Bailey H, Shillinger G, Palacios D, Bograd S, Spotila J, Paladino F, et al. Identifying and comparing phases of movement by leatherback turtles using state-space models. J Exp Mar Biol Ecol. 2008;356:128–35.
Article
Google Scholar
Shillinger GL, Swithenbank AM, Bograd SJ, Bailey H, Castelton MR, Wallace BP, et al. Identification of high-use internesting habitats for eastern Pacific leatherback turtles: role of the environment and implications for conservation. Endanger Species Res. 2010;10:215–32.
Article
Google Scholar
Hart KM, Lamont MM, Fujisaki I, Tucker AD, Carthy RR. Common coastal foraging areas for loggerheads in the Gulf of Mexico: opportunities for marine conservation. Biol Conserv. 2012;145:185–94.
Article
Google Scholar
Shaver DJ, Hart KM, Fujisaki I, Rubio C, Sartain AR, Peña J, et al. Foraging area fidelity for Kemp’s ridleys in the Gulf of Mexico. Ecol Evol. 2013;3:2002–12.
Article
PubMed Central
PubMed
Google Scholar
Hamann M, Godfrey MH, Seminoff JA, Arthur K, Barata PCR, Bjorndal KA, et al. Global research priorities for sea turtles: informing management and conservation in the 21st century. Endanger Species Res. 2010;11:245–69.
Article
Google Scholar
Hobay AJ, Maxwell SM, Forgie J, McDonald J, Darb M, Seto K, et al. Dynamic ocean management: integrating scientific and technological capacity with law, policy, and management. Stanford Environ Law J. 2014;33:125–65.
Google Scholar
Godley B, Blumenthal J, Broderick A, Coyne M, Godfrey M, Hawkes L, et al. Satellite tracking of sea turtles: where have we been and where do we go next? Endanger Species Res. 2008;4:3–22.
Article
Google Scholar
Hart KM, Hyrenbach K. Satellite telemetry of marine megavertebrates: the coming of age of an experimental science. Endanger Species Res. 2009;10:9–20.
Article
Google Scholar
Broderick AC, Coyne MS, Fuller WJ, Glen F, Godley BJ. Fidelity and over-wintering of sea turtles. Proc R Soc B. 2007;274:3183–3.
Article
Google Scholar
Marcovaldi MÂ, Lopez GG, Soares LS, Lima EHSM, Thomé JCA, Almeida AP. Satellite tracking of female loggerhead turtles highlights fidelity behavior in northeastern Brazil. Endanger Species Res. 2010;12:263–72.
Article
Google Scholar
Griffin DB, Murphy SR, Frick MG, Broderick AC, Coker JW, Coyne MS, et al. Foraging habitats and migration corridors utilized by a recovering subpopulation of adult female loggerhead sea turtles: implications for conservation. Mar Biol. 2013;160:3071–86.
Article
Google Scholar
Foley AM, Schroeder BA, Hardy R, MacPherson SL, Nicholas M, Coyne MS. Postnesting migratory behavior of loggerhead sea turtles Caretta caretta from three Florida rookeries. Endanger Species Res. 2013;21:129–42.
Article
Google Scholar
Addison DS. Mean annual nest frequency for renesting loggerhead turtles (Caretta caretta) on the southwest coast of Florida. Mar Turt Newsl. 1996;75:13–5.
Google Scholar
Sato K, Matsuzawa Y, Tanaka H, Bando T, Minamikawa S, Sakamoto W, et al. Internesting intervals for loggerhead turtles, Caretta caretta, and green turtles, Chelonia mydas, are affected by temperature. Can J Zool. 1998;76:1651–62.
Article
Google Scholar
Hays GC, Broderick AC, Glen F, Godley BJ, Houghton JDR, Metcalfe JD. Water temperature and internesting intervals for loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. J Therm Biol. 2002;27:429–32.
Article
Google Scholar
Schroeder BA, Foley AM, Bagley DA. Nesting patterns, reproductive migrations, and adult foraging areas of loggerhead turtles. In: Bolten A, Witherington B, editors. Loggerhead sea turtles. Washington DC: Smithsonian Institute Press; 2003. p. 114–24.
