Votier SC, Fayet AL, Bearhop S, Bodey TW, Clark BL, Grecian J, et al. Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. Proc R Soc B Biol Sci. 2017;284:6.
Google Scholar
Bennison A, Bearhop S, Bodey TW, Votier SC, Grecian WJ, Wakefield ED, et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol Evol. 2018;8:13–24.
Article
PubMed
Google Scholar
Bidder OR, Walker JS, Jones MW, Holton MD, Urge P, Scantlebury DM, et al. Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov Ecol Mov Ecol. 2015;3:1–16.
Google Scholar
Flack A, Nagy M, Fiedler W, Couzin I, Wikelski M. From local collective behavior to global migratory patterns in white storks. Science. 2018;360:911–4.
Article
CAS
PubMed
Google Scholar
Loonstra AHJ, Verhoeven MA, Senner NR, Both C, Piersma T. Adverse wind conditions during northward Sahara crossings increase the in-flight mortality of Black-tailed Godwits. Ecol Lett. 2019;22:2060–6.
Article
PubMed
PubMed Central
Google Scholar
Sergio F, Tavecchia G, Tanferna A, Blas J, Blanco G, Hiraldo F. When and where mortality occurs throughout the annual cycle changes with age in a migratory bird: individual vs population implications. Sci Rep. 2019;9:1–8.
Article
CAS
Google Scholar
Gow EA, Knight SM, Bradley DW, Clark RG, Winkler DW, Bélisle M, et al. Effects of spring migration distance on tree swallow reproductive success within and among flyways. Front Ecol Evol. 2019;7:1–10.
Article
Google Scholar
Chimienti M, van Beest FM, Beumer LT, Desforges JP, Hansen LH, Stelvig M, Schmidt NM. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere. 2021;12:1–17.
Article
Google Scholar
De Boer R, Bauer S, Van Der Jeugd HP, Ens BJ, Griffin L, Cabot D, et al. A comparison of spring migration between three populations of Barnacle Geese Branta leucopsis using GPS satellite transmitters. Limosa. 2014;87:99–106.
Google Scholar
Kölzsch A, Müskens GJDM, Szinai P, Moonen S, Glazov P, Kruckenberg H, et al. Flyway connectivity and exchange primarily driven by moult migration in geese. Mov Ecol Mov Ecol. 2019;7:1–11.
Google Scholar
Picardi S, Smith BJ, Boone ME, Frederick PC, Cecere JG, Rubolini D, et al. Analysis of movement recursions to detect reproductive events and estimate their fate in central place foragers. Mov Ecol Mov Ecol. 2020;8:1–14.
Google Scholar
Souchay G, Gauthier G, Pradel R. To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species. Ecology. 2014;95:2723–35.
Article
Google Scholar
Reed TE, Harris MP, Wanless S. Skipped breeding in common guillemots in a changing climate: restraint or constraint? Front Ecol Evol. 2015;3:1–13.
Article
Google Scholar
Peery MZ, Beissinger SR, Newman SH, Burkett EB, Williams TD. Applying the declining population paradigm: diagnosing causes of poor reproduction in the Marbled Murrelet. Conserv Biol. 2004;18:1088–98.
Article
Google Scholar
Maslo B, Schlacher TA, Weston MA, Huijbers CM, Anderson C, Gilby BL, et al. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ. 2016;2016:1–23.
Google Scholar
Schreven KHT, Stolz C, Madsen J, Nolet BA. Nesting attempts and success of Arctic-breeding geese can be derived with high precision from accelerometry and GPS-tracking. Anim Biotelemetry. 2021;9:1–13.
Article
Google Scholar
Bodey TW, Cleasby IR, Bell F, Parr N, Schultz A, Votier SC, et al. A phylogenetically controlled meta-analysis of biologging device effects on birds: deleterious effects and a call for more standardized reporting of study data. Methods Ecol Evol. 2018;9:946–55.
Article
Google Scholar
Noonan MJ, Fleming CH, Akre TS, Drescher-lehman J, Gurarie E, Kays R, et al. Scale-free estimation of speed and distance traveled from animal tracking data. Mov Ecol Mov Ecol. 2019;7:1–15.
Google Scholar
Quick NJ, Cioffi WR, Shearer J, Read AJ. Mind the gap—optimizing satellite tag settings for time series analysis of foraging dives in Cuvier’s beaked whales (Ziphius cavirostris). Anim Biotelemetry. 2019;7:1–14.
Article
Google Scholar
Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am Nat. 2014;183:E154.
Article
PubMed
Google Scholar
Mitchell LJ, White PCL, Arnold KE. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PLoS ONE. 2019;14:1–20.
Article
Google Scholar
Noonan MJ, Tucker MA, Fleming CH, Akre TS, Alberts SC, Ali AH, et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol Monogr. 2019;89:1–21.
Article
Google Scholar
Stroud DA. Observations on the incubation and post-hatching behaviour of the Greenland White-fronted Goose. Wildfowl. 1982;33:63–72.
Google Scholar
Fox AD. Greenland White-fronted Goose Anser albifrons flavirostris The annual cycle of a migratory herbivore on the European continental fringe. PhD disseration. 2002.
