Donaldson MR, Hinch SG, Suski CD, Fisk AT, Heupel MR, Cooke SJ. Making connections in aquatic ecosystems with acoustic telemetry monitoring. Front Ecol Environ. 2014;12:565–73.
Article
Google Scholar
Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348:6240.
Article
CAS
Google Scholar
Gandra M, Erzini K, Abecasis D. Diel and seasonal changes in the spatial behaviour of a soft-sediment fish (Solea senegalensis) inside a marine reserve. Mar Environ Res. 2018;135:82–92.
Article
CAS
PubMed
Google Scholar
Leclercq E, Zerafa B, Brooker AJ, Davie A, Migaud H. Application of passive-acoustic telemetry to explore the behaviour of ballan wrasse (Labrus bergylta) and lumpfish (Cyclopterus lumpus) in commercial Scottish salmon sea-pens. Aquaculture. 2018;495:1–12.
Article
Google Scholar
Neo YY, Hubert J, Bolle LJ, Winter HV, Slabbekoorn H. European seabass respond more strongly to noise exposure at night and habituate over repeated trials of sound exposure. Environ Pollut. 2018;239:367–74.
Article
CAS
PubMed
Google Scholar
Heupel MR, Semmens JM, Hobday AJ. Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res. 2006;57:1–13.
Article
Google Scholar
Ellis RD, Flaherty-walia KE, Collins AB, Bickford JW, Boucek R, Walters SL, et al. Acoustic telemetry array evolution : from species- and project-specific designs to large-scale, multispecies, cooperative networks. Fish Res. 2019;209:186–95.
Article
Google Scholar
Harrison PM, Gutowsky LFG, Martins EG, Patterson DA, Cooke SJ, Power M. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav Ecol. 2015;26:483–92.
Article
Google Scholar
Spiegel O, Leu ST, Bull CM, Sih A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol Lett. 2017;20:3–18.
Article
PubMed
Google Scholar
Steel A, Coates J, Hearn A, Klimley A. Performance of an ultrasonic telemetry positioning system under varied environmental conditions. Anim Biotelemetry. 2014;2:1–17.
Article
Google Scholar
Kessel ST, Cooke SJ, Heupel MR, Hussey NE, Simpfendorfer CA, Vagle S, et al. A review of detection range testing in aquatic passive acoustic telemetry studies. Rev Fish Biol Fish. 2014;24:199–218.
Article
Google Scholar
Reubens J, Verhelst P, van der Knaap I, Deneudt K, Moens T, Hernandez F. Environmental factors influence the detection probability in acoustic telemetry in a marine environment: results from a new setup. Hydrobiologia. 2019;845:81–94.
Article
Google Scholar
Espinoza M, Farrugia TJ, Lowe CG. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J Exp Mar Bio Ecol. 2011;401:63–74.
Article
Google Scholar
Biesinger Z, Bolker BM, Marcinek D, Grothues TM, Dobarro JA, Lindberg WJ. Testing an autonomous acoustic telemetry positioning system for fine-scale space use in marine animals. J Exp Mar Bio Ecol. 2013;448:46–56.
Article
Google Scholar
Swadling DS, Knott NA, Rees MJ, Pederson H, Adams KR, Taylor MD, et al. Seagrass canopies and the performance of acoustic telemetry: implications for the interpretation of fish movements. Anim Biotelemetry. 2020;8:1–12.
Article
Google Scholar
Huveneers C, Simpfendorfer CA, Kim S, Semmens JM, Hobday AJ, Pederson H, et al. The influence of environmental parameters on the performance and detection range of acoustic receivers. Methods Ecol Evol. 2016;7:825–35.
Article
Google Scholar
Reubens J, Pasotti F, Degraer S, Vincx M. Residency, site fidelity and habitat use of Atlantic cod (Gadus morhua) at an offshore wind farm using acoustic telemetry. Mar Environ Res. 2013;90:128–35.
Article
CAS
PubMed
Google Scholar
De Troch M, Reubens JT, Heirman E, Degraer S, Vincx M. Energy profiling of demersal fish: a case-study in wind farm artificial reefs. Mar Environ Res. 2013;92:224–33.
Article
PubMed
CAS
Google Scholar
Reubens J, De Rijcke M, Degraer S, Vincx M. Diel variation in feeding and movement patterns of juvenile Atlantic cod at offshore wind farms. J Sea Res. 2013;85:214–21.
Article
Google Scholar
Reubens J, Braeckman U, Vanaverbeke J, Van Colen C, Degraer S, Vincx M. Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea. Fish Res. 2013;139:28–34.
Article
Google Scholar
Winter H, Aarts G, van Keeken O. Residence time and behaviour of sole and cod in the Offshore Wind farm Egmond aan Zee (OWEZ). Wageningen UR: IMARES—institute for Marine Resources & Ecosystem Studies; 2010.
Google Scholar
Righton D, Quayle VA, Hetherington S, Burt G. Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic tagging experiments. J Mar Biol Ass UK. 2007;87:599–613.
Article
Google Scholar
Righton D, Mills CM. Reconstructing the movements of free-ranging demersal fish in the North Sea: a data-matching and simulation method. Mar Biol. 2008;153:507–21.