Google Scholar
Tucker AD. Nest site fidelity and clutch frequency of loggerhead turtles are better elucidated by satellite telemetry than by nocturnal tagging efforts: implications for stock estimation. J Exp Mar Biol Ecol. 2010;383:48–55.
Article
Google Scholar
Hart KM, Zawada DG, Fujisaki I, Lidz BH. Inter-nesting habitat-use patterns of loggerhead sea turtles: enhancing satellite tracking with benthic mapping. Aquat Biol. 2010;11:77–90.
Article
Google Scholar
Limpus CJ, Miller JD, Parmenter CJ, Reimer D, Mclachlan N, Webb R. Migration of green (Chelonia mydas) and loggerhead (Caretta caretta) turtles to and from eastern Australian rookeries. Wildl Res. 1992;19:347–58.
Article
Google Scholar
Plotkin P. Adult migrations and habitat use. In: Lutz PL, Musick JA, Wyneken J, editors. The biology of sea turtles Volume 2. Boca Raton, FL: CRC Press; 2002. p. 225–41.
Chapter
Google Scholar
Girard C, Tucker AD, Calmettes B. Post-nesting migrations of loggerhead sea turtles in the Gulf of Mexico: dispersal in highly dynamic conditions. Mar Biol. 2009;156:1827–39.
Article
Google Scholar
Hawkes LA, Witt MJ, Broderick AC, Coker JW, Coyne MS, Dodd M, et al. Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers Distrib. 2011;17:624–40.
Article
Google Scholar
Service NMF. U.S. Fish and Wildlife Service. Recovery plan for the Northwest Atlantic population of loggerhead sea turtle (Caretta caretta), Second revision. National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce: Silver Spring, MD; 2008.
Google Scholar
Witherington B, Kubilis P, Brost B, Meylan AB. Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecol Appl. 2009;19:30–54.
Article
PubMed
Google Scholar
U.S. Fish and Wildlife Service, National Oceanic and Atmospheric Administration. Endangered and Threatened Species; Proposed Listing of Nine Distinct Population Segments of Loggerhead Sea Turtles as Endangered or Threatened; Proposed Rule, 50 CFR Parts 17, 223 and 224. Washington, DC: Fish and Wildlife Service, U.S. Department of the Interior and National Oceanic and Atmospheric Administration, U.S. Department of Commerce; 2010.
Google Scholar
U.S. Fish and Wildlife Service, National Oceanic and Atmospheric Administration. Endangered and Threatened Species; Determination of Nine Distinct Population Segments of Loggerhead Sea Turtles as Endangered or Threatened; Final Rule, 50 CFR Parts 17, 223, and 224. Washington, DC: Fish and Wildlife Service, U.S. Department of the Interior, National Oceanic and Atmospheric Administration, U.S. Department of Commerce; 2011.
Google Scholar
Oceanic N, Administration A. Endangered and Threatened Species: Designation of Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct Population Segment (DPS) and Determination Regarding Critical Habitat for the North Pacific Ocean Loggerhead DPS; Proposed Rule. 50 CFR Part 226. Washington DC: National Oceanic and Atmospheric Administration, U.S. Department of Commerce; 2013.
U.S. Fish and Wildlife Service: Endangered and Threatened Wildlife and Plants. Designation of Critical Habitat for the Northwest Atlantic Ocean Distinct Population Segment of the Loggerhead Sea Turtle (Caretta caretta); Proposed Rule, 50 CFR Part 17. Washington, DC: Fish and Wildlife Service, U.S. Department of the Interior; 2013.
Google Scholar
Group TEW. An assessment of the Loggerhead Turtle Population in the Western Northern Atlantic Ocean. NOAA Technical Memorandum NMFS- SEFSC-575. Turtle Expert Working Group, Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce: Miami, FL; 2009.