Fox AD, Stroud DA. The breeding biology of the Greenland White-fronted Goose (Anser albifrons flavirostris). Medd Gronl Biosci. 1988;27:1–14.
Google Scholar
Weegman MD, Bearhop S, Hilton GM, Walsh AJ, Weegman KM, Hodgson DJ, et al. should i stay or should i go? Fitness costs and benefits of prolonged parent–offspring and sibling–sibling associations in an Arctic-nesting goose population. Oecologia. 2016;181:809–17.
Article
PubMed
PubMed Central
Google Scholar
Harrison XA, Tregenza T, Inger R, Colhoun K, Dawson DA, Gudmundsson GA, et al. Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Mol Ecol. 2010;19:5484–96.
Article
PubMed
Google Scholar
Successful breeding attempt of a female Greenland White-fronted Goose. https://youtu.be/ZIc380VppDM. Accessed 25 Mar 2021.
Gleiss AC, Wilson RP, Shepard ELC. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol. 2011;2:23–33.
Article
Google Scholar
Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, et al. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE. 2012;7:e31187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh NJ, Allen AM, Ericon G. Quantifying migration behaviour using net squared displacement approach: clarifications and caveats. PLoS ONE. 2016;11:1–20.
Google Scholar
Signer J, Fieberg J, Avgar T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol Evol. 2019;9:880–90.
Article
PubMed
PubMed Central
Google Scholar
Hijmans RJ. geosphere: Spherical trigonometry. R Packag version 15–10. 2019.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.r-project.org/. Accessed 08 Aug 2022.
Gillette SM, Klehr AL, Murphy MT. Variation in incubation length and hatching asynchrony in Eastern Kingbirds: weather eclipses female effects. Ornithology. 2021;138:1–15.
Article
Google Scholar
Parajka J, Blöschl G. Spatio-temporal combination of MODIS images—potential for snow cover mapping. Water Resour Res. 2008;44:1–13.
Article
Google Scholar
Marchane A, Jarlan L, Hanich L, Boudhar A, Gascoin S, Tavernier A, et al. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens Environ. 2015;160:72–86.
Article
Google Scholar
Gelman A, Su Y-S. arm: Data analysis using regression and multilevel/hierarchical models. R Packag version 111–1. 2020.
Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J Exp Biol. 2012;215:986–96.
Article
PubMed
PubMed Central
Google Scholar
Collins PM, Green JA, Warwick-Evans V, Dodd S, Shaw PJA, Arnould JPY, et al. Interpreting behaviors from accelerometry: a method combining simplicity and objectivity. Ecol Evol. 2015;5:4642–54.
Article
PubMed
PubMed Central
Google Scholar
Buderman FE, Gingery TM, Diefenbach DR, Gigliotti LC, Begley-Miller D, McDill MM, et al. Caution is warranted when using animal space-use and movement to infer behavioral states. Mov Ecol Mov Ecol. 2021;9:1–12.
Google Scholar
Zuberogoitia I, Zabala J, Martínez JE. Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola. 2018;65:183–207.
Article
Google Scholar
Hansen WK, Bate LJ, Landry DW, Chastel O, Parenteau C, Breuner CW. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus). Conserv Physiol. 2016;4:1–10.
Article
Google Scholar
MacLean AAE. Age-specific foraging ability and the evolution of deferred breeding in three species of gulls. Wildl Soc Bull. 1986;98:267–79.
Google Scholar
Ratcliffe N, Hughes J, Roberts FA. The population status of sooty terns Sterna fuscata on Ascension Island. Atl Seabirds. 1999;1:159–68.
Google Scholar
Barr JR, Green MC, DeMaso SJ, Hardy TB. Detectability and visibility biases associated with using a consumer-grade unmanned aircraft to survey nesting colonial waterbirds. J Field Ornithol. 2018;89:242–57.
Article
Google Scholar
Giovanni MD, Van Der Burg MP, Anderson LC, Powell LA, Schacht WH, Tyre AJ. Estimating nest density when detectability is incomplete: variation in nest attendance and response to disturbance by western meadowlarks. Condor. 2011;113:223–32.
Article
Google Scholar
Hazler KR. Mayfield logistic regression: a practical approach for analysis of nest survival. Auk. 2004;121:707–16.
Article
Google Scholar
Jehle G, Yackel Adams AA, Savidge JA, Skagen SK. Nest survival estimation: a review of alternatives to the mayfield estimator. Condor. 2004;106:472–84.
Article
Google Scholar
Blomberg EJ, Gibson D, Sedinger JS. Biases in nest survival associated with choice of exposure period: a case study in North American upland game birds. Condor. 2015;117:577–88.
Article
Google Scholar
Weiser EL. Fully accounting for nest age reduces bias when quantifying nest survival. Ornithol Appl. 2021;123:1–23.
Google Scholar
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348:1222.
Article
CAS
Google Scholar
Bastos AS, Hasegawa H. Behavior of GPS signal interruption probability under tree canopies in different forest conditions. Eur J Remote Sens. 2013;46:613–22.
Article
Google Scholar
Huang X, Zhao Y, Liu Y. Using light-level geolocations to monitor incubation behaviour of a cavity-nesting bird Apus apus pekinensis. Avian Res. 2021;12:1–6.
Article
CAS
Google Scholar