Article
Google Scholar
Brabant R, Degraer S, Rumes B. Offshore wind energy development in the Belgian part of the North Sea & anticipated impacts: an update. Chapter 2: monitoring offshore wind farms in the Belgian part of the North Sea: setting the scene. Brussels: Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine Ecosystem Management Unit; 2012. p. 7–15.
Degraer S, Brabant R, Rumes B, Vigin L. Environmental impacts of offshore wind farms in the Belgian part of the North Sea: a continued move towards integration and quantification. Brussels: Royal Belgian Institute of Natural Sciences, OD Natural Environment, Marine Ecology and Management Section; 2017.
Google Scholar
Smith F. Understanding HPE in the VEMCO positioning system (VPS). Availabe: http://vemco.com/wp-content/uploads/2013/09/understandinghpe-vps.pdf. 2013.
Meckley TD, Holbrook CM, Wagner CM, Binder TR. An approach for filtering hyperbolically positioned underwater acoustic telemetry data with position precision estimates. Anim Biotelemetry. 2014;2:1–13.
Article
Google Scholar
Brownscombe JW, Griffin LP, Gagne TO, Haak CR, Cooke SJ, Finn JT, et al. Environmental drivers of habitat use by a marine fish on a heterogeneous and dynamic reef flat. Mar Biol. 2019;166:1–13.
Article
Google Scholar
Lee KA, Huveneers C, Macdonald T, Harcourt RG. Size isn’t everything: movements, home range, and habitat preferences of eastern blue gropers (Achoerodus viridis) demonstrate the efficacy of a small marine reserve. Aquat Conserv Mar Freshw Ecosyst. 2015;25:174–86.
Article
Google Scholar
La Mesa G, Consalvo I, Annunziatellis A, Canese S. Movement patterns of the parrotfish Sparisoma cretense in a Mediterranean marine protected area. Mar Environ Res. 2012;82:59–68.
Article
PubMed
CAS
Google Scholar
Worton B. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989;70:164–8.
Article
Google Scholar
Heupel MR, Simpfendorfer CA, Hueter RE. Estimation of shark home ranges using passive monitoring techniques. Environ Biol Fishes. 2004;71:135–42.
Article
Google Scholar
Simpfendorfer CA, Olsen EM, Heupel MR, Moland E. Three-dimensional kernel utilization distributions improve estimates of space use in aquatic animals. Can J Fish Aquat Sci. 2012;69:565–72.
Article
Google Scholar
Duong T. Kernel density estimation and kernel discriminant analysis for multivariate data in R. J Stat Softw. 2015;21:1–16.
Google Scholar
Espinoza M, Farrugia TJ, Webber DM, Smith F, Lowe CG. Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish Res. 2011;108:364–71.
Article
Google Scholar
Kessel ST, Hussey NE, Webber DM, Gruber SH, Young JM, Smale MJ, et al. Close proximity detection interference with acoustic telemetry: the importance of considering tag power output in low ambient noise environments. Anim Biotelemetry. 2015;3:1–14.
Article
Google Scholar
Gjelland K, Hedger RD. On the parameterization of acoustic detection probability models. Methods Ecol Evol. 2017;8:1302–4.
Article
Google Scholar
Özkan Sertlek H, Ainslie MA. A depth-dependent formula for shallow water propagation. J Acoust Soc Am. 2014;136:573–82.
Article
Google Scholar
Degraer S, Brabant R, Rumes B. Environmental impacts of offshore wind farms in the Belgian part of the North Sea: learning from the past to optimise future monitoring programmes. Bruxelles: Royal Belgian Institute of Natural Sciences Operational Directorate Natural Environment, Marine Ecology and Management Section; 2013.
Google Scholar
Goossens J, Tjampens M, Deneudt K, Reubens J. Mooring scientific instruments on the seabed—design, deployment protocol and performance of a recoverable frame for acoustic receivers. Methods Ecol Evol. 2020;11:974–9.
Article
Google Scholar
Fontes J, Schmiing M, Afonso P. Permanent aggregations of a pelagic predator at shallow seamounts. Mar Biol. 2014;161:1349–60.
Article
Google Scholar
DeCelles GR, Cadrin SX. Movement patterns of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of Maine: observations with the use of passive acoustic telemetry. Fish Bull. 2010;108:408–19.
Google Scholar
Melnychuk MC, Dunton KJ, Jordaan A, McKown KA, Frisk MG. Informing conservation strategies for the endangered Atlantic sturgeon using acoustic telemetry and multi-state mark–recapture models. J Appl Ecol. 2017;54:914–25.
Article
Google Scholar
Jacobsen L, Baktoft H, Jepsen N, Aarestrup K, Berg S, Skov C. Effect of boat noise and angling on lake fish behaviour. J Fish Biol. 2014;84:1768–80.
Article
CAS
PubMed
Google Scholar
Payne NL, van der Meulen DE, Suthers IM, Gray CA, Taylor MD. Foraging intensity of wild mulloway Argyrosomus japonicus decreases with increasing anthropogenic disturbance. Mar Biol. 2014;162:539–46.
Article
CAS
Google Scholar