https://doi.org/10.1007/s11554-017-0670-y.
Google Scholar
Bidder OR, Walker JS, Jones MW, Holton MD, Urge P, Scantlebury DM, Marks NJ, Magowan EA, Maguire IE, Wilson RP. Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov Ecol. 2015;3:23. https://doi.org/10.1186/s40462-015-0055-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orio APD, Callas R, Schaefer RJ. Performance of two GPS telemetry collars under different habitat conditions. Wildl Soc Bull. 2012;31(2):372–9.
Google Scholar
Favorskaya MN, Jain LC. Realistic tree modelling. Cham: Springer; 2017. p. 181–202.
Google Scholar