Clark TD, Sandblom E, Jutfelt F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol. 2013;216:2771–82. https://doi.org/10.1242/jeb.084251.
Article
PubMed
Google Scholar
Sandblom E, Grans A, Axelsson M, Seth H. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc R Soc B Biol Sci. 2014;281:20141490. https://doi.org/10.1098/rspb.2014.1490.
Article
Google Scholar
Mendonça PC, Gamperl AK. The effects of acute changes in temperature and oxygen availability on cardiac performance in winter flounder (Pseudopleuronectes americanus). Comp Biochem Physiol A Mol Integr Physiol. 2010;155:245–52.
Article
Google Scholar
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol. 2016;219:1941–52. https://doi.org/10.1242/jeb.128439.
Article
PubMed
Google Scholar
Claireaux G, Webber D, Kerr S, Boutilier R. Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating temperature conditions. J Exp Biol. 1995;198:49–60.
CAS
PubMed
Google Scholar
Campbell HA, Taylor EW, Egginton S. The use of power spectral analysis to determine cardiorespiratory control in the short-horned sculpin Myoxocephalus scorpius. J Exp Biol. 2004;207:1969–76. https://doi.org/10.1242/jeb.00972.
Article
CAS
PubMed
Google Scholar
Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, et al. Differences in thermal tolerance among sockeye salmon populations. Science. 2011;332:109–12.
Article
CAS
Google Scholar
Farrell AP, Eliason EJ, Sandblom E, Clark TD. Fish cardiorespiratory physiology in an era of climate change. Can J Zool. 2009;87:835–51.
Article
CAS
Google Scholar
Gamperl AK. Integrated responses of the circulatory system: temperature. In: Farell AP, editor. Encyclopedia fish physiology from genome to environment. London: Academic Press; 2011. p. 1197–205.
Chapter
Google Scholar
Metcalfe NB, Van Leeuwen TE, Killen SS. Does individual variation in metabolic phenotype predict fish behaviour and performance? J Fish Biol. 2016;88:298–321.
Article
CAS
Google Scholar
Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG, et al. Aerobic scope predicts dominance during early life in a tropical damselfish. Funct Ecol. 2014;28:1367–76.
Article
Google Scholar
Thorarensen H, Gallaugher PE, Farrell AP. The limitations of heart rate as a predictor of metabolic rate in fish. J Fish Biol. 1996;49:226–36.
Article
Google Scholar
Lefrancois C, Claireaux G, Lagardere JP. Heart rate telemetry to study environmental influences on fish metabolic expenditure. Hydrobiologia. 1998;371:215–24.
Article
Google Scholar
Armstrong JD. Relationships between heart rate and metabolic rate of pike: integration of existing data. J Fish Biol. 1998;52:362–8.
Article
Google Scholar
Cooke SJ, Brownscombe JW, Raby GD, Broell F, Hinch SG, Clark TD, et al. Remote bioenergetics measurements in wild fish: opportunities and challenges. Comp Biochem Physiol Part A Mol Integr Physiol. 2016;202:23–37. https://doi.org/10.1016/j.cbpa.2016.03.022.
Article
CAS
Google Scholar
Pálsson ÓK, Thorsteinsson V. Migration patterns, ambient temperature, and growth of Icelandic cod (Gadus morhua): evidence from storage tag data. Can J Fish Aquat Sci. 2003;60:1409–23. https://doi.org/10.1139/f03-117.
Article
Google Scholar
Neat FC, Bendall V, Berx B, Wright PJ, Cuaig M, Townhill B, et al. Movement of Atlantic cod around the British Isles: implications for finer scale stock management. J Appl Ecol. 2014;51:1564–74.
Article
Google Scholar
Sólmundsson J, Jónsdóttir IG, Björnsson B, Ragnarsson SÁ, Tómasson GG, Thorsteinsson V. Home ranges and spatial segregation of cod Gadus morhua spawning components Home ranges and spatial segregation of cod Gadus morhua spawning components. Mar Ecol Prog Ser. 2015;520:217–33.
Article
Google Scholar
Davidsen JG, Dong H, Linné M, Andersson MH, Piper A, Prystay TS, Hvam EB, Thorstad EB, Whoriskey F, Cooke SJ, Sjursen AD, Rönning L, Netland TC, Hawkins AD. Effects of sound exposure from a seismic airgun on heart rate, acceleration and depth use in free-swimming Atlantic cod and saithe. Conserv Physiol. 2019;7(1):coz020.
Article
Google Scholar
Priede IG. Heart rate telemetry from fish in the natural environment. Comp Biochem Physiol Part A Physiol. 1983;76:515–24.
Article
Google Scholar
Altimiras J, Larsen E. Non-invasive recording of heart rate and ventilation rate in rainbow trout during rest and swimming. Fish go wireless! J Fish Biol. 2000;57:197–209.
Article
Google Scholar
Lefrançois C, Claireaux G. Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Mar Ecol Prog Ser. 2003;259:273–84.