Google Scholar
Shamblin BM, Dodd MG, Bagley DA, Ehrhart LM, Tucker AD, Johnson C, et al. Genetic structure of the southeastern United States loggerhead turtle nesting aggregation: evidence of additional structure within the peninsular Florida recovery unit. Mar Biol. 2011;158:571–87.
Article
Google Scholar
Shamblin BM, Bolten AB, Bjorndal KA, Dutton PH, Nielsen JT, Abreu-Grobois FA, et al. Expanded mitochondrial control region sequences increase resolution of stock structure among North Atlantic loggerhead turtle rookeries. Mar Ecol Prog Ser. 2012;469:145–60.
Article
Google Scholar
Encalada SE, Bjorndal KA, Bolten AB, Zurita JC, Schroeder B, Possardt E, et al. Population structure of loggerhead turtle (Caretta caretta) nesting colonies in the Atlantic and Mediterranean as inferred from mitochondrial DNA control region sequences. Mar Biol. 1998;130:567–75.
Article
CAS
Google Scholar
Wallace BP, DiMatteo AD, Hurley BJ, Finkbeiner EM, Bolten AB, Chaloupka MY, et al. Regional management units for marine turtles: A novel framework for prioritizing conservation and research across multiple scales. PLoS One. 2010;5(12):e15465.
Article
PubMed Central
PubMed
Google Scholar
Richards PM, Epperly SP, Heppell SS, King RT, Sasso CR, Moncada F, et al. Sea turtle population estimates incorporating uncertainty: a new approach applied to western North Atlantic loggerheads Caretta caretta. Endanger Species Res. 2011;15:151–8.
Article
Google Scholar
Moncada F, Abreu-Grobois FA, Bagley D, Bjorndal K, Bolten A, Camiñas J, et al. Movement patterns of loggerhead turtles Caretta caretta in Cuban waters inferred from flipper tag recaptures. Endanger Species Res. 2010;11:61–8.
Article
Google Scholar
Meylan AB, Bjorndal KA, Turner BJ. Seaturtles nesting at Melbourne beach, Florida, II. Post-nesting movements of Caretta caretta. Biol Conserv. 1983;26:79–90.
Article
Google Scholar
Arendt MD, Segars AL, Byrd JI, Boynton J, Schwenter JA, Whitaker JD, et al. Migration, distribution, and diving behavior of adult male loggerhead sea turtles (Caretta caretta) following dispersal from a major breeding aggregation in the Western North Atlantic. Mar Biol. 2012;159:113–25.
Article
Google Scholar
Pajuelo M, Bjorndal KA, Reich KJ, Arendt MD, Bolten AB. Distribution of foraging habitats of male loggerhead turtles (Caretta caretta) as revealed by stable isotopes and satellite telemetry. Mar Biol. 2012;159:1255–67.
Article
Google Scholar
Myers N, Mittermeier RA, Mittemeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–8.
Article
CAS
PubMed
Google Scholar
Jonsen ID, Myers RA, Fleming JM. Meta-analysis of animal movement using state-space models. Ecology. 2003;84:3055–63.
Article
Google Scholar
Jonsen ID, Mills-Flemming J, Myers RA. Robust state–space modeling of animal movement data. Ecology. 2005;86:2874–80.
Article
Google Scholar
Jonsen ID, Myers RA, James MC. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol. 2006;75:1046–57.
Article
PubMed
Google Scholar
Jonsen ID, Myers RA, James MC. Identifying leatherback turtle foraging behaviour from satellite-telemetry using a switching state-space model. Mar Ecol Prog Ser. 2007;337:255–64.
Article
Google Scholar
Patterson TA, Thomas L, Wilcox C, Ovaskained O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008;23:87–94.
Article
PubMed
Google Scholar
Breed GA, Jonsen ID, Myers RA, Bowen WD, Leonard ML. Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology. 2009;90:3209–21.