Article
Google Scholar
Clark TD, Sandblom E, Hinch SG, Patterson DA, Frappell PB, Farrell AP. Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka). J Comp Physiol B Biochem Syst Environ Physiol. 2010;180:673–84.
Article
Google Scholar
Cook SJ, Bunt CM, Schreer JF, Philipp DP. Attachment, validation and preliminary deployment of ultrasonic heart rate transmitters on largemouth bass, Micropterus salmoides. Aquat Living Resour. 2002;15:155–62.
Article
Google Scholar
Campbell HA, Bishop CM, Davies DA, Egginton S. Recording long-term heart rate in Paranotothenia angustata using an electronic datalogger. J Fish Biol. 2005;67:1150–6.
Article
Google Scholar
Claireaux G, Lefrançois C. A method for the external attachment of acoustic tags on roundfish. Hydrobiologia. 1998;371(372):113–6.
Article
Google Scholar
Anderson WG, Booth R, Beddow TA, McKinley RS, Finstad B, Økland F, Scruton D. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia. 1998;371/372:233–40.
Article
Google Scholar
Clark TD, Ryan T, Ingram BA, Woakes AJ, Butler PJ, Frappell PB. Factorial aerobic scope is independent of temperature and primarily modulated by heart rate in exercising murray cod (Maccullochella peelii peelii). Physiol Biochem Zool Ecol Evol Approach. 2005;78(3):347–55.
Article
CAS
Google Scholar
Woakes AJ, Butler PJ, Bevan RM. Implantable data logging system for heart rate and body temperature: its application to estimation of field metabolic rates in Antarctic predators. Med Biol Eng Comput. 1995;33:145–51.
Article
CAS
Google Scholar
Hellström G, Klaminder J, Jonsson M, Fick J, Brodin T. Upscaling behavioural studies to the field using acoustic telemetry. Aquat Toxicol. 2016;170:384–9.
Article
Google Scholar
Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;BME-32:230–6.
Article
Google Scholar
Robinson KA, Hinch SG, Gale MK, Clark TD, Wilson SM, Donaldson MR, et al. Effects of post-capture ventilation assistance and elevated water temperature on sockeye salmon in a simulated capture-and-release experiment. Conserv Physiol. 2013;1:1–10.
Article
Google Scholar
Prystay TS, Eliason EJ, Lawrence MJ, Dick M, Brownscombe JW, Patterson DA, et al. The influence of water temperature on sockeye salmon heart rate recovery following simulated fisheries interactions. Conserv Physiol. 2017;5:1–12. https://doi.org/10.1093/conphys/cox050/4091321.
Article
Google Scholar
Brill RW, Block BA, Boggs CH, Bigelow KA, Freund EV, Marcinek DJ. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar Biol. 1999;133:395–408.
Article
Google Scholar
Godø OR, Michalsen K. Migratory behaviour of north-east Arctic cod, studied by use of data storage tags. Fish Res. 2000;48:127–40.
Article
Google Scholar
Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature. 2005;434:1121–7. https://doi.org/10.1038/nature03463.
Article
CAS
PubMed
Google Scholar
Brijs J, Sandblom E, Axelsson M, Sundell K, Sundh H, Huyben D, Broström R, Kiessling A, Berg C, Gräns A. The final countdown: continuous physiological welfare evaluation of farmed fish during common aquaculture practices before and during harvest. Aquaculture. 2018;495:903–11.
Article
Google Scholar
Brijs J, Sandblom E, Rosengren M, Sundell K, Berg C, Axelsson M, Gräns A. Prospects and pitfalls of using heart rate bio-loggers to assess the welfare of rainbow trout (Oncorhynchus mykiss) in aquaculture. Aquaculture. 2019;509:188–97.
Article
Google Scholar
Wallerius ML, Gräns A, Koeck B, Berger D, Sandblom E, Ekström A, Arlinghaus R, Johnsson JI. Socially induced stress and behavioural inhibition in response to angling exposure in rainbow trout. Fish Manag Ecol. 2019;00:1–10.
Google Scholar
Portner H-O, Bock C, Knust R, Lannig G, Lucassen M, Mark FC, Sartoris FJ. Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim Res. 2008;37:253–70.
Article
Google Scholar
Pörtner HO, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 2007;315:95–7.
Article
Google Scholar
Axelsson M, Nilsson S. Blood pressure control during exercise in the atlantic cod, Gadus morhua. J Exp Biol. 1996;126:225–36.
Google Scholar
Gollock MJ, Currie S, Petersen LH, Gamperl AK. Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase. J Exp Biol. 2006;209:2961–70. https://doi.org/10.1242/jeb.02319.
Article
CAS
PubMed
Google Scholar
McGaw IJ, Steell SC, Van Leeuwen TE, Eliason EJ, Cooke SJ. Application of miniature heart rate data loggers for use in large free-moving decapod crustaceans: method development and validation. Physiol Biochem Zool. 2017;91:731–9. https://doi.org/10.1086/695839.
Article
Google Scholar