Article
PubMed
Google Scholar
Maxwell SM, Breed GA, Nickel BA, Makanga-Bahouna J, Pemo-Makaya E, Parnell RJ, et al. Using satellite tracking to optimize protection of long-lived marine species: olive ridley sea turtle conservation in Central Africa. PLoS One. 2011;6:e19905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey H, Benson SR, Shillinger GL, Bograd SJ, Dutton PH, Eckert SA, et al. Identification of distinct movement patterns in Pacific leatherback turtle populations influenced by ocean conditions. Ecol Appl. 2012;22:735–47.
Article
PubMed
Google Scholar
Bailey H, Fossette S, Bograd SJ, Shillinger GL, Swithenbank AM, Georges JY, et al. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status. PLoS One. 2012;7:e36401.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shillinger GL, Swithenbank AM, Bailey H, Bograd SJ, Castleton MR, Wallace BP, et al. Vertical and horizontal habitat preferences of post-nesting leatherback turtles in the South Pacific Ocean. Mar Ecol Prog Ser. 2011;422:275–89.
Article
Google Scholar
Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, et al. Tracking apex marine predator movements in a dynamic ocean. Nature. 2011;475:86–90.
Article
CAS
PubMed
Google Scholar
Burt WH. Territoriality and home range concepts as applied to mammals. J Mammal. 1943;24:346–52.
Article
Google Scholar
Mohr CO. Table of equivalent populations of North American small mammals. Am Midl Nat. 1947;37:223–49.
Article
Google Scholar
Worton BJ. A review of models of home range for animal movement. Ecol Model. 1987;38:277–98.
Article
Google Scholar
Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989;70:164–8.
Article
Google Scholar
White GC, Garrott RA. Analysis of wildlife radiotracking data. New York: Academic; 1990.
Google Scholar
Hoenner X, Whiting SD, Hindell MA, McMahon CR. Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals. PLoS One. 2012;7(7):e40713.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benson SR, Eguchi T, Foley DG, Forney KA, Bailey H, Hitipeuw C, et al. Large-scale movements and high-use areas of western Pacific leatherback turtles, Dermochelys coriacea. Ecosphere. 2011;2:art84.
Article
Google Scholar
Carman VG, Falabella V, Maxwell S, Albareda D, Campagna C, Mianzan H. Revisiting the ontogenetic shift paradigm: the case of juvenile green turtles in the SW Atlantic. J Exp Mar Biol Ecol. 2012;429:64–72.
Article
Google Scholar
Seaman DE, Powell RA. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology. 1996;77:2075–85.
Article
Google Scholar
Dodd C, Byles R. Post-nesting movements and behavior of loggerhead sea turtles (Caretta caretta) departing from east-central Florida nesting beaches. Chelonian Conserv Biol. 2003;4:530–6.
Google Scholar
Laver PN, Kelly MJ. A critical review of home range studies. J Wildl Manag. 2008;72:290–8.
Article
Google Scholar
Phillips K. Beyond the beach: population trends and foraging site selection of a Florida loggerhead nesting assemblage. Miami: Masters thesis. University of Miami: Department of Marine Affairs and Policy; 2011.
Google Scholar
Witt MJ, Akesson S, Broderick AC, Coyne MS, Ellick J, Formia A, et al. Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim Behav. 2010;80:571–81.
Article
Google Scholar
Thomson JA, Heithaus MR, Burkholder DA, Vaudo JJ, Wirsing AJ, Dill LM. Site specialists, diet generalists? Isotopic variation, site fidelity, and foraging by loggerhead turtles in Shark Bay, Western Australia. Mar Ecol Prog Ser. 2012;453:213–26.
Article
Google Scholar
Powell RA. Animal home ranges and territories. In: Boitani L, Fuller TK, editors. Research techniques in animal ecology: controversies and consequences. New York: Columbia University Press; 2000. p. 65–110.
Google Scholar
Fretwell SD, Lucas HL. On territorial behaviour and other factors influencing habitat distribution in birds. Acta Biotheor. 1970;19:16–32.
Article
Google Scholar
Kennedy M, Gray RD. Can ecological theory predict the distribution of foraging animals—a critical analysis of experiments on the ideal free distribution. Oikos. 1993;68:158–66.
Article
Google Scholar
Schofield G, Katselidis KA, Pantis JD, Dimopoulos P, Hays GC. Female-female aggression: structure of interaction and outcome in loggerhead sea turtles. Mar Ecol Prog Ser. 2007;336:267–74.
Article
Google Scholar
Plc BPC. Environmental impact assessment for exploratory drilling in the Bain, Cooper, Donaldson and Eneas Blocks, offshore the Bahamas. Nassau, Bahamas: Bahamas Petroleum Company Plc; 2012.
Google Scholar
Fishery and aquaculture country profiles: the Commonwealth of the Bahamas [www.fao.org/fishery/facp/BHS/en]
Bolten AB. Active swimmers-passive drifters: the oceanic juvenile stage of loggerheads in the Atlantic system. In: Bolten A, Witherington B, editors. Loggerhead sea turtles. Washington DC: Smithsonian Institute Press; 2003. p. 63–98.
Google Scholar
Convention on International Trade in Endangered Species of Wild Fauna and Flora [www.cites.org/eng/disc/text.php]
Buchan KC. The Bahamas. Mar Pollut Bull. 2000;41:94–111.
Article
CAS
Google Scholar
Stringell TB, Calosso MC, Claydon JAB, Clerveaux W, Godley BJ, Lochart KJ, et al. Marine turtle harvest in a mixed small-scale fishery: evidence for revised management measures. Ocean Coast Manage. 2013;82:34–42.
Article
Google Scholar
Center SFS. Sea turtle research techniques manual. NOAA Technical Memorandum NMFS-SEFSC-579. . Miami, FL: Southeast Fisheries Science Center, NOAA Fisheries, National Oceanic and Atmospheric Administration, U.S, Department of Commerce; 2008.
Google Scholar
Coyne MS, Godley BJ. Satellite tracking and analysis tool (STAT): an integrated system for archiving, analyzing and mapping animal tracking data. Mar Ecol Prog Ser. 2005;301:1–7.
Article
Google Scholar
Collection Location Satellites. Argos user’s manual: worldwide tracking and environmental monitoring by satellite. Toulouse, France: Collection Location Satellites; 2011.
Google Scholar
Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82:35–45.
Article
Google Scholar
Lopez R, Malarde J. Improving ARGOS Doppler location using Kalman filtering. Ramonville Saint-Agne. France: Ramonville Saint-Agne: Collecte Localisation Satellites; 2011.
Google Scholar
Hart KM, Lamont MM, Sartain AR, Fujisaki I, Stephens BS. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period. PLoS One. 2013;8:e66921.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodgers AR, Carr AP, Smith L, Kie JG. HRT: home range tools for ArcGIS. Ontario, Canada: Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research; 2005.
Google Scholar
Worton BJ. Using Monte Carlo simulation to evaluate kernel-based home range estimators. J Wildl Manag. 1995;59:794–800.
Article
Google Scholar
Environmental Systems Research Institutes (ESRI). ArcGIS 9.3. Redlands, CA: Geographic Information Systems (GIS); 2007.
Google Scholar
Hooge PN, Eichenlaub W, Hooge ER. Animal movement 2.5. Anchorage, AK: US Geological Survey, Alaska Biological Science Center; 2001.
Google Scholar
Bogdanova MI, Wanless S, Harris MP, Lindström J, Butler A, Newell MA, et al. Among-year and within-population variation in foraging distribution of European shags Phalacrocorax aristotelis over two decades: implications for marine spatial planning. Biol Conserv. 2014;170:292–9.
Article
Google Scholar
GEBCO_08_Grid (General Bathymetric Chart of the Oceans) a 30 arc-second continuous terrain model of both ocean and land [www.gebco.net]
Tucker AD, MacDonald BD, Seminoff JA. Foraging site fidelity and stable isotope values of loggerhead turtles tracked in the Gulf of Mexico and Northwest Caribbean. Mar Biol. 2014;502:267–79.
CAS
Google Scholar
World Database on Protected Areas [www.protectedplant.